1
|
Jeong H, Suni II, Chen R, Miletic M, Su X, Seebauer EG. Reactions of fluid and lattice oxygen mediated by interstitial atoms at the TiO 2(110)-water interface. Phys Chem Chem Phys 2025; 27:9522-9536. [PMID: 40241523 DOI: 10.1039/d5cp00319a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
O2 interacts with TiO2 surfaces in numerous aqueous reactions for clean hydrogen production, wastewater cleanup, reduction of CO2 and N2, and O2 sensing. In many cases, these reactions involve reversible exchange of O with the solid, whose participation is usually thought to require oxygen vacancies (VO). Based on measurements of oxygen isotopic self-diffusion in rutile TiO2 under water, this work proposes a different perspective centered on O interstitial atoms (Oi). Experiments with varying concentrations of O2 and mole fractions of 18O show that the (110) surface facilitates O exchange with both the H2O liquid and its dissolved O2. First-principles calculations indicate that on-top and "surface Oi" configurations of adsorbed O participate sequentially in the exchange process. Adsorbed OH appears to provide a single pathway for H2O and O2 to contribute oxygen, although fitting the diffusion data to simple models indicates that H2O contributes more. Because rutile TiO2 is a prototypical metal oxide, this picture based on Oi probably generalizes in many cases to other oxides - explaining important aspects of their thermal, electrochemical, and photochemical reactions with dissolved O2.
Collapse
Affiliation(s)
- Heonjae Jeong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electronic Engineering, Gachon University, Seongnam, Gyeonggi 13120, South Korea
| | - Ian I Suni
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Raylin Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Marina Miletic
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Edmund G Seebauer
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
2
|
Lee MY, Yoon HW, Cai H, Shin SJ, Kwon JS. Real-Time Photocatalytic Measurement of Dental Materials in an Open System. J Dent Res 2025:220345251319320. [PMID: 40077854 DOI: 10.1177/00220345251319320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
It is common to encounter discrepancies between in vitro and in vivo studies, particularly when assessing the antibiofilm efficacy of dental materials. Typically, dental materials are tested in a closed system where fresh nutrients are not replenished, the test conditions are static, and the same planktonic bacteria persist. However, real environments are characterized by the continuous supply of fresh nutrients, dynamic saliva flow, and the periodic removal of planktonic bacteria through swallowing. To address these differences, we used an open system approach using microfluidic chips that simulate the nutrient and fluid flow conditions of the mouth. This setup enables the spatiotemporal development of biofilms, facilitates real-time observation, and provides deeper insights into the biofilm formation and removal processes. Photocatalytic dental materials are particularly suitable for use with microfluidic chips, as these devices allow real-time tracking of biofilm dynamics, both with and without light exposure. Nitrogen-doped titanium dioxide effectively produces reactive oxygen species (ROS) under visible light conditions, even when embedded in a resin matrix. These ROS have been shown to inhibit Enterococcus faecalis biofilms. The evaluation of the photocatalytic effects of dental materials using microfluidic chips showed that both new and established biofilms were disrupted by ROS production. ROS weakens the interface between the biofilm and dental material, allowing the biofilm mass to be removed by fluid flow. Furthermore, the open system provided by microfluidic chips demonstrated higher accuracy in evaluating antibiofilm efficiency than the conventional system did. Thus, the developed microfluidic chip is a novel and promising tool for assessing antibiofilm properties, with potential applications in various fields.
Collapse
Affiliation(s)
- M-Y Lee
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
| | - H-W Yoon
- Department of Conservative Dentistry and Oral Science Research Center, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, South Korea
| | - H Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - S-J Shin
- Department of Conservative Dentistry and Oral Science Research Center, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, South Korea
| | - J-S Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
3
|
Kumar L, Gupta B, Kumar Purkait M. Photo-induced degradation of toxic recalcitrant compounds from surface water: Insights into advanced nanomaterials, hybrid photocatalytic systems, and real applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124610. [PMID: 39999753 DOI: 10.1016/j.jenvman.2025.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
The rapid increase in toxic recalcitrant organic compounds (ROCs) from various industrial, residential, and agricultural sources poses a significant public health concern and threatens environmental preservation. The presence of these toxic ROCs weakens the effectiveness of conventional water and wastewater treatment systems. As a result, numerous physicochemical and biological treatment processes have been explored, each demonstrating varying removal efficiencies depending on experimental conditions. Given the limitations of existing treatment methods, research has increasingly focused on advanced oxidation processes, particularly photocatalysis. Photocatalysis is a prominent treatment technique due to its low sludge production, non-toxic nature, reusable characteristics, and ability to harness visible light. This review comprehensively examines the ecotoxicological effects of ROCs, existing biological and physicochemical treatment methods, advancements in photocatalyst synthesis, the transition from conventional to advanced photocatalysts, and hybrid treatment systems. In the context of photocatalytic removal of ROCs, the review also addresses several influencing parameters, including initial pollutant concentration, solution pH, light intensity, catalyst dose, and catalyst type. Global case studies focusing on the mechanisms of photocatalytic degradation of ROCs are highlighted. The documented photocatalysts for removing ROCs from water and wastewater have shown promising results. Moreover, integrating photocatalysis with advanced physicochemical and biological processes has effectively removed various dissolved (e.g., ROCs) and suspended impurities, showcasing its practical applications. Thus, this study could serve as a valuable resource for researchers and engineers working on the treatment of various micropollutants, such as ROCs, in real wastewater.
Collapse
Affiliation(s)
- Lokesh Kumar
- Centre for Sustainable Water Research, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Bramha Gupta
- Centre for Sustainable Water Research, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
4
|
Grote F, Lyubartsev A. Oxygen Vacancies on Hydrated Anatase (101) Surfaces: Insights from Classical and Ab Initio Molecular Dynamics Simulations. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:364. [PMID: 40072167 PMCID: PMC11901595 DOI: 10.3390/nano15050364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Hydrated anatase (101) titanium dioxide surfaces with oxygen vacancies have been studied using a combination of classical and ab initio molecular dynamics simulations. The reactivity of surface oxygen vacancies was investigated using ab initio calculations, showing that water molecules quickly adsorb to oxygen vacancy sites upon hydration. The oxygen vacancy then quickly reacts with the adsorbed water, forming a protonated bridging oxygen atom at the vacancy site and at a neighboring oxygen bridge. Ab initio simulations also revealed that this occurs via a short-lived hydronium ion intermediate. It was investigated how this reaction affects the structure and dynamics of water near the anatase surface. Classical molecular dynamics simulations of surfaces with and without oxygen vacancies showed that vacancies disrupt the second solvation shell, consisting of water molecules hydrogen bonded to the surface, thereby changing the local water density and diffusion as well as the binding modes for hydrogen bonding. Our findings support the hydroxylation of oxygen vacancies on anatase (101) surfaces, rather than stabilization by molecular adsorption or subsurface diffusion. The work gives new atomistic insight into water structure and surface chemistry on the catalytically relevant anatase (101) titanium dioxide surface.
Collapse
|
5
|
Chu X, Santos-Carballal D, de Leeuw NH. Water adsorption at the (010) and (101) surfaces of CuWO 4. Phys Chem Chem Phys 2024; 26:28628-28642. [PMID: 39526472 DOI: 10.1039/d4cp02699c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Copper tungstate (CuWO4) has attracted significant attention over the past two decades. However, the adsorption of water onto CuWO4, which plays a critical role in the photocatalytic water splitting process, has not been investigated in detail. In this study, we have employed density functional theory (DFT) calculations to investigate water adsorption onto the CuWO4 pristine (010) and reduced (101) surfaces. Surface phase diagrams as a function of temperature and partial pressure of H2O were also constructed to determine water coverage under particular environmental conditions. Our study provides a comprehensive understanding of the adsorption of water on the major CuWO4 surfaces, which is an important preliminary step in our investigation of photocatalytic water splitting over CuWO4.
Collapse
Affiliation(s)
- Xuan Chu
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
| | | | - Nora H de Leeuw
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
- Department of Earth Sciences, Utrecht University, Princetonplein 8A, 3584 CD Utrecht, The Netherlands.
| |
Collapse
|
6
|
Bak T, Sherif SA, Black DS, Nowotny J. Defect Chemistry of Titanium Dioxide (Rutile). Progress Toward Sustainable Energy. Chem Rev 2024; 124:11848-11914. [PMID: 39451107 DOI: 10.1021/acs.chemrev.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This work, which overviews defect chemistry of TiO2 (rutile), is focused on atomic-size structural defects that are thermodynamically reversible. Here it is shown that thermodynamics can be used in defect engineering of TiO2-based energy materials, such as photoelectrodes and photocatalysts. We show that surface segregation of defects leads to the building-up of new surface structures that are responsible for reactivity. Since rational design of surface properties requires in situ surface characterization in operational conditions, expansion of bulk defect chemistry to surface defect chemistry requires a defect-related surface-sensitive tool for in situ monitoring of defect-related properties at elevated temperatures corresponding to defect equilibria and in a controlled gas-phase environment. Here we show that the high-temperature electron probe is a defect-related surface-sensitive tool that is uniquely positioned to aid surface defect engineering and determine unequivocal surface properties. The related applied aspects are considered for photoelectrochemical water splitting and the performance of solid oxide fuel cells. Here we report that trail-blazing studies on in situ surface monitoring of TiO2 during gas/solid equilibration, along with in situ characterization of surface semiconducting properties, leads to the discovery of a segregation-induced low-dimensional surface structure that is responsible for stable performance of oxide semiconductors, such as TiO2, in operational conditions.
