1
|
Lela L, Carlucci V, Kioussi C, Choi J, Stevens JF, Milella L, Russo D. Humulus lupulus L.: Evaluation of Phytochemical Profile and Activation of Bitter Taste Receptors to Regulate Appetite and Satiety in Intestinal Secretin Tumor Cell Line (STC-1 Cells). Mol Nutr Food Res 2024; 68:e2400559. [PMID: 39388530 DOI: 10.1002/mnfr.202400559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Indexed: 10/12/2024]
Abstract
SCOPE Inflorescences of the female hop plant (Humulus lupulus L.) contain biologically active compounds, most of which have a bitter taste. Given the rising global obesity rates, there is much increasing interest in bitter taste receptors (TAS2Rs). Intestinal TAS2Rs can have beneficial effects on obesity when activated by bitter agonists. This study aims to investigate the mechanism of action of a hydroalcoholic hop extract in promoting hormone secretion that reduces the sense of hunger at the intestinal level through the interaction with TAS2Rs. METHODS AND RESULTS The results demonstrate that the hop extract is a rich source of bitter compounds (mainly α-, β-acids) that stimulate the secretion of anorexigenic peptides (glucagon-like peptide 1 [GLP-1], cholecystokinin [CCK]) in a calcium-dependent manner while reducing levels of hunger-related hormones like ghrelin. This effect is mediated through interaction with TAS2Rs, particularly Tas2r138 and Tas2r120, and through the activation of downstream signaling cascades. Knockdown of these receptors using siRNA transfection and inhibition of Trpm5, Plcβ-2, and other calcium channels significantly reduces the hop-induced calcium response as well as GLP-1 and CCK secretion. CONCLUSIONS This study provides a potential application of H. lupulus extract for the formulation of food supplements with satiating activity capable of preventing or combating obesity.
Collapse
Affiliation(s)
- Ludovica Lela
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Vittorio Carlucci
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Luigi Milella
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
- Spinoff Bioactiplant, via dell'Ateneo Lucano 10, Potenza, 85100, Italy
| |
Collapse
|
2
|
Lela L, Ponticelli M, Carlucci V, Stevens JF, Faraone I, Tzvetkov NT, Milella L. Insight into the Interaction of Humulus lupulus L. Specialized Metabolites and Gastrointestinal Bitter Taste Receptors: In Vitro Study in STC-1 Cells and Molecular Docking. JOURNAL OF NATURAL PRODUCTS 2024; 87:2021-2033. [PMID: 39126694 DOI: 10.1021/acs.jnatprod.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Bitter taste receptors, also known as taste 2 receptors (T2R), are expressed throughout the body and are involved in regulating different physiological processes. T2R expression in the intestinal tract regulates orexigenic and anorexigenic peptide secretion, thus becoming potential a potential target for controlling food intake and the prevalence of obesity and overweight. The present study aims to investigate the implication of hop bitter compounds such as α-acids, β-acids, and xanthohumol in the secretion of anorexigenic hormones and T2R expression in intestinal STC-1 cells. The tested bitter compounds induced the secretion of the anorexigenic hormones glucagon-like peptide 1 and cholecystokinin concurrently with a selective increase of murine Tas2r expression. Xanthohumol and α-acids selectively increase Tas2r138 and Tas2r130-Tas2r138 expression, respectively, in STC-1 cells, while β-acids increased the expression of all bitter receptors studied, including Tas2r119, Tas2r105, Tas2r138, Tas2r120, and Tas2r130. Increased intracellular calcium levels confirmed this activity. As all investigated bitter molecules increased Tas2r138 expression, computational studies were performed on Tas2r138 and its human orthologue T2R38 for the first time. Molecular docking experiments showed that all molecules might be able to bind both bitter receptors, providing an excellent basis for applying hop bitter molecules as lead compounds to further design gastrointestinal-permeable T2R agonists.