Collapse
Affiliation(s)
- Tadeusz Bak
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Penrith, New South Wales 2752, Australia
- Center for Defect Engineering of Energy Materials, University of Florida, 1064 Center Drive, Gainesville, Florida 32611, United States
| | - S A Sherif
- Department of Mechanical and Aerospace Engineering, University of Florida, 1064 Center Drive, 181 NEB Building, Gainesville, Florida 32611, United States
- Center for Defect Engineering of Energy Materials, University of Florida, 1064 Center Drive, Gainesville, Florida 32611, United States
| | - David StClair Black
- School of Chemistry, University of NSW, Sydney, New South Wales 2052, Australia
- Sustainable Energy Initiative Pty Ltd, Mt Pleasant, New South Wales 2519, Australia
| | - Janusz Nowotny
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Penrith, New South Wales 2752, Australia
- Sustainable Energy Initiative Pty Ltd, Mt Pleasant, New South Wales 2519, Australia
- Center for Defect Engineering of Energy Materials, University of Florida, 1064 Center Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Bhom F, Isa YM. Photocatalytic Hydrogen Production Using TiO 2-based Catalysts: A Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400134. [PMID: 39545256 PMCID: PMC11557513 DOI: 10.1002/gch2.202400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Indexed: 11/17/2024]
Abstract
Photocatalytic water splitting is an environmentally friendly hydrogen production method that uses abundant renewable resources such as water and sunlight. While Titanium dioxide (TiO2) photocatalyst exhibits excellent properties, its high band gap limits absorption to ultraviolet (UV) irradiation, resulting in low photo conversion efficiency. This review explores various modification techniques aimed at enhancing the efficiency of TiO2 under visible light irradiation. Factors influencing the photocatalytic water splitting reaction, such as catalyst structure, morphology, band gap, sacrificial reagents, light intensity, temperature, and potential of Hydrogen (pH) are examined. This review also summarizes different catalyst synthesis methods, and types of photocatalytic reactors, and provides insights into quantum yield. Finally, the review addresses the challenges and future outlook of photocatalytic water splitting.
Collapse
Affiliation(s)
- Fahima Bhom
- School of Chemical and Metallurgical engineeringUniversity of the WitwatersrandJohannesburg2050South Africa
| | - Yusuf Makarfi Isa
- School of Chemical and Metallurgical engineeringUniversity of the WitwatersrandJohannesburg2050South Africa
| |
Collapse
|
8
|
Mohd Raub AA, Bahru R, Mohd Nashruddin SNA, Yunas J. Advances of nanostructured metal oxide as photoanode in photoelectrochemical (PEC) water splitting application. Heliyon 2024; 10:e39079. [PMID: 39640820 PMCID: PMC11620101 DOI: 10.1016/j.heliyon.2024.e39079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Water splitting via photoelectrochemical (PEC) cells offers a promising route to generate hydrogen fuel using solar energy. Nanostructured metal oxides have emerged as leading candidates as photoelectrodes in photocatalytic H2 production due to their photo-electrochemical stability, large surface area, earth abundance, and suitable band gap energies. This review reports the recent advancements of nanostructured metal oxide as photoanodes in photoelectrochemical (PEC) water-splitting applications. This review focuses on recent advancements in metal oxide photoanodes, their synthesis methods, modification strategies, and performance in PEC water splitting. Critical materials such as TiO2, Fe2O3, WO3, and BiVO4 are discussed in detail, highlighting their strengths, limitations, and future research directions to enhance efficiency and stability. This review will give clear insight into the trends and the critical factors for efficient metal oxide photoelectrode to improve the photocatalytic effectiveness in generating hydrogen fuel as an alternative energy source in the future. Finally, this study emphasises the potential of incorporating machine learning methods into experimental workflows to accelerate the optimisation of electrocatalysis performance, representing a significant advancement in developing efficient and sustainable hydrogen production technologies.
Collapse
Affiliation(s)
- Aini Ayunni Mohd Raub
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Raihana Bahru
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Nur Ashakirin Mohd Nashruddin
- Institute of Informatics and Computing in Energy (IICE), Department of Computing College of Computing & Informatics, University of Tenaga Nasional, Malaysia
| | - Jumril Yunas
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| |
Collapse
|
9
|
Sannes JA, Chatzitakis A, Fro̷en EH, Andersen NH, Nilsen O, Valldor M. Characterization and Solid-State UV-Vis Investigations of Photoelectrocatalytically Active La 5Cl 7[TeO 3] 4, a Mixed Anion Compound with Alternating 2D Layers of Oxygen and Chlorine. Inorg Chem 2024; 63:18632-18641. [PMID: 39327889 PMCID: PMC11462499 DOI: 10.1021/acs.inorgchem.4c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
An oxide chloride, La5Cl7[TeO3]4, was synthesized using the conventional high-temperature solid-state synthesis technique in an inert atmosphere. This compound possesses a novel crystal structure that can be described with the triclinic space group P1̅ (No. 2) and unit cell parameters: a = 7.2634(3) Å, b = 8.1241(3) Å, c = 9.1993(3) Å, α = 79.373(1)°, β = 83.599(1)°, and γ = 82.511(1)°. The preference of Te(IV) to coordinate to oxygen and direct its lone pair toward the lower charged chlorine results in 2D layers of both oxygen and chlorine, alternating along the crystallographic b-direction. Homoleptic coordination, solely to oxygen, and heteroleptic coordination to oxygen and chlorine are observed for lanthanum, forming layers connected through edge-sharing polyhedra. In the crystal structure, two distinct tellurium positions are observed, with three close Te-O distances, emphasizing an active lone pair. The compound has been investigated by solid-state UV-vis measurements, and a band gap of 3.44 eV has been determined by DFT calculations. Detailed photoelectrochemical measurements clearly indicate that the title compound is photoelectrocatalytically active, showing an n-type behavior. Raman spectroscopy confirms that complex tellurite ions are present in the crystal structure; several observed bands can be assigned to Te-O stretching, reflecting the relatively low crystallographic symmetry of the title compound.
Collapse
Affiliation(s)
- Johnny A. Sannes
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, Sem Sælands vei 26, N-0371 Oslo, Norway
| | - Athanasios Chatzitakis
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Emil H. Fro̷en
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, Sem Sælands vei 26, N-0371 Oslo, Norway
| | | | - Ola Nilsen
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, Sem Sælands vei 26, N-0371 Oslo, Norway
| | - Martin Valldor
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, Sem Sælands vei 26, N-0371 Oslo, Norway
| |
Collapse
|
10
|
Leffler M, Mirich A, Fee J, March S, Suib SL. Part I: determination of a structure/property transformation mechanism responsible for changes in the point of zero change of anatase titania with decreasing particle size. RSC Adv 2024; 14:30543-30565. [PMID: 39411722 PMCID: PMC11477903 DOI: 10.1039/d4ra01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Below a diameter of approximately 28 nm, the surface crystal structure of anatase titania is known to change. These changes include surface bond lengths and crystal lattice parameter expansion/contractions. Concurrent with these structure changes, the materials point of zero charge (PZC) has been observed to shift toward lower pH values. Therefore, the objective of this work was to determine if a correlation exists between these known structural changes and the shift in the materials PZC values with decreasing particle size. To achieve this a method was developed to identify and minimize the effect of all known variables, save particle size, affecting the materials pHPZC. This led to the discovery of two regions for point of zero charge. Above the average spherical primary particle diameter ≅ 29 nm for anatase titania, denoted as Region I, PZC values remain constant. In Region I the materials surface crystal structure and properties were also found to remain constant. Below the average spherical primary particle diameter ≅29 nm is the second zone, defined as Region II, where pHPZC values decrease almost linearly. An examination of possible surface structure factors and properties responsible for the shift in these PZC values (Region II) identified three underlying causes. These being changes in the materials band gap (i.e. surface bond lengths), lattice parameters and bond ionic content.
Collapse
Affiliation(s)
| | - Anne Mirich
- Department of Chemistry, University of Connecticut USA
| | - Jared Fee
- Department of Chemistry, University of Connecticut USA
| | - Seth March
- Department of Chemistry, University of Connecticut USA
| | - Steven L Suib
- Department of Chemistry, University of Connecticut USA
| |
Collapse
|
11
|
Biswas M, Desai R, Mannodi-Kanakkithodi A. Screening of novel halide perovskites for photocatalytic water splitting using multi-fidelity machine learning. Phys Chem Chem Phys 2024; 26:23177-23188. [PMID: 39189633 DOI: 10.1039/d4cp02330g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Photocatalytic water splitting is an efficient and sustainable technology to produce high-purity hydrogen gas for clean energy using solar energy. Despite the tremendous success of halide perovskites as absorbers in solar cells, their utility for water splitting applications has not been systematically explored. A band gap greater than 1.23 eV, high solar absorption coefficients, efficient separation of charge carriers, and adequate overpotentials for water redox reaction are crucial for a high solar to hydrogen (STH) efficiency. In this work, we present a data-driven approach to identify novel lead-free halide perovskites with high STH efficiency (ηSTH > 20%), building upon our recently published computational data and machine learning (ML) models. Our multi-fidelity density functional theory (DFT) dataset comprises decomposition energies and band gaps of nearly 1000 pure and alloyed perovskite halides using both the GGA-PBE and HSE06 functionals. Using rigorously optimized composition-based ML regression models, we performed screening across a chemical space of 150 000+ halide perovskites to yield hundreds of stable compounds with suitable band gaps and edges for photocatalytic water splitting. A handful of the best candidates were investigated with in-depth DFT computations to validate their properties. This work presents a framework for accelerating the navigation of a massive chemical space of halide perovskite alloys and understanding their potential utility for water splitting and motivates future efforts towards the synthesis and characterization of the most promising materials.
Collapse
Affiliation(s)
- Maitreyo Biswas
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Rushik Desai
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
12
|
Yadav A, Agrahari VK, Pihosh Y, Nakabayashi M, Nogala W, Giri BS, Domen K, Pandey DS, Gupta B, Sadhu S. Impact of polymorphism vs. shape of titania nanocrystals on the hydrogen evolution reaction. NANOSCALE ADVANCES 2024:d4na00479e. [PMID: 39296282 PMCID: PMC11403993 DOI: 10.1039/d4na00479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Herein, we investigated the impact of polymorphism vs. dimension control of titania nanocrystals towards hydrogen generation. Two different forms of titania nanoparticles have been synthesized following the solvothermal method, leading to the formation of two distinct physicochemical features. Detailed structural, morphological, and optical studies revealed that the formation of titania nanorods correspond to rutile while granular particles correspond to the anatase phase. Among various titania polymorphs, anatase is well known for its superior photocatalytic activity; however, to our surprise, the as-synthesized rutile nanorods exhibited higher catalytic activity in comparison to anatase spheres, and hydrogen evolution was considerably enhanced after the addition of a minute amount of Pt as the co-catalyst. Thus, despite the higher catalytic activity of anatase, the enhanced hydrogen evolution of rutile nanorods may be related to the creation of a 1D structure. Our study highlights the importance of considering not only TiO2 polymorphism but also shape and dimension in optimizing photocatalytic H2 production.
Collapse
Affiliation(s)
- Ankur Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi India
| | - Vivek Kumar Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi India
| | - Yuriy Pihosh
- Office of University Professors, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Mamiko Nakabayashi
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo 7-3-1 Hongo Tokyo 113-8656 Japan
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Kazunari Domen
- Office of University Professors, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University 4-17-1 Wakasato Nagano 380-8533 Japan
| | - Daya Shankar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi India
| | - Bhavana Gupta
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Department of Chemistry, Cluster of Applied Sciences, School of Advanced Engineering, UPES Dehradun India
| | - Subha Sadhu
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi India
| |
Collapse
|
13
|
Patel J, Bury G, Pushkar Y. Rational Design of Improved Ru Containing Fe-Based Metal-Organic Framework (MOF) Photoanode for Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310106. [PMID: 38746966 DOI: 10.1002/smll.202310106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/11/2024] [Indexed: 10/01/2024]
Abstract
Metal-Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL-142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+ (tpy = 2,2':6',2″-terpyridine and Qc = 8-quinolinecarboxylate)-doped Fe MIL-142 achieved a high photocurrent (1.6 × 10-3 A·cm-2) in photo-electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2 evolution is also reported with Pt as the co-catalyst (4.8 µmol g-1 min-1). The high activity of this new system enables hydrogen gas capture from an easy-to-manufacture, scaled-up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF-based light-driven water-splitting assemblies utilizing a minimal amount of precious metals and Fe-based photosensitizers.
Collapse
Affiliation(s)
- Jully Patel
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
14
|
Liu M, Lu Y, Song J, Ma B, Qiu K, Bai L, Wang Y, Chen Y, Tang Y. First-Principles Investigation on the Tunable Electronic Structures and Photocatalytic Properties of AlN/Sc 2CF 2 and GaN/Sc 2CF 2 Heterostructures. Molecules 2024; 29:3303. [PMID: 39064882 PMCID: PMC11279752 DOI: 10.3390/molecules29143303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Heterostructure catalysts are highly anticipated in the field of photocatalytic water splitting. AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are proposed in this work, and the electronic structures were revealed with the first-principles method to explore their photocatalytic properties for water splitting. The results found that the thermodynamically stable AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are indirect semiconductors with reduced band gaps of 1.75 eV and 1.84 eV, respectively. These two heterostructures have been confirmed to have type-Ⅰ band alignments, with both VBM and CBM contributed to by the Sc2CF2 layer. AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures exhibit the potential for photocatalytic water splitting as their VBM and CBM stride over the redox potential of water. Gibbs free energy changes in HER occurring on AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are as low as -0.31 eV and -0.59 eV, respectively. The Gibbs free energy change in HER on the AlN (GaN) layer is much lower than that on the Sc2CF2 surface, owing to the stronger adsorption of H on AlN (GaN). The AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures possess significant improvements in absorption range and intensity compared to monolayered AlN, GaN, and Sc2CF2. In addition, the band gaps, edge positions, and absorption properties of AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures can be effectively tuned with strains. All the results indicate that AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are suitable catalysts for photocatalytic water splitting.
Collapse
Affiliation(s)
- Meiping Liu
- School of Intelligent Manufacturing, Huanghuai University, Zhumadian 463000, China
| | - Yidan Lu
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jun Song
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Benyuan Ma
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Kangwen Qiu
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Liuyang Bai
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yinling Wang
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yuanyuan Chen
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Yong Tang
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
15
|
Verduci R, Creazzo F, Tavella F, Abate S, Ampelli C, Luber S, Perathoner S, Cassone G, Centi G, D'Angelo G. Water Structure in the First Layers on TiO 2: A Key Factor for Boosting Solar-Driven Water-Splitting Performances. J Am Chem Soc 2024; 146:18061-18073. [PMID: 38909313 DOI: 10.1021/jacs.4c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The water hydrogen-bonded network is strongly perturbed in the first layers in contact with the semiconductor surface. Even though this aspect influences the outer-sphere electron transfer, it was not recognized that it is a crucial factor impacting the solar-driven water-splitting performances. To fill this gap, we have selected two TiO2 anatase samples (with and without B-doping), and by extensive experimental and computational investigations, we have demonstrated that the remarkable 5-fold increase in water-splitting photoactivity of the B-doped sample cannot be ascribed to effects typically associated to enhanced photocatalytic properties, such as band gap, heterojunctions, crystal facets, and other aspects. Studying these samples by combining FTIR measurements under controlled humidity with first-principles simulations sheds light on the role and nature of the first-layer water structure in contact with the photocatalyst surfaces. It turns out that the doping hampers the percolation of tetrahedrally coordinated water molecules while enhancing the population of topological H-bond defects forming approximately linear H-bonded chains. This work unveils how doping the semiconductor surface affects the local electric field, determining the water splitting rate by influencing the H-bond topologies in the first water layers. This evidence opens new prospects for designing efficient photocatalysts for water splitting.
Collapse
Affiliation(s)
- Rosaria Verduci
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science (MIFT), University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Fabrizio Creazzo
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Francesco Tavella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, ERIC aisbl and CASPE/INSTM, 98166 Messina, Italy
| | - Salvatore Abate
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, ERIC aisbl and CASPE/INSTM, 98166 Messina, Italy
| | - Claudio Ampelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, ERIC aisbl and CASPE/INSTM, 98166 Messina, Italy
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Siglinda Perathoner
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, ERIC aisbl and CASPE/INSTM, 98166 Messina, Italy
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Gabriele Centi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, ERIC aisbl and CASPE/INSTM, 98166 Messina, Italy
| | - Giovanna D'Angelo
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science (MIFT), University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
16
|
Takhar D, Birajdar B, Ghosh RK. Dual functionality of the BiN monolayer: unraveling its photocatalytic and piezocatalytic water splitting properties. Phys Chem Chem Phys 2024; 26:16261-16272. [PMID: 38804603 DOI: 10.1039/d4cp01047g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
To achieve scalable and economically viable green hydrogen (H2) production, the photocatalytic and piezocatalytic processes are promising methods. The key to successful overall water splitting (OWS) for H2 production in these processes is using suitable semiconductor catalysts with appropriate band edge potentials, efficient optical absorption, higher mechanical flexibility, and piezoelectric coefficients. Thus, we explore the bismuth nitride (BiN) monolayer using density functional theory simulations, revealing intriguing catalytic properties. The BiN monolayer is a semiconductor with an indirect electronic bandgap (Eg) of 2.08 eV and displays excellent visible light absorption (approximately 105 cm-1). Detailed analyses show that the band edges satisfy the redox potential for photocatalytic OWS via biaxial strain engineering and pH variation. Notably, the solar to hydrogen conversion efficiency (ηSTH) for the BiN monolayer can reach 17.18%, which exceeds the 10% efficiency limit of photocatalysts for economical green H2 production. The obtained in-plane piezoelectric coefficient of e11 = 16.18 Å C m-1 is superior to widely studied 2D materials. Moreover, the generated piezopotential under oscillatory strain stands at 28.34 V, which can initiate the water redox reaction via the piezocatalytic mechanism. This originates from the mechanical flexibility coupled with higher piezoelectric coefficients. The result highlights the BiN monolayer's potential application in photocatalytic, piezocatalytic, and photo-piezo-catalytic OWS.
Collapse
Affiliation(s)
- Devender Takhar
- Special Centre for Nanoscience, Jawaharlal Nehru University, Delhi 110067, India
| | - Balaji Birajdar
- Special Centre for Nanoscience, Jawaharlal Nehru University, Delhi 110067, India
| | - Ram Krishna Ghosh
- Department of Electronics and Communication Engineering, Indraprastha Institute of Information Technology, Delhi 110020, India.
| |
Collapse
|
17
|
Shin J, Lee J, Xiao X, Yu T. Enhancing catalytic activity of TiO 2 nanoparticles through acid treatment in Eosin-Y sensitized photohydrogen evolution reaction system. Heliyon 2024; 10:e30765. [PMID: 38765064 PMCID: PMC11101847 DOI: 10.1016/j.heliyon.2024.e30765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Light-driven water splitting has gained increasing attention as an eco-friendly method for hydrogen production. There is a pressing need to enhance the performance of catalysts for the commercial viability of this reaction. Many methods have been proposed to improve catalyst performance; however, an economical and straightforward approach remains a priority. This paper presents an uncomplicated technique called acid treatment, which augments the catalytic performance of nanoparticles. The method promotes a change in the catalytic reactivity by causing a deficit in electron density of Ti and O on the surface of TiO2 nanoparticles without altering their size, morphology, or crystal structure. In the Eosin Y sensitized photocatalytic hydrogen production system, nitric acid treated TiO2 (16.95 μmol/g) exhibited 1.5 times the hydrogen production compared to bare TiO2 (11.15 μmol/g).
Collapse
Affiliation(s)
- Jiwoo Shin
- Department of Chemical Engineering, College of Engineering, Integrated Engineering Major, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jaeyoung Lee
- Department of Chemical Engineering, College of Engineering, Integrated Engineering Major, Kyung Hee University, Yongin, 17104, Republic of Korea
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Xiangyun Xiao
- Department of Chemical Engineering, College of Engineering, Integrated Engineering Major, Kyung Hee University, Yongin, 17104, Republic of Korea
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Taekyung Yu
- Department of Chemical Engineering, College of Engineering, Integrated Engineering Major, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
18
|
Rokicka-Konieczna P, Morawski AW. Photocatalytic Bacterial Destruction and Mineralization by TiO 2-Based Photocatalysts: A Mini Review. Molecules 2024; 29:2221. [PMID: 38792082 PMCID: PMC11123885 DOI: 10.3390/molecules29102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This work presents an overview of the reports on the bacterial cell photocatalytic destruction and mineralization process in the presence of TiO2-based photocatalysts. The presented research included experiments conducted in air and water. Numerous works confirmed that a photocatalytic process with TiO2 led to bacteria and their organic residues' mineralization. Additionally, based on the obtained results, a possible two-stage mechanism of photocatalytic mineralization in the presence of TiO2-based materials was proposed. To help future studies, challenges of photocatalytic microorganism mineralization are also proposed. There are some aspects that need to be addressed, such as the lack of standardization of conducted research or relatively small amount of research on photocatalytic microorganism mineralization. According to our best knowledge, in the available literature, no work regarding a summary of previous research on photocatalytic bacterial mineralization process was found.