Collapse
Affiliation(s)
- Ludovica Lela
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Ponticelli
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Institute of Molecular Biology "Roumen Tsanev", Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Vittorio Carlucci
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Jan F Stevens
- Department of Chemistry and the Linus Pauling Institute, Oregon State University, 117 Weniger Hall, Corvallis, Oregon 97331, United States
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100 Potenza, Italy
| | - Nikolay T Tzvetkov
- Institute of Molecular Biology "Roumen Tsanev", Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
3
|
Alves MDR, Nascimento RDP, da Fonseca Machado AP, Dos Santos P, Aledo E, Morandi Vuolo M, Cavalheiro CO, Giaculi VO, Berilli P, Dos Santos NM, Marostica Junior MR. Hop ( Humulus lupulus L.) extract reverts glycaemic imbalance and cognitive impairment in an animal model of obesity. Food Funct 2024; 15:7669-7680. [PMID: 38961720 DOI: 10.1039/d4fo02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The rates of overweight and obesity around the world have increased in past years. The body's adipose tissue stimulates the antioxidant and oxidation imbalance capacity at the cellular level. This scenario favors an inflammatory low-grade systemic condition starting with insulin resistance, which in turn may involve diabetes mellitus type 2 and cognitive decline afterward. Neurological diseases have been correlated to senile age diseases over time. This scenario calls for a change in the incidence of obesity in the younger generation. An unhealthy dietary consumption together with sedentary habits might lead to poor gut absorption of nutrients. Several plants and foods have bioactive compounds that can reduce or inhibit radical scavengers, reactive oxygen species, and metal ion complexes that threaten the cerebral defense system. The bitter acids from hops (Humulus lupulus L.) have been demonstrated to have promising effects on lipid and carbohydrate metabolism improvement, reducing inflammatory responses through alpha acids, beta acids, and analogs action. Therefore, the current study aimed to investigate the bioactivity of hop bitter acids in obese and lean mice. For that, a dry hop extract (DHE) was obtained by applying carbon dioxide as the fluid of supercritical extraction. Afterward, seventy-eight male mice of the C57BL/6J strain were weighed and randomly distributed into six groups of 13 animals each according to the diet offered: (NO) normolipidic diet, (NO1) normolipidic diet containing 0.35% alpha acids, (NO2) normolipidic diet containing 3.5% alpha acids, (HP) hyperlipidic diet, (HP1) hyperlipidic diet containing 0.35% alpha acids, and (HP2) hyperlipidic diet containing 3.5% alpha acids. After applying the glycemic tolerance and insulin tolerance tests, a better stabilization of glycemia levels and weight gain among those animals fed with DHE (NO2 and HP2) were observed in comparison to the obese control group (HP) (p < 0.05). There was also an amelioration of antioxidant capacity observed by checking the enzymatic profile by SOD and an apparent mitigation of brain degeneration by checking GSK3β and p-IRS1 proteins expression (p < 0.05). The y-maze cognitive test applied to highlight possible obesity-harmful animal brains did not indicate a statistical difference between the groups. Although the weekly dietary intake between the obese HP2 group (33.32 ± 4.11, p < 0.05) and control HP (42.3 ± 5.88, p < 0.05) was different. The bioactive compounds present in DHE have demonstrated relevant effects on glycemic control, insulin signaling, and the consequent modulatory action of the obesity-related markers with the brain's inflammatory progression.
Collapse
Affiliation(s)
- Mariana da Rocha Alves
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Roberto de Paula Nascimento
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Ana Paula da Fonseca Machado
- Universidade Federal da Grande Dourados, Faculdade de Engenharia, Rod. Dourados-Itahum Km 12, C.P.: 79804-970 - Dourados, Mato Grosso do Sul, Brasil
| | - Philipe Dos Santos
- Rubian xtratos LTDA, Rua do Café, 375 Vila Valle, 13174-000, Sumaré, São Paulo, Brazil
| | - Eduardo Aledo
- Rubian xtratos LTDA, Rua do Café, 375 Vila Valle, 13174-000, Sumaré, São Paulo, Brazil
| | - Milena Morandi Vuolo
- Rubian xtratos LTDA, Rua do Café, 375 Vila Valle, 13174-000, Sumaré, São Paulo, Brazil
| | - Carolina Oliveira Cavalheiro
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Vinícius Oliveira Giaculi
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Patrícia Berilli
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Nathália Medina Dos Santos
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Mario Roberto Marostica Junior
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Abdulghani MF, Al-Fayyadh S. Natural products for managing metabolic syndrome: a scoping review. Front Pharmacol 2024; 15:1366946. [PMID: 38746011 PMCID: PMC11091304 DOI: 10.3389/fphar.2024.1366946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Metabolic syndrome comprises a collection of metabolic disorders stemming from factors like genetic predisposition, inadequate nutrition, stress, decreased physical activity, aging, and ethnicity. Although traditional pharmaceutical treatments exist for metabolic syndrome, their limited popularity is attributed to high costs and adverse effects. Consequently, natural products with fewer side effects have been explored for managing this condition. This literature review aims to explore the role of natural products including herbs, botanicals, vitamins, minerals, probiotics, and dietary supplements in managing metabolic syndrome. Methods This scoping review was conducted in five steps, involving the formulation of a research question, the retrieval and extraction of relevant studies, the selection of pertinent studies, the organization of information into tables, and the reporting of results. Data was collected from various databases including Embase, Science Direct, PubMed, Google Scholar, Scopus, and Web of Science, with a focus on studies published from 2010 to the present, available in English and with full-text accessibility. Results We identified 1,259 articles, screened their titles, abstracts, and full texts, ultimately incorporating 169 pertinent articles into this review (comprising 90 review articles, 32 trial articles, 6 in vitro articles, 38 in vivo articles, 1 experimental article and 2 observational articles). The study's outcomes revealed that natural products, encompassing plants and their derivatives, vitamins and supplements, as well as probiotics, can exert a beneficial influence on metabolic syndrome by regulating blood sugar, blood pressure, lipid profiles, obesity, and abnormal cholesterol and triglyceride levels. Conclusion The current study underscores the significance of natural products in addressing metabolic syndrome. Consequently, it is advisable to conduct further extensive research to assess the efficacy of these products, potentially integrating them into treatment regimens for individuals with metabolic syndrome.