Collapse
Affiliation(s)
- Paulina Rokicka-Konieczna
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland;
| | | |
Collapse
|
19
|
Gusarov S. Advances in Computational Methods for Modeling Photocatalytic Reactions: A Review of Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2119. [PMID: 38730926 PMCID: PMC11085804 DOI: 10.3390/ma17092119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Photocatalysis is a fascinating process in which a photocatalyst plays a pivotal role in driving a chemical reaction when exposed to light. Its capacity to harness light energy triggers a cascade of reactions that lead to the formation of intermediate compounds, culminating in the desired final product(s). The essence of this process is the interaction between the photocatalyst's excited state and its specific interactions with reactants, resulting in the creation of intermediates. The process's appeal is further enhanced by its cyclic nature-the photocatalyst is rejuvenated after each cycle, ensuring ongoing and sustainable catalytic action. Nevertheless, comprehending the photocatalytic process through the modeling of photoactive materials and molecular devices demands advanced computational techniques founded on effective quantum chemistry methods, multiscale modeling, and machine learning. This review analyzes contemporary theoretical methods, spanning a range of lengths and accuracy scales, and assesses the strengths and limitations of these methods. It also explores the future challenges in modeling complex nano-photocatalysts, underscoring the necessity of integrating various methods hierarchically to optimize resource distribution across different scales. Additionally, the discussion includes the role of excited state chemistry, a crucial element in understanding photocatalysis.
Collapse
Affiliation(s)
- Sergey Gusarov
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
20
|
Backus EHG, Hosseinpour S, Ramanan C, Sun S, Schlegel SJ, Zelenka M, Jia X, Gebhard M, Devi A, Wang HI, Bonn M. Ultrafast Surface-Specific Spectroscopy of Water at a Photoexcited TiO 2 Model Water-Splitting Photocatalyst. Angew Chem Int Ed Engl 2024; 63:e202312123. [PMID: 38010868 DOI: 10.1002/anie.202312123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
A critical step in photocatalytic water dissociation is the hole-mediated oxidation reaction. Molecular-level insights into the mechanism of this complex reaction under realistic conditions with high temporal resolution are highly desirable. Here, we use femtosecond time-resolved, surface-specific vibrational sum frequency generation spectroscopy to study the photo-induced reaction directly at the interface of the photocatalyst TiO2 in contact with liquid water at room temperature. Thanks to the inherent surface specificity of the spectroscopic method, we can follow the reaction of solely the interfacial water molecules directly at the interface at timescales on which the reaction takes place. Following the generation of holes at the surface immediately after photoexcitation of the catalyst with UV light, water dissociation occurs on a sub-20 ps timescale. The reaction mechanism is similar at pH 3 and 11. In both cases, we observe the conversion of H2 O into Ti-OH groups and the deprotonation of pre-existing Ti-OH groups. This study provides unique experimental insights into the early steps of the photo-induced dissociation processes at the photocatalyst-water interface, relevant to the design of improved photocatalysts.
Collapse
Affiliation(s)
- Ellen H G Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090, Vienna, Austria
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Saman Hosseinpour
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Current address: Institute of Particle Technology (LFG), Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058, Erlangen, Germany
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Shumei Sun
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Simon J Schlegel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Moritz Zelenka
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090, Vienna, Austria
| | - Xiaoyu Jia
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Maximilian Gebhard
- Inorganic Materials Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Anjana Devi
- Inorganic Materials Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
21
|
Ajmal Z, Ul Haq M, Zaman S, Al-Muhanna MK, Kumar A, Fadhali MM, Hassine SBH, Qasim M, Alshammari KF, Ashraf GA, Qadeer A, Murtaza A, Al-Sulaimi S, Zeng H. Addressing the synchronized impact of a novel strontium titanium over copolymerized carbon nitride for proficient solar-driven hydrogen evolution. J Colloid Interface Sci 2024; 655:886-898. [PMID: 37979294 DOI: 10.1016/j.jcis.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 11/20/2023]
Abstract
Currently, novel technologies are highly prerequisite as an outstanding approach in the field of photocatalytic water splitting (PWS). Previous research has shown that copolymerization technology could improve the photocatalytic performance of pristine carbon nitride (CN) more efficiently. As this technology further allows the charge carrier recombination constraints, due to novel monomer-incorporated highly abundant surface-active sites of metals in polymeric carbon nitride-based heterojunction. However, in present study, a novel previously unexplored thiophenedicarboxaldehyde (TAL) conjugated, strontium-titanium (SrTiO3) induced and CN based heterojunction, i.e., SrTiO3/CN-TAL10.0, was prepared for solar-driven hydrogen evolution reaction (HER). This heterojunction effectively enables the proficient isolation of photoinduced charge carriers and enhanced the charge transport over the surface junction, by enhancing the optical absorption range and average lifetime of photogenerated charges. The incorporation of TAL within the structure of CN via copolymerization highly increases the photocatalytic activity, as well as maintaining its photostability performance. The SrTiO3 concentration and the proportion of TAL among CN can be precisely controlled to provide the optimal photocatalytic efficiency with a maximum HER of 285.9 µmol/h under visible light (λ = 420 nm). Based on these results, our optical analysis shows that coupling of SrTiO3 and TAL monomer in the structure of CN considerably reduce the band gap of superior sample from (3.42 to 2.66 eV), thereby, signifying the outstanding photocatalytic performance of SrTiO3/CN-TAL10.0. Thus, this study provide a new guideline in order to develop the multidimensional photocatalysts with proper functioning for sustainable energy conversion and production.
Collapse
Affiliation(s)
- Zeeshan Ajmal
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, College of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xian, China.
| | - Mahmood Ul Haq
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, College of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Shahid Zaman
- Institut d'Innovations en Écomatériaux, Écoproduits et Écoénergies, Université du Québec à Trois-Rivières (UQTR), 3351 boul. des forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - M K Al-Muhanna
- The Material Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Anuj Kumar
- Nanotechnology Research Laboratory, GLA, University, Mathura, Uttar Pradesh 281406, India
| | - Mohammed M Fadhali
- Department of Physics, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Siwar Ben Hadj Hassine
- Department of Computer Science, College of Science and Arts at Muhayel, King Khalid University, Saudi Arabia
| | - Muhammas Qasim
- School of Electronic Engineering, Jiujiang University, Jiujiang 332005, China
| | - K F Alshammari
- Department of Criminal Justice and Forensics, King Fahad Security College, Riyadh 11461, Saudi Arabia
| | - Ghulam Abbas Ashraf
- College of Environment, Hohai University, Nanjing 210098, China; New Uzbekistan University, Mustaqillik Ave. 54, Tashkent 100007, Uzbekistan.
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, China
| | - Adil Murtaza
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Key Laboratory of Advanced Functional Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xian Jiaotong University, 710049 Xian, Shaanxi, China.
| | | | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xian, China.
| |
Collapse
|
22
|
Huang X, Li C, Wei T, Liu N, Yao Y, Wang Z, Hu Y, Fang Q, Guan S, Xue Y, Wu T, Zhang T, Tang M. Oropharyngeal aspirated Ag/TiO 2 nanohybrids: Transformation, distribution and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168309. [PMID: 37944607 DOI: 10.1016/j.scitotenv.2023.168309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The wide application of Ag-loaded TiO2 nanohybrids photocatalysts on environment and energy increases the lung exposure risk to humans. Ag/TiO2 nanohybrids inhalation can cause pulmonary toxicity, and there are concerns about whether the loaded silver can be released and cause toxic effects on extrapulmonary organs. Therefore, in this study, the possible biotransformation, biodistribution, and toxicity of oropharyngeal aspirated Ag/TiO2 nanohybrids were investigated first time in vitro and in vivo to answer this question. Firstly, the results of biotransformation showed that the ultrafine silver nanoparticles (~3.5 nm, 2 w/w%) loaded on the surface of nano-TiO2 (~25 nm) could agglomerate and release in Gamble's solution, and the hydrodynamic diameter of the nanohybrids agglomerates increased from about 200 nm to 1 μm. Furthermore, after exposure 10 mg/kg Ag/TiO2 nanohybrids to C57BL/6 J male mice by oropharyngeal aspiration weekly, the biodistribution results showed that the released silver could result in blood, liver, and brain distribution within 28 d. Finally, body weight, organ coefficient, blood biochemical indicators of liver and kidney function, and pathological images demonstrated that although silver could release and lead to extrapulmonary organ distribution, it did not cause obvious extrapulmonary organ damage. The original lung was still the main toxicity and accumulation target organ of Ag/TiO2 nanohybrids, which mainly manifested as the pro-inflammatory and pro-fibrotic effects that should be focused on in the future. Therefore, this study is of great significance in evaluating the safety of Ag-loaded TiO2 nanoparticles and predicting their toxic mechanisms.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Congcong Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuanyuan Hu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Qing Fang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
23
|
Erfan NA, Mahmoud MS, Kim HY, Barakat NAM. Synergistic doping with Ag, CdO, and ZnO to overcome electron-hole recombination in TiO 2 photocatalysis for effective water photo splitting reaction. Front Chem 2023; 11:1301172. [PMID: 38025057 PMCID: PMC10661415 DOI: 10.3389/fchem.2023.1301172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
This manuscript is dedicated to a comprehensive exploration of the multifaceted challenge of fast electron-hole recombination in titanium dioxide photocatalysis, with a primary focus on its critical role in advancing the field of water photo splitting. To address this challenge, three prominent approaches-Schottky barriers, Z-scheme systems, and type II heterojunctions-were rigorously investigated for their potential to ameliorate TiO2's photocatalytic performance toward water photo splitting. Three distinct dopants-silver, cadmium oxide, and zinc oxide-were strategically employed. This research also delved into the dynamic interplay between these dopants, analyzing the synergetic effects that arise from binary and tertiary doping configurations. The results concluded that incorporation of Ag, CdO, and ZnO dopants effectively countered the fast electron-hole recombination problem in TiO2 NPs. Ag emerged as a critical contributor at higher temperatures, significantly enhancing photocatalytic performance. The photocatalytic system exhibited a departure from Arrhenius behavior, with an optimal temperature of 40°C. Binary doping systems, particularly those combining CdO and ZnO, demonstrated exceptional photocatalytic activity at lower temperatures. However, the ternary doping configuration involving Ag, CdO, and ZnO proved to be the most promising, surpassing many functional materials. In sum, this study offers valuable insights into how Schottky barriers, Z-scheme systems, and type II heterojunctions, in conjunction with specific dopants, can overcome the electron-hole recombination challenge in TiO2-based photocatalysis. The results underscore the potential of the proposed ternary doping system to revolutionize photocatalytic water splitting for efficient green hydrogen production, significantly advancing the field's understanding and potential for sustainable energy applications.
Collapse
Affiliation(s)
- Nehal A. Erfan
- Chemical Engineering Department, Minia University, El-Minia, Egypt
| | - Mohamed S. Mahmoud
- Chemical Engineering Department, Minia University, El-Minia, Egypt
- Department of Engineering, University of Technology and Applied Sciences, Suhar, Oman
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| | | |
Collapse
|
24
|
Hojamberdiev M, Vargas R, Zhang F, Teshima K, Lerch M. Perovskite BaTaO 2 N: From Materials Synthesis to Solar Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305179. [PMID: 37852947 PMCID: PMC10667847 DOI: 10.1002/advs.202305179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Indexed: 10/20/2023]
Abstract
Barium tantalum oxynitride (BaTaO2 N), as a member of an emerging class of perovskite oxynitrides, is regarded as a promising inorganic material for solar water splitting because of its small band gap, visible light absorption, and suitable band edge potentials for overall water splitting in the absence of an external bias. However, BaTaO2 N still exhibits poor water-splitting performance that is susceptible to its synthetic history, surface states, recombination process, and instability. This review provides a comprehensive summary of previous progress, current advances, existing challenges, and future perspectives of BaTaO2 N for solar water splitting. A particular emphasis is given to highlighting the principles of photoelectrochemical (PEC) water splitting, classic and emerging photocatalysts for oxygen evolution reactions, and the crystal and electronic structures, dielectric, ferroelectric, and piezoelectric properties, synthesis routes, and thin-film fabrication of BaTaO2 N. Various strategies to achieve enhanced water-splitting performance of BaTaO2 N, such as reducing the surface and bulk defect density, engineering the crystal facets, tailoring the particle morphology, size, and porosity, cation doping, creating the solid solutions, forming the heterostructures and heterojunctions, designing the photoelectrochemical cells, and loading suitable cocatalysts are discussed. Also, the avenues for further investigation and the prospects of using BaTaO2 N in solar water splitting are presented.
Collapse
Affiliation(s)
- Mirabbos Hojamberdiev
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Ronald Vargas
- Instituto Tecnológico de Chascomús (INTECH) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de San Martín (UNSAM)Avenida Intendente Marino, Km 8,2, (B7130IWA)ChascomúsProvincia de Buenos AiresArgentina
- Escuela de Bio y NanotecnologíasUniversidad Nacional de San Martín (UNSAM)Avenida Intendente Marino, Km 8,2, (B7130IWA)ChascomúsProvincia de Buenos AiresArgentina
| | - Fuxiang Zhang
- State Key Laboratory of CatalysisiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean EnergyDalian116023P.R. China
| | - Katsuya Teshima
- Department of Materials ChemistryShinshu University4‐17‐1 WakasatoNagano3808553Japan
- Research Initiative for Supra‐MaterialsShinshu University4‐17‐1 WakasatoNagano3808553Japan
| | - Martin Lerch
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|
25
|
Chu X, Santos-Carballal D, de Leeuw NH. Exploring the Redox Properties of the Low-Miller Index Surfaces of Copper Tungstate (CuWO 4): Evaluating the Impact of the Environmental Conditions on the Water Splitting and Carbon Dioxide Reduction Processes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:18944-18961. [PMID: 37791103 PMCID: PMC10544046 DOI: 10.1021/acs.jpcc.3c04413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Indexed: 10/05/2023]
Abstract
Photocatalysis has gained significant attention and interest as an environmentally friendly and sustainable approach to the production of hydrogen through water splitting and the reduction and conversion of CO2. Copper tungstate (CuWO4) is a highly promising candidate for these applications owing to its appropriate bandgap and superior stability under different conditions. However, the redox behavior of the CuWO4 surfaces under different environments and their impact on the morphology of the material nanoparticles, as well as the electronic properties, remain poorly understood. In this study, we have employed density functional theory calculations to investigate the properties of the bulk and pristine surfaces of CuWO4 and how the latter are impacted by oxygen chemisorption under the conditions required for photocatalytic water splitting and carbon dioxide reduction processes. We have calculated the lattice parameters and electronic properties of the bulk phase, as well as the surface energies of all possible nonpolar, stoichiometric, and symmetric terminations of the seven low-Miller index surfaces and found that the (010) and (110) facets are the thermodynamically most stable. The surface-phase diagrams were used to derive the equilibrium crystal morphologies, which show that the pristine (010) surface is prominent under synthesis and room conditions. Our crystal morphologies suggest that the partially oxidized (110) surface and the partially reduced (011) surface may play an important role in the photocatalytic splitting of water and CO2 conversion, respectively. Our results provide a comprehensive understanding of the CuWO4 surfaces under the conditions of important photocatalytic applications.
Collapse
Affiliation(s)
- Xuan Chu
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | | | - Nora H. de Leeuw
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Department
of Earth Sciences, Utrecht University, Princetonplein 8A, Utrecht 3584 CD, The Netherlands
| |
Collapse
|
26
|
Perera DC, Rasaiah JC. Computational Study of H 2O Adsorption, Hydrolysis, and Water Splitting on (ZnO) 3 Nanoclusters Deposited on Graphene and Graphene Oxides. ACS OMEGA 2023; 8:32185-32203. [PMID: 37692258 PMCID: PMC10483521 DOI: 10.1021/acsomega.3c04882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023]
Abstract
Graphene and graphene oxide (GO)-based metal oxides could play an important role in using metal oxide like zinc oxide (ZnO) as photocatalysts to split water. The π conjugation structure of GO shows greater electron mobility and could enhance the photocatalytic performance of the bare ZnO catalyst by increasing the electron-hole separation. In this work, we use density functional theory (DFT) with the B3LYP exchange functional and DGDZVP2 basis set to study the impact of adsorbing (ZnO)3 nanoparticles on graphene and four different GO models (GO1, GO2, GO4, and GO5) on the hydration and hydrolysis of water that precedes water splitting to produce H2 and O2 atoms in the gas phase and compare them with our previous studies on the bare catalyst in the absence of the substrate. The potential energy curves and activation energies are similar, but the triplet states are lower in energy than the singlet states in contrast to the bare (ZnO)3 catalyst. We extend our calculations to water splitting from the hydrolyzed (ZnO)3 on GO1 (GO1-(ZnO)3). The triplet state energy remains lower than the singlet state energy, and hydrogen production precedes the formation of oxygen, but there is no energy inter-crossing during the formation of O2 that occurs in the absence of a GO1 substrate. Although the hydrolysis reaction pathway follows similar steps in both the bare and GO1-(ZnO)3, water splitting with (ZnO)3 absorbed on the GO1 substrate skips two steps as it proceeds toward the production of the second H2. The production of two hydrogen molecules precedes oxygen formation during water splitting, and the first Zn-H bond formation step is the rate-determining step. The ZnO trimer deposited on GO systems could be potentially attractive nanocatalysts for water splitting.
Collapse
Affiliation(s)
- Duwage C. Perera
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| | | |
Collapse
|
27
|
Rafique M, Hajra S, Irshad M, Usman M, Imran M, Assiri MA, Ashraf WM. Hydrogen Production Using TiO 2-Based Photocatalysts: A Comprehensive Review. ACS OMEGA 2023; 8:25640-25648. [PMID: 37521614 PMCID: PMC10373472 DOI: 10.1021/acsomega.3c00963] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
Titanium dioxide (TiO2) is one of the most widely used photocatalysts due to its physical and chemical properties. In this study, hydrogen energy production using TiO2- and titanate-based photocatalysts is discussed along with the pros and cons. The mechanism of the photocatalysis has been elaborated to pinpoint the photocatalyst for better performance. The chief characteristics and limitations of the TiO2 photocatalysts have been assessed. Further, TiO2-based photocatalysts modified with a transition metal, transition metal oxide, noble metal, graphitic carbon nitride, graphene, etc. have been reviewed. This study will provide a basic understanding to beginners and detailed knowledge to experts in the field to optimize the TiO2-based photocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Muhammad Rafique
- Department
of Physics, University of Sahiwal, Sahiwal, Punjab 57000, Pakistan
| | - Syeda Hajra
- Department
of Physics, Faculty of Science, University
of Gujrat, Gujrat, Punjab 50700, Pakistan
| | - Muneeb Irshad
- Department
of Physics, University of Engineering and
Technology, Lahore, Punjab 54890, Pakistan
| | - Muhammad Usman
- Department
of Mechanical Engineering, University of
Engineering and Technology, Lahore, Punjab 54890, Pakistan
| | - Muhammad Imran
- Research
Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammad A. Assiri
- Research
Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Waqar Muhammad Ashraf
- The
Sargent Centre for Process Systems Engineering, Department of Chemical
Engineering, University College London, London WC1E 6BT, U.K.
| |
Collapse
|
28
|
Pascariu P, Gherasim C, Airinei A. Metal Oxide Nanostructures (MONs) as Photocatalysts for Ciprofloxacin Degradation. Int J Mol Sci 2023; 24:ijms24119564. [PMID: 37298517 DOI: 10.3390/ijms24119564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, organic pollutants have become a global problem due to their negative impact on human health and the environment. Photocatalysis is one of the most promising methods for the removal of organic pollutants from wastewater, and oxide semiconductor materials have proven to be among the best in this regard. This paper presents the evolution of the development of metal oxide nanostructures (MONs) as photocatalysts for ciprofloxacin degradation. It begins with an overview of the role of these materials in photocatalysis; then, it discusses methods of obtaining them. Then, a detailed review of the most important oxide semiconductors (ZnO, TiO2, CuO, etc.) and alternatives for improving their photocatalytic performance is provided. Finally, a study of the degradation of ciprofloxacin in the presence of oxide semiconductor materials and the main factors affecting photocatalytic degradation is carried out. It is well known that antibiotics (in this case, ciprofloxacin) are toxic and non-biodegradable, which can pose a threat to the environment and human health. Antibiotic residues have several negative impacts, including antibiotic resistance and disruption of photosynthetic processes.