Collapse
|
5
|
Abdulghani MF, Al-Fayyadh S. Natural products for managing metabolic syndrome: a scoping review. Front Pharmacol 2024; 15. [DOI: https:/doi.org/10.3389/fphar.2024.1366946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
IntroductionMetabolic syndrome comprises a collection of metabolic disorders stemming from factors like genetic predisposition, inadequate nutrition, stress, decreased physical activity, aging, and ethnicity. Although traditional pharmaceutical treatments exist for metabolic syndrome, their limited popularity is attributed to high costs and adverse effects. Consequently, natural products with fewer side effects have been explored for managing this condition. This literature review aims to explore the role of natural products including herbs, botanicals, vitamins, minerals, probiotics, and dietary supplements in managing metabolic syndrome.MethodsThis scoping review was conducted in five steps, involving the formulation of a research question, the retrieval and extraction of relevant studies, the selection of pertinent studies, the organization of information into tables, and the reporting of results. Data was collected from various databases including Embase, Science Direct, PubMed, Google Scholar, Scopus, and Web of Science, with a focus on studies published from 2010 to the present, available in English and with full-text accessibility.ResultsWe identified 1,259 articles, screened their titles, abstracts, and full texts, ultimately incorporating 169 pertinent articles into this review (comprising 90 review articles, 32 trial articles, 6 in vitro articles, 38 in vivo articles, 1 experimental article and 2 observational articles). The study’s outcomes revealed that natural products, encompassing plants and their derivatives, vitamins and supplements, as well as probiotics, can exert a beneficial influence on metabolic syndrome by regulating blood sugar, blood pressure, lipid profiles, obesity, and abnormal cholesterol and triglyceride levels.ConclusionThe current study underscores the significance of natural products in addressing metabolic syndrome. Consequently, it is advisable to conduct further extensive research to assess the efficacy of these products, potentially integrating them into treatment regimens for individuals with metabolic syndrome.
Collapse
|
6
|
Paiva Barbosa V, Bastos Silveira B, Amorim Dos Santos J, Monteiro MM, Coletta RD, De Luca Canto G, Stefani CM, Guerra ENS. Critical appraisal tools used in systematic reviews of in vitro cell culture studies: A methodological study. Res Synth Methods 2023; 14:776-793. [PMID: 37464457 DOI: 10.1002/jrsm.1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Systematic reviews (SRs) of preclinical studies are marked with poor methodological quality. In vitro studies lack assessment tools to improve the quality of preclinical research. This methodological study aimed to identify, collect, and analyze SRs based on cell culture studies to highlight the current appraisal tools utilized to support the development of a validated critical appraisal tool for cell culture in vitro research. SRs, scoping reviews, and meta-analyses that included cell culture studies and used any type of critical appraisal tool were included. Electronic search, study selection, data collection and methodological quality (MQ) assessment tool were realized. Further, statistical analyses regarding possible associations and correlations between MQ and collected data were performed. After the screening process, 82 studies remained for subsequent analysis. A total of 32 different appraisal tools were identified. Approximately 60% of studies adopted pre-structured tools not designed for cell culture studies. The most frequent instruments were SYRCLE (n = 14), OHAT (n = 9), Cochrane Collaboration's tool (n = 7), GRADE (n = 6), CONSORT (n = 5), and ToxRTool (n = 5). The studies were divided into subgroups to perform statistical analyses. A significant association (OR = 5.00, 95% CI = 1.54-16.20, p = 0.008) was found between low MQ and chronic degenerative disorders as topic of SR. Several challenges in collecting information from the included studies led to some modifications related to the previously registered protocol. These results may serve as a basis for further development of a critical appraisal tool for cell culture studies capable of capturing all the essential factors related to preclinical research, therefore enhancing the practice of evidence-based.