Collapse
Affiliation(s)
- Petronela Pascariu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Carmen Gherasim
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Anton Airinei
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
29
|
Estévez Ruiz EP, Lago JL, Thirumuruganandham SP. Experimental Studies on TiO 2 NT with Metal Dopants through Co-Precipitation, Sol-Gel, Hydrothermal Scheme and Corresponding Computational Molecular Evaluations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3076. [PMID: 37109913 PMCID: PMC10143655 DOI: 10.3390/ma16083076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In the last decade, TiO2 nanotubes have attracted the attention of the scientific community and industry due to their exceptional photocatalytic properties, opening a wide range of additional applications in the fields of renewable energy, sensors, supercapacitors, and the pharmaceutical industry. However, their use is limited because their band gap is tied to the visible light spectrum. Therefore, it is essential to dope them with metals to extend their physicochemical advantages. In this review, we provide a brief overview of the preparation of metal-doped TiO2 nanotubes. We address hydrothermal and alteration methods that have been used to study the effects of different metal dopants on the structural, morphological, and optoelectrical properties of anatase and rutile nanotubes. The progress of DFT studies on the metal doping of TiO2 nanoparticles is discussed. In addition, the traditional models and their confirmation of the results of the experiment with TiO2 nanotubes are reviewed, as well as the use of TNT in various applications and the future prospects for its development in other fields. We focus on the comprehensive analysis and practical significance of the development of TiO2 hybrid materials and the need for a better understanding of the structural-chemical properties of anatase TiO2 nanotubes with metal doping for ion storage devices such as batteries.
Collapse
Affiliation(s)
- Eduardo Patricio Estévez Ruiz
- Centro de Investigación de Ciencias Humanas y de la Educación (CICHE), Universidad Indoamérica, Ambato 180103, Ecuador
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Universidade da Coruña, 15471 Ferrol, Spain
| | - Joaquín López Lago
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Universidade da Coruña, 15471 Ferrol, Spain
| | | |
Collapse
|
30
|
Jakimińska A, Spilarewicz K, Macyk W. Phototransformations of TiO 2/Ag 2O composites and their influence on photocatalytic water splitting accompanied by methanol photoreforming. NANOSCALE ADVANCES 2023; 5:1926-1935. [PMID: 36998646 PMCID: PMC10044581 DOI: 10.1039/d2na00910b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/19/2023] [Indexed: 06/19/2023]
Abstract
This work aimed to revise the mechanism of photocatalytic activity of the TiO2/Ag2O system in photocatalytic water splitting accompanied by methanol photoreforming. The transformation of Ag2O into silver nanoparticles (AgNPs) during photocatalytic water splitting/methanol photoreforming was monitored using XRD, XPS, SEM, UV-vis, and DRS techniques. The impact of AgNPs, grown on TiO2, on its optoelectronic properties was analysed through inter alia spectroelectrochemical measurements. The photoreduced material exhibited a significantly shifted position of the TiO2 conduction band edge. Surface photovoltage measurements revealed the lack of photoinduced exchange of electrons between TiO2 and Ag2O, indicating the absence of an efficient p-n junction. Furthermore, the impact of chemical and structural changes in the photocatalytic system on the production of CO and CO2 from methanol photoreforming was analysed. It was found that fully formed AgNPs exhibit improved efficiency in the production of H2, whereas the Ag2O phototransformation, resulting in the growth of AgNPs, promotes simultaneously ongoing photoreforming of methanol.
Collapse
Affiliation(s)
- Anna Jakimińska
- Faculty of Chemistry, Jagiellonian University ul. Gronostajowa 2 Kraków 30-387 Poland
| | - Kaja Spilarewicz
- Faculty of Chemistry, Jagiellonian University ul. Gronostajowa 2 Kraków 30-387 Poland
| | - Wojciech Macyk
- Faculty of Chemistry, Jagiellonian University ul. Gronostajowa 2 Kraków 30-387 Poland
| |
Collapse
|
31
|
Ma R, O'Connor CR, Collinge G, Allec SI, Lee MS, Dohnálek Z. The Role of Surface Hydroxyls in the Mobility of Carboxylates on Surfaces: Dynamics of Acetate on Anatase TiO 2(101). J Phys Chem Lett 2023; 14:2542-2550. [PMID: 36877161 DOI: 10.1021/acs.jpclett.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The dynamics of reactive intermediates are important in catalysis for understanding transient species, which can drive reactivity and the transport of species to reaction centers. In particular, the interplay between surface-bound carboxylic acids and carboxylates is important for numerous chemical transformations, including CO2 hydrogenation and ketonization. Here, we investigate the dynamics of acetic acid on anatase TiO2(101) using scanning tunneling microscopy experiments and density functional theory calculations. We demonstrate the concomitant diffusion of bidentate acetate and a bridging hydroxyl and provide evidence for the transient formation of molecular monodentate acetic acid. The diffusion rate is strongly dependent on the position of hydroxyl and adjacent acetate(s). A facile three-step diffusion process is proposed consisting of acetate and hydroxyl recombination, acetic acid rotation, and acetic acid dissociation. This study clearly demonstrates that the dynamics of bidentate acetate could be important in forming monodentate species, which are proposed to drive selective ketonization.
Collapse
Affiliation(s)
- Runze Ma
- Physical and Computational Sciences Directorate and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher R O'Connor
- Physical and Computational Sciences Directorate and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gregory Collinge
- Physical and Computational Sciences Directorate and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah I Allec
- Physical and Computational Sciences Directorate and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mal-Soon Lee
- Physical and Computational Sciences Directorate and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zdenek Dohnálek
- Physical and Computational Sciences Directorate and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
32
|
Moustafa HM, Mahmoud MS, Nassar MM. Kinetic analysis of p-rGO/n-TiO 2 nanocomposite generated by hydrothermal technique for simultaneous photocatalytic water splitting and degradation of methylene blue dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18181-18198. [PMID: 36207630 DOI: 10.1007/s11356-022-23430-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In this study, the nanocomposites of reduced graphene oxide/TiO2 (rGO/TiO2 with different percentages) have been synthesized using a modified Hummers' method followed by hydrothermal treatment. The morphology and bonding structure of the prepared samples have been characterized by Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and X-ray photoelectron spectroscopy (XPS). The photo-characteristic aspects of the prepared samples have been indicated by photoluminescence (PL) emission spectroscopy and ultraviolet-visible diffuse reflection spectroscopy (DRS). The photocatalytic performance of rGO/TiO2 demonstrated that it is an effective photocatalyst for methylene blue (MB) dye decomposition through illumination by a mercury lamp. Within 60 min of continuous irradiation, the nanocomposite-induced MB decomposition reached a rate of over 99%. Different MB concentrations and optimal percent loadings in catalysts have been investigated. Furthermore, the results showed that as the amount of catalyst increased, the decomposition of MB enhanced. Finally, the loading percentage of rGO with TiO2 has been studied, and an empirical equation relating the reaction rate constant until the mass of the photocatalyst and dye concentration has been proposed. The results showed that the prepared nanocomposites had good photocatalytic activity toward water splitting and photo-decomposition of MB.
Collapse
Affiliation(s)
- Hager M Moustafa
- Chemical Engineering Department, Minia University, El-Minia, 61516, Egypt
| | - Mohamed S Mahmoud
- Chemical Engineering Department, Minia University, El-Minia, 61516, Egypt.
- Department of Engineering, University of Technology and Applied Sciences, Suhar, 311, Sultanate of Oman.
| | - Mamdouh M Nassar
- Chemical Engineering Department, Minia University, El-Minia, 61516, Egypt
| |
Collapse
|
33
|
Lopat’eva ER, Krylov IB, Segida OO, Merkulova VM, Ilovaisky AI, Terent’ev AO. Heterogeneous Photocatalysis as a Potent Tool for Organic Synthesis: Cross-Dehydrogenative C-C Coupling of N-Heterocycles with Ethers Employing TiO 2/ N-Hydroxyphthalimide System under Visible Light. Molecules 2023; 28:molecules28030934. [PMID: 36770603 PMCID: PMC9920906 DOI: 10.3390/molecules28030934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Despite the obvious advantages of heterogeneous photocatalysts (availability, stability, recyclability, the ease of separation from products and safety) their application in organic synthesis faces serious challenges: generally low efficiency and selectivity compared to homogeneous photocatalytic systems. The development of strategies for improving the catalytic properties of semiconductor materials is the key to their introduction into organic synthesis. In the present work, a hybrid photocatalytic system involving both heterogeneous catalyst (TiO2) and homogeneous organocatalyst (N-hydroxyphthalimide, NHPI) was proposed for the cross-dehydrogenative C-C coupling of electron-deficient N-heterocycles with ethers employing t-BuOOH as the terminal oxidant. It should be noted that each of the catalysts is completely ineffective when used separately under visible light in this transformation. The occurrence of visible light absorption upon the interaction of NHPI with the TiO2 surface and the generation of reactive phthalimide-N-oxyl (PINO) radicals upon irradiation with visible light are considered to be the main factors determining the high catalytic efficiency. The proposed method is suitable for the coupling of π-deficient pyridine, quinoline, pyrazine, and quinoxaline heteroarenes with various non-activated ethers.