Collapse
Affiliation(s)
- Victor Paiva Barbosa
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Bruna Bastos Silveira
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Juliana Amorim Dos Santos
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Mylene Martins Monteiro
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Ricardo D Coletta
- University of Campinas, Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Graziela De Luca Canto
- Federal University of Santa Catarina, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristine Miron Stefani
- University of Brasilia, Department of Dentistry, School of Health Sciences, University of Brasilia, Brasília, Brazil
| | - Eliete Neves Silva Guerra
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
7
|
Iacuzzi N, Salamone F, Farruggia D, Tortorici N, Vultaggio L, Tuttolomondo T. Development of a New Micropropagation Protocol and Transfer of In Vitro Plants to In Vivo Conditions for Cascade Hop. PLANTS (BASEL, SWITZERLAND) 2023; 12:2877. [PMID: 37571031 PMCID: PMC10420957 DOI: 10.3390/plants12152877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The vegetative propagation of hops, despite being a reliable method, is not very common due to the unavailability of the plant material. In this study, the technique of in vitro propagation was applied to the Cascade variety of Humulus lupulus L. The plant material was collected from a private field in Sicily; the explants were subjected to sterilization before in vitro culture. Single-node explants were placed in in vitro culture in nine different culture media for multiplication. Thidiazuron (TDZ), Benzyladenine (BAP) and meta-Topoline (mT) were tested for multiplication phase. For the rooting phase, five types of different culture media were evaluated. Binodal cuttings coming from the previous multiplication test were placed in the culture. The rooting media differ from each other in the concentration and ratio of two auxin hormones: Indolo-3-acetic acid (IAA) and Indole-3-butyric acid (IBA). In vitro rooted plants obtained from the rooting phase were transferred to ex vitro conditions in a microbox with agri-perlite and a solution containing Murashige and Skoog (MS) basal medium at half concentration. With a culture medium containing the highest TDZ doses (H6) and combination with cytokinin (H8 and H9), the highest shoot percentage was obtained. After 3 months of in vitro culture, the highest shoot percentage was observed in the culture medium with 2 mL L-1 of BAP. The highest rooting percentage, roots numbers and root length were found when the culture medium was supplemented with 1 mL L-1 of IAA. The usage of agri-perlite and MS at half concentration, without PGR, allowed us to obtain a 99.1% survival rate. This micropropagation protocol is useful for obtaining virus-free plants and for the development of the brewery industry.
Collapse
Affiliation(s)
| | | | - Davide Farruggia
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale delle Scienze 13, Building 4, 90128 Palermo, Italy; (N.I.); (F.S.); (N.T.); (L.V.); (T.T.)
| | | | | | | |
Collapse
|
8
|
Lela L, Russo D, De Biasio F, Gorgoglione D, Ostuni A, Ponticelli M, Milella L. Solanum aethiopicum L. from the Basilicata Region Prevents Lipid Absorption, Fat Accumulation, Oxidative Stress, and Inflammation in OA-Treated HepG2 and Caco-2 Cell Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2859. [PMID: 37571013 PMCID: PMC10421219 DOI: 10.3390/plants12152859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Obesity is widely associated with intestine barrier impairment, nonalcoholic fatty liver disease (NAFLD) outbreaks, oxidative stress, and inflammation. In a previous investigation, the Solanum aethiopicum L. growing in Basilicata Region has demonstrated to have antioxidant activity; hence this investigation was aimed to evaluate for the first time the antilipidemic and anti-inflammatory activity of the Lucanian S. aethiopicum L. peel extract in vitro on OA-treated HepG2 and Caco-2 cell lines. It was shown that the extract could reduce lipogenesis by down-regulating SREBP-1c and HMGCR expression and fatty acid β-oxidation by up-regulating PPARα, CPT1A, and UCP2 expression. In addition, the S. aethiopicum L. peel extract might also improve oxidative stress by reducing endoplasmic reticulum stress and regulating the Nrf2 and Nf-κB molecular pathways. Altogether, these results demonstrated for the first time the possible application of the Lucanian S. aethiopicum peel extract for preventing obesity and managing NAFLD.
Collapse
Affiliation(s)
- Ludovica Lela
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (L.L.); (D.R.); (A.O.)
| | - Daniela Russo
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (L.L.); (D.R.); (A.O.)
- Spinoff Bioactiplant s.r.l., Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | | | | | - Angela Ostuni
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (L.L.); (D.R.); (A.O.)
| | - Maria Ponticelli
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (L.L.); (D.R.); (A.O.)
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le Ateneo Lucano 10, 85100 Potenza, Italy; (L.L.); (D.R.); (A.O.)
| |
Collapse
|
9
|
Nurzynska A, Klimek K, Michalak A, Dos Santos Szewczyk K, Arczewska M, Szalaj U, Gagos M, Ginalska G. Do Curdlan Hydrogels Improved with Bioactive Compounds from Hop Exhibit Beneficial Properties for Skin Wound Healing? Int J Mol Sci 2023; 24:10295. [PMID: 37373441 DOI: 10.3390/ijms241210295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds, among others, are mainly characterized by prolonged inflammation associated with the overproduction of reactive oxygen species and pro-inflammatory cytokines by immune cells. As a consequence, this phenomenon hinders or even precludes the regeneration process. It is known that biomaterials composed of biopolymers can significantly promote the process of wound healing and regeneration. The aim of this study was to establish whether curdlan-based biomaterials modified with hop compounds can be considered as promising candidates for the promotion of skin wound healing. The resultant biomaterials were subjected to an evaluation of their structural, physicochemical, and biological in vitro and in vivo properties. The conducted physicochemical analyses confirmed the incorporation of bioactive compounds (crude extract or xanthohumol) into the curdlan matrix. It was found that the curdlan-based biomaterials improved with low concentrations of hop compounds possessing satisfactory hydrophilicity, wettability, porosity, and absorption capacities. In vitro, tests showed that these biomaterials were non-cytotoxic, did not inhibit the proliferation of skin fibroblasts, and had the ability to inhibit the production of pro-inflammatory interleukin-6 by human macrophages stimulated with lipopolysaccharide. Moreover, in vivo studies showed that these biomaterials were biocompatible and could promote the regeneration process after injury (study on Danio rerio larvae model). Thus, it is worth emphasizing that this is the first paper demonstrating that a biomaterial based on a natural biopolymer (curdlan) improved with hop compounds may have biomedical potential, especially in the context of skin wound healing and regeneration.
Collapse
Affiliation(s)
- Aleksandra Nurzynska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland
| | | | - Marta Arczewska
- Department of Biophysics, University of Life Sciences, Akademicka 13 Street, 20-033 Lublin, Poland
- Department of Biophysics, Medical University of Lublin, Jaczewskiego 4 Street, 20-090 Lublin, Poland
| | - Urszula Szalaj
- Laboratory of Nanostructures, Polish Academy of Science, Sokolowska 29/37 Street, 01-142 Warsaw, Poland
- Faculty of Materials Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Mariusz Gagos
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Ponticelli M, Lela L, Moles M, Mangieri C, Bisaccia D, Faraone I, Falabella R, Milella L. The healing bitterness of Gentiana lutea L., phytochemistry and biological activities: A systematic review. PHYTOCHEMISTRY 2023; 206:113518. [PMID: 36423749 DOI: 10.1016/j.phytochem.2022.113518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Over many years, natural products have been a source of healing agents and have exhibited beneficial uses for treating human diseases. The Gentiana genus is the biggest genus in the Gentianaceae, with over 400 species distributed mainly in alpine zones of temperate countries around the world. Plants in the Gentiana genus have historically been used to treat a wide range of diseases. Still, only in the last years has particular attention been paid to the biological activities of Gentiana lutea Linn., also known as yellow Gentian or bitterwort. Several in vitro/vivo investigations and human interventional trials have demonstrated the promising activity of G. lutea extracts against oxidative stress, microbial infections, inflammation, obesity, atherosclerosis, etc.. A systematic approach was performed using Pubmed and Scopus databases to update G. lutea chemistry and activity. Specifically, this systematic review synthesized the major specialized bitter metabolites and the biological activity data obtained from different cell lines, animal models, and human interventional trials. This review aims to the exaltation of G. lutea as a source of bioactive compounds that can prevent and treat several human illnesses.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Ludovica Lela
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Mariapia Moles
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Claudia Mangieri