Collapse
|
34
|
Cherif Y, Azzi H, Sridharan K, Ji S, Choi H, Allan MG, Benaissa S, Saidi-Bendahou K, Damptey L, Ribeiro CS, Krishnamurthy S, Nagarajan S, Maroto-Valer MM, Kuehnel MF, Pitchaimuthu S. Facile Synthesis of Gram-Scale Mesoporous Ag/TiO 2 Photocatalysts for Pharmaceutical Water Pollutant Removal and Green Hydrogen Generation. ACS OMEGA 2023; 8:1249-1261. [PMID: 36643558 PMCID: PMC9835632 DOI: 10.1021/acsomega.2c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
This work demonstrates a two-step gram-scale synthesis of presynthesized silver (Ag) nanoparticles impregnated with mesoporous TiO2 and evaluates their feasibility for wastewater treatment and hydrogen gas generation under natural sunlight. Paracetamol was chosen as the model pharmaceutical pollutant for evaluating photocatalytic performance. A systematic material analysis (morphology, chemical environment, optical bandgap energy) of the Ag/TiO2 photocatalyst powder was carried out, and the influence of material properties on the performance is discussed in detail. The experimental results showed that the decoration of anatase TiO2 nanoparticles (size between 80 and 100 nm) with 5 nm Ag nanoparticles (1 wt %) induced visible-light absorption and enhanced charge carrier separation. As a result, 0.01 g/L Ag/TiO2 effectively removed 99% of 0.01 g/L paracetamol in 120 min and exhibited 60% higher photocatalytic removal than pristine TiO2. Alongside paracetamol degradation, Ag/TiO2 led to the generation of 1729 μmol H2 g-1 h-1. This proof-of-concept approach for tandem pollutant degradation and hydrogen generation was further evaluated with rare earth metal (lanthanum)- and nonmetal (nitrogen)-doped TiO2, which also showed a positive response. Using a combination of ab initio calculations and our new theory model, we revealed that the enhanced photocatalytic performance of Ag/TiO2 was due to the surface Fermi-level change of TiO2 and lowered surface reaction energy barrier for water pollutant oxidation. This work opens new opportunities for exploiting tandem photocatalytic routes beyond water splitting and understanding the simultaneous reactions in metal-doped metal oxide photocatalyst systems under natural sunlight.
Collapse
Affiliation(s)
- Yassine Cherif
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
| | - Hajer Azzi
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
- Institut
des Sciences et de la Technologie, Université d’Ain
Témouchent, BP
284, 46000Ain Témouchent, Algeria
| | - Kishore Sridharan
- Department
of Nanoscience and Technology, School of Physical Sciences, University of Calicut, P. O. Thenhipalam673635, India
| | - Seulgi Ji
- Theoretical
Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939Cologne, Germany
| | - Heechae Choi
- Theoretical
Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939Cologne, Germany
| | - Michael G. Allan
- Department
of Chemistry, Swansea University, Singleton Park, SwanseaSA2 8PP, United Kingdom
| | - Sihem Benaissa
- Institut
des Sciences et de la Technologie, Université d’Ain
Témouchent, BP
284, 46000Ain Témouchent, Algeria
| | - Karima Saidi-Bendahou
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
| | - Lois Damptey
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Camila Silva Ribeiro
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Satheesh Krishnamurthy
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Sanjay Nagarajan
- Department
of Chemical Engineering, University of Bath, BathBA2 7AY, United Kingdom
| | - M. Mercedes Maroto-Valer
- Research
Centre for Carbon Solutions, Institute of Mechanical and Processing
Engineering, School of Engineering & Physical Science, Heriot-Watt University, EdinburghEH14 4AS, United Kingdom
| | - Moritz F. Kuehnel
- Department
of Chemistry, Swansea University, Singleton Park, SwanseaSA2 8PP, United Kingdom
- Fraunhofer
Institute for Wind Energy Systems IWES, Am Haupttor 4310, 06237Leuna, Germany
| | - Sudhagar Pitchaimuthu
- Research
Centre for Carbon Solutions, Institute of Mechanical and Processing
Engineering, School of Engineering & Physical Science, Heriot-Watt University, EdinburghEH14 4AS, United Kingdom
| |
Collapse
|
35
|
Nguyen HT, Bui HM, Wang YF, You SJ. Antifouling CuO@TiO 2 coating on plasma-grafted PAA/PES membrane based on photocatalysis and hydrogen peroxide activation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12929-12943. [PMID: 36121632 DOI: 10.1007/s11356-022-23005-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Because of the small size effect leading to the high bandgap of TiO2 P25, the photocatalytic membrane using this photocatalyst has low antifouling efficiency. This study prepared CuO@TiO2 composite photocatalyst with a lower bandgap than TiO2 P25 and used it as antifouling coatings on the PES membrane with PAA intermediate adhesive layer. PAA was grafted onto the surface of the PES membranes through free radicals generated by the cold plasma treatment of the PES membrane. The composite photocatalysts were characterized by FTIR, SEM-EDS, TEM-EDS, XRD, BET, UV-Vis DRS, XPS, and ESR methods demonstrating high surface area (51.0 m2/g), decreased bandgap, and the formation of active free radicals under UV light irradiation. Under photocatalysis and hydrogen peroxide activation, the degradation of AB260 (acid blue 260) catalyzed by 10%CuO@TiO2 reached about 92% after 60 min. Besides, the photocatalytic and antifouling activities of CuO@TiO2/PAA/PES membranes are high and stable over five continuous cycles. The water flux of the modified membrane was not significantly influenced and only decreased about 10% compared to the pristine membrane. In addition, the flux recovery ratios (FRR) of fouled membranes treated by photocatalysis were almost 100%.
Collapse
Affiliation(s)
- Hieu Trung Nguyen
- Department of Civil Engineering, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan
- Center for Environmental Risk Management, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan
| | - Ha Manh Bui
- Department of Environmental Sciences, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City, 70000, Vietnam
| | - Ya-Fen Wang
- Center for Environmental Risk Management, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan
- Department of Environmental Engineering, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan
| | - Sheng-Jie You
- Center for Environmental Risk Management, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan.
- Department of Environmental Engineering, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City, 32023, Taiwan.
| |
Collapse
|
36
|
Hanan A, Solangi MY, Jaleel Laghari A, Shah AA, Aftab U, Ibupoto ZA, Abro MI, Lakhan MN, Soomro IA, Dawi EA, Al Karim Haj Ismail A, Mustafa E, Vigolo B, Tahira A, Ibupoto ZH. PdO@CoSe 2 composites: efficient electrocatalysts for water oxidation in alkaline media. RSC Adv 2022; 13:743-755. [PMID: 36683771 PMCID: PMC9809149 DOI: 10.1039/d2ra07340d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, we have prepared cobalt selenide (CoSe2) due to its useful aspects from a catalysis point of view such as abundant active sites from Se edges, and significant stability in alkaline conditions. CoSe2, however, has yet to prove its functionality, so we doped palladium oxide (PdO) onto CoSe2 nanostructures using ultraviolet (UV) light, resulting in an efficient and stable water oxidation composite. The crystal arrays, morphology, and chemical composition of the surface were studied using a variety of characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. It was also demonstrated that the composite systems were heterogeneous in their morphology, undergoing a shift in their diffraction patterns, suffering from a variety of metal oxidation states and surface defects. The water oxidation was verified by a low overpotential of 260 mV at a current density of 20 mA cm-2 with a Tafel Slope value of 57 mV dec-1. The presence of multi metal oxidation states, rich surface edges of Se and favorable charge transport played a leading role towards water oxidation with a low energy demand. Furthermore, 48 h of durability is associated with the composite system. With the use of PdO and CoSe2, new, low efficiency, simple electrocatalysts for water catalysis have been developed, enabling the development of practical energy conversion and storage systems. This is an excellent alternative approach for fostering growth in the field.
Collapse
Affiliation(s)
- Abdul Hanan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University 150001 Harbin PR China
| | - Muhammad Yameen Solangi
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Abdul Jaleel Laghari
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Aqeel Ahmed Shah
- NED University of Engineering and Technology 75270 Karachi Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Zahoor Ahmed Ibupoto
- Faculty of Agricultural Engineering and Technology, PMAS-Arid Agriculture University Rawalpindi Pakistan
| | - Muhammad Ishaque Abro
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Muhammad Nazim Lakhan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University 150001 Harbin PR China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology 100029 Beijing PR China
| | - Elmuez A Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University P.O. Box 346 United Arab Emirates
| | - Abd Al Karim Haj Ismail
- Nonlinear Dynamics Research Centre (NDRC), Ajman University P.O. Box 346 United Arab Emirates
| | - Elfatih Mustafa
- Department of Science and Technology (ITN), Linköping University, Campus Norrköping 60174 Norrköping Sweden
| | | | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | | |
Collapse
|
37
|
Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Moreno YP, de Escobar CC, Skovroinski E, Weibel DE, dos Santos JH. TiO2/SiO2 dopant-free nanophotocatalysts for highly efficient photocatalytic water splitting: Challenging traditional TiO2-based systems. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
39
|
A Brief Review of Photocatalytic Reactors Used for Persistent Pesticides Degradation. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6060089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pesticide pollution is a major issue, given their intensive use in the 20th century, which led to their accumulation in the environment. At the international level, strict regulations are imposed on the use of pesticides, simultaneously with the increasing interest of researchers from all over the world to find methods of neutralizing them. Photocatalytic degradation is an intensively studied method to be applied for the degradation of pesticides, especially through the use of solar energy. The mechanisms of photocatalysis are studied and implemented in pilot and semi-pilot installations on experimental platforms, in order to be able to make this method more efficient and to identify the equipment that can achieve the photodegradation of pesticides with the highest possible yields. This paper proposes a brief review of the impact of pesticides on the environment and some techniques for their degradation, with the main emphasis on different photoreactor configurations, using slurry or immobilized photocatalysts. This review highlights the efforts of researchers to harmonize the main elements of photocatalysis: choice of the photocatalyst, and the way of photocatalyst integration within photoreaction configuration, in order to make the transfer of momentum, mass, and energy as efficient as possible for optimal excitation of the photocatalyst.