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Bisaccia
- Italian National Research Council-Water Research Institute, Viale F. De Blasio 5, 70123, Bari, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy; Spinoff Bioactiplant Srl Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Roberto Falabella
- Urology Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
11
|
Carbone K, Gervasi F. An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention. PLANTS (BASEL, SWITZERLAND) 2022; 11:3434. [PMID: 36559547 PMCID: PMC9782902 DOI: 10.3390/plants11243434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
The medicinal potential of hop (Humulus lupulus L.) is widely cited in ancient literature and is also allowed in several official pharmacopoeias for the treatment of a variety of ailments, mainly related to anxiety states. This is due to the plethora of phytoconstituents (e.g., bitter acids, polyphenols, prenyl flavonoids) present in the female inflorescences, commonly known as cones or strobili, endowed with anti-inflammatory, antioxidant, antimicrobial, and phytoestrogen activities. Hop has recently attracted the interest of the scientific community due to the presence of xanthohumol, whose strong anti-cancer activity against various types of cancer cells has been well documented, and for the presence of 8-prenyl naringenin, the most potent known phytoestrogen. Studies in the literature have also shown that hop compounds can hinder numerous signalling pathways, including ERK1/2 phosphorylation, regulation of AP-1 activity, PI3K-Akt, and nuclear factor NF-κB, which are the main targets of the antiproliferative action of bitter acids and prenylflavonoids. In light of these considerations, the aim of this review was to provide an up-to-date overview of the main biologically active compounds found in hops, as well as their in vitro and in vivo applications for human health and disease prevention. To this end, a quantitative literature analysis approach was used, using VOSviewer software to extract and process Scopus bibliometric data. In addition, data on the pharmacokinetics of bioactive hop compounds and clinical studies in the literature were analysed. To make the information more complete, studies on the beneficial properties of the other two species belonging to the genus Humulus, H. japonicus and H. yunnanensis, were also reviewed for the first time.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | | |
Collapse
|
12
|
Nicácio KDJ, Ferreira MS, Katchborian-Neto A, Costa ML, Murgu M, Dias DF, Soares MG, Chagas-Paula DA. Anti-Inflammatory Markers of Hops Cultivars (Humulus lupulus L.) Evaluated by Untargeted Metabolomics Strategy. Chem Biodivers 2022; 19:e202100966. [PMID: 35267234 DOI: 10.1002/cbdv.202100966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Hops (Humulus lupulus L.) are edible flowers commonly used to add flavour and aroma to beer, besides they have rich chemical diversity and medicinal potential. In this work, an ex vivo anti-inflammatory assay via the LPS-induced signalling pathway and metabolomics approaches were performed to evaluate the ability of hops to inhibit the production of prostaglandin E2 (PGE2) inflammatory mediator and analyze which metabolites produced by the nine different hop cultivars are potential anti-inflammatory markers. Columbus, Chinook and Hallertau Mittelfrüh hop cultivars yielded extracts with PGE2 release inhibition rates of 86.7, 92.5 and 73.5 %, respectively. According to the multivariate statistical analysis, the majority of the metabolites correlated with the activity were prenylated phloroglucinol and phenolic homologs. These results suggest promissory anti-inflammatory hop metabolites.
Collapse
Affiliation(s)
- Karen de Jesus Nicácio
- Institute of Chemistry, Federal University of Alfenas, Gabriel Monteiro da Silva, 700 - Centro, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Miller Santos Ferreira
- Institute of Chemistry, Federal University of Alfenas, Gabriel Monteiro da Silva, 700 - Centro, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Albert Katchborian-Neto
- Institute of Chemistry, Federal University of Alfenas, Gabriel Monteiro da Silva, 700 - Centro, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Milbya Lima Costa
- Institute of Chemistry, Federal University of Alfenas, Gabriel Monteiro da Silva, 700 - Centro, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Michael Murgu
- Waters Corporation, Alameda Tocantins 125, 27th Floor, Alphaville, 06455-020, São Paulo, Brazil
| | - Danielle Ferreira Dias
- Institute of Chemistry, Federal University of Alfenas, Gabriel Monteiro da Silva, 700 - Centro, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Marisi Gomes Soares
- Institute of Chemistry, Federal University of Alfenas, Gabriel Monteiro da Silva, 700 - Centro, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Daniela Aparecida Chagas-Paula
- Institute of Chemistry, Federal University of Alfenas, Gabriel Monteiro da Silva, 700 - Centro, 37130-001, Alfenas, Minas Gerais, Brazil
| |
Collapse
|