Collapse
|
40
|
Kubovics M, Silva CG, López-Periago AM, Faria JL, Domingo C. Photocatalytic Hydrogen Production using Porous 3D Graphene-Based Aerogels Supporting Pt/TiO 2 Nanoparticles. Gels 2022; 8:719. [PMID: 36354627 PMCID: PMC9689606 DOI: 10.3390/gels8110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Composites involving reduced graphene oxide (rGO) aerogels supporting Pt/TiO2 nanoparticles were fabricated using a one-pot supercritical CO2 gelling and drying method, followed by mild reduction under a N2 atmosphere. Electron microscopy images and N2 adsorption/desorption isotherms indicate the formation of 3D monolithic aerogels with a meso/macroporous morphology. A comprehensive evaluation of the synthesized photocatalyst was carried out with a focus on the target application: the photocatalytic production of H2 from methanol in aqueous media. The reaction conditions (water/methanol ratio, catalyst concentration), together with the aerogel composition (Pt/TiO2/rGO ratio) and architecture (size of the aerogel pieces), were the factors that varied in optimizing the process. These experimental parameters influenced the diffusion of the reactants/products inside the aerogel, the permeability of the porous structure, and the light-harvesting properties, all determined in this study towards maximizing H2 production. Using methanol as the sacrificial agent, the measured H2 production rate for the optimized system (18,800 µmolH2h-1gNPs-1) was remarkably higher than the values found in the literature for similar Pt/TiO2/rGO catalysts and reaction media (2000-10,000 µmolH2h-1gNPs-1).
Collapse
Affiliation(s)
- Márta Kubovics
- Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus UAB s/n, 8193 Bellaterra, Spain
| | - Cláudia G. Silva
- LSRE-LCM-Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana M. López-Periago
- Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus UAB s/n, 8193 Bellaterra, Spain
| | - Joaquim L. Faria
- LSRE-LCM-Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Concepción Domingo
- Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus UAB s/n, 8193 Bellaterra, Spain
| |
Collapse
|
41
|
Lutic D, Sescu AM, Siamer S, Harja M, Favier L. Excellent ambient oxidation and mineralization of an emerging water pollutant using Pd-doped TiO 2 photocatalyst and UV-A irradiation. CR CHIM 2022. [DOI: 10.5802/crchim.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Gagliardi S, Rondino F, Paoletti C, Falconieri M. On the Morphology of Nanostructured TiO 2 for Energy Applications: The Shape of the Ubiquitous Nanomaterial. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2608. [PMID: 35957039 PMCID: PMC9370519 DOI: 10.3390/nano12152608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023]
Abstract
Nanostructured titania is one of the most commonly encountered constituents of nanotechnology devices for use in energy-related applications, due to its intrinsic functional properties as a semiconductor and to other favorable characteristics such as ease of production, low toxicity and chemical stability, among others. Notwithstanding this diffusion, the quest for improved understanding of the physical and chemical mechanisms governing the material properties and thus its performance in devices is still active, as testified by the large number of dedicated papers that continue to be published. In this framework, we consider and analyze here the effects of the material morphology and structure in determining the energy transport phenomena as cross-cutting properties in some of the most important nanophase titania applications in the energy field, namely photovoltaic conversion, hydrogen generation by photoelectrochemical water splitting and thermal management by nanofluids. For these applications, charge transport, light transport (or propagation) and thermal transport are limiting factors for the attainable performances, whose dependence on the material structural properties is reviewed here on its own. This work aims to fill the gap existing among the many studies dealing with the separate applications in the hope of stimulating novel cross-fertilization approaches in this research field.
Collapse
Affiliation(s)
| | | | | | - Mauro Falconieri
- ENEA, The Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (S.G.); (F.R.); (C.P.)
| |
Collapse
|
43
|
Yang JJ, Zhang Y, Xie XY, Fang WH, Cui G. Photocatalytic Reduction of Carbon Dioxide to Methane at the Pd-Supported TiO 2 Interface: Mechanistic Insights from Theoretical Studies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia-Jia Yang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiao-Ying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
44
|
Moustafa HM, Mahmoud MS, Nassar MM. Photon-induced water splitting experimental and kinetic studies with a hydrothermally prepared TiO2-doped rGO photocatalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Chowdhury AP, Anantharaju KS, Umare SS, Dhar SS. Facile fabrication of binary BiOCl-Cu2CoSnS4 and ternary BiOCl-Cu2CoSnS4-TiO2 heterojunction nano photocatalyst for efficient sunlight-driven removal of direct blue 71 in an aqueous medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Abstract
The indiscriminate use of naproxen as an anti-inflammatory has been the leading cause of pollution in sewage effluents. Conversely, titanium dioxide is one of the most promising photocatalyst for the degradation of pollutants. Ti-La mixed oxides containing 0, 1, 3, 5, and 10 wt.% of lanthanum were synthetized by sol-gel and tested as photocatalysts in the degradation of naproxen (NPX). The materials were further characterized by X-ray diffraction (XRD), nitrogen physisorption (BET), scanning electron microscopy (SEM), UV-Vis and Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns resembled that of anatase titania. The Eg values, determined from the UV-Vis spectra, vary from 2.07 to 3.2 eV corresponded to pure titania. The photocatalytic activity of these materials showed a degradation of naproxen from 93.6 to 99.8 wt.% after 4 h under UV irradiation.
Collapse
|
47
|
Lyu S, Younis MA, Liu Z, Zeng L, Peng X, Yang B, Li Z, Lei L, Hou Y. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Systematic Study of Effective Hydrothermal Synthesis to Fabricate Nb-Incorporated TiO 2 for Oxygen Reduction Reaction. MATERIALS 2022; 15:ma15051633. [PMID: 35268863 PMCID: PMC8911348 DOI: 10.3390/ma15051633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/17/2022]
Abstract
Fuel cells are expected to serve as next-generation energy conversion devices owing to their high energy density, high power, and long life performance. The oxygen reduction reaction (ORR) is important for determining the performance of fuel cells; therefore, using catalysts to promote the ORR is essential for realizing the practical applications of fuel cells. Herein, we propose Nb-incorporated TiO2 as a suitable alternative to conventional Pt-based catalysts, because Nb doping has been reported to improve the conductivity and electron transfer number of TiO2. In addition, Nb-incorporated TiO2 can induce the electrocatalytic activity for the ORR. In this paper, we report the synthesis method for Nb-incorporated TiO2 through a hydrothermal process with and without additional load pressures. The electrocatalytic activity of the synthesized samples for the ORR was also demonstrated. In this process, the samples obtained under various load pressures exceeding the saturated vapor pressure featured a high content of Nb and crystalline TiNb2O7, resulting in an ellipsoidal morphology. X-ray diffraction results also revealed that, on increasing the Nb doping amounts, the diffraction peak of the anatase TiO2 shifted to a lower angle and the full width at half maximum decreased. This implies that the Ti atom is exchanged with the Nb atom during this process, resulting in a decrease in TiO2 crystallinity. At a doping level of 10%, Nb-incorporated TiO2 exhibited the best electrocatalytic activity in terms of the oxygen reduction current (iORR) and onset potential for the ORR (EORR); this suggests that 10% Nb-doped samples have the potential for enhancing electrocatalytic activity.
Collapse
|
49
|
Peerakiatkhajohn P, Yun JH, Butburee T, Nisspa W, Thaweesak S. Surface plasmon-driven photoelectrochemical water splitting of a Ag/TiO 2 nanoplate photoanode. RSC Adv 2022; 12:2652-2661. [PMID: 35425299 PMCID: PMC8979192 DOI: 10.1039/d1ra09070d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
A silver/titanium dioxide nanoplate (Ag/TiO2 NP) photoelectrode was designed and fabricated from vertically aligned TiO2 nanoplates (NP) decorated with silver nanoparticles (NPs) through a simple hydrothermal synthesis and electrodeposition route. The electrodeposition times of Ag NPs on the TiO2 NP were crucial for surface plasmon-driven photoelectrochemical (PEC) water splitting performance. The Ag/TiO2 NP at the optimal deposition time of 5 min with a Ag element content of 0.53 wt% demonstrated a remarkably high photocurrent density of 0.35 mA cm-2 at 1.23 V vs. RHE under AM 1.5G illumination, which was 5 fold higher than that of the pristine TiO2 NP. It was clear that the enhanced light absorption properties and PEC performance for Ag/TiO2 NP could be effectively adjusted by simply controlling the loading amounts of metallic Ag NPs (average size of 10-30 nm) at different electrodeposition times. The superior PEC performance of the Ag/TiO2 NP photoanode was attributed to the synergistic effects of the plasmonic Ag NPs and the TiO2 nanoplate. Interestingly, the plasmonic effect of Ag NPs not only increased the visible-light response (λ max = 570 nm) of TiO2 but also provided hot electrons to promote photocurrent generation and suppress charge recombination. Importantly, this study offers a potentially efficient strategy for the design and fabrication of a new type of TiO2 hybrid nanostructure with a plasmonic enhancement for PEC water splitting.
Collapse
Affiliation(s)
| | - Jung-Ho Yun
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland St Lucia QLD 4123 Australia
| | - Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency 111 Thailand Science Park Pathum Thani 12120 Thailand
| | - Waraporn Nisspa
- Division of Science and Technology, Faculty of Science and Technology, Phetchaburi Rajabhat University Phetchaburi 76000 Thailand
| | - Supphasin Thaweesak
- Department of Chemical Engineering, Faculty of Engineering, Burapha University Chon Buri 20131 Thailand
| |
Collapse
|
50
|
Parangi T. A Review on Electrochemical and Photochemical Processes for Hydrogen Production. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2021.2013827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tarun Parangi
- Applied Chemistry Department, Faculty of Technology & Engineering, the M. S. University of Baroda, Vadodara, India
| |
Collapse
|