1
|
Gravador RS, Haughey S, Meneely J, Greer B, Nugent A, Daniel CS, Elliott C. Reports of tropane alkaloid poisonings and analytical techniques for their determination in food crops and products from 2013 to 2023. Compr Rev Food Sci Food Saf 2024; 23:e70047. [PMID: 39530585 DOI: 10.1111/1541-4337.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Food safety is crucial to attaining food security and sustainability. Unsafe foods for human and animal consumption lead to product recalls and rejection, negatively impacting the global economy and trade. Similarly, climate change can adversely affect the availability of safe and nutritious food at the table. The changing climatic conditions and global food trade and transport can make the movement of toxic plants possible, resulting in food crops being increasingly invaded by some species of plants that produce toxic secondary metabolites, such as tropane alkaloids (TAs). Datura stramonium from the Solanaceae plant family is an invasive and virulent plant that produces high amounts of two TAs, atropine and scopolamine. Various food poisoning events following accidental or deliberate ingestion of foods contaminated by atropine and scopolamine from seeds of D. stramonium have been recorded in different locations globally. Due to these incidents, regulatory agencies require the development of plant toxin detection methods that can be used in the food chain as early as possible. This systematic review thus focuses on the TA determination techniques in food and feeds published between 2013 and 2023. A particular focus was given to the sample preparation methods, the improvements of each technique claimed, and data to support the performance of each method, especially the ability to measure at or below the maximum level. The review concludes with other technological advancements, including rapid spectroscopy, electrophoresis, and colorimetric methods, as well as the possibility of coupling with smartphones for use in on-farm detection and the challenges in applying them.
Collapse
Affiliation(s)
- Rufielyn S Gravador
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Simon Haughey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Julie Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Brett Greer
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
- International Joint Research Center on Food Security (IJC-FOODSEC), Pathum Thani, Thailand
| | - Anne Nugent
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Christy S Daniel
- Department of Science and Technology, Industrial Technology Development Institute, Bicutan, Taguig City, Philippines
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
- International Joint Research Center on Food Security (IJC-FOODSEC), Pathum Thani, Thailand
| |
Collapse
|
2
|
El-Sapagh SH, El-Zawawy NA, Elshobary ME, Alquraishi M, Zabed HM, Nouh HS. Harnessing the power of Neobacillus niacini AUMC-B524 for silver oxide nanoparticle synthesis: optimization, characterization, and bioactivity exploration. Microb Cell Fact 2024; 23:220. [PMID: 39107838 PMCID: PMC11304630 DOI: 10.1186/s12934-024-02484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs. RESULTS A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53). CONCLUSIONS These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shimaa H El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa E Elshobary
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohammed Alquraishi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hoda S Nouh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Rasi A, Sabokdast M, Naghavi MR, Jariani P, Dedičová B. Modulation of Tropane Alkaloids' Biosynthesis and Gene Expression by Methyl Jasmonate in Datura stramonium L.: A Comparative Analysis of Scopolamine, Atropine, and Hyoscyamine Accumulation. Life (Basel) 2024; 14:618. [PMID: 38792639 PMCID: PMC11123313 DOI: 10.3390/life14050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Scopolamine and atropine are two medicinal alkaloids derived from Datura stramonium L. with anticholinergic properties. This study explored how methyl jasmonate (MJ), a plant growth regulator, affects the biosynthesis and accumulation of these alkaloids in different plant tissues. The expression levels of putrescine N-methyltransferase (PMT), tropinone reductase I (TR1), and hyoscyamine 6β-hydroxylase (h6h), three critical enzymes in the biosynthetic pathway, were also analyzed. The results indicated that MJ at 150 µM increased the production of scopolamine and atropine in both leaves and roots, while MJ at 300 µM had an adverse effect. Furthermore, MJ enhanced the expression of PMT, TR1, and h6h genes in the roots, the primary site of alkaloid synthesis, but not in the leaves, the primary site of alkaloid storage. These results imply that MJ can be applied to regulate the biosynthesis and accumulation of scopolamine and atropine in D. stramonium, thereby improving their production efficiency.
Collapse
Affiliation(s)
- Arash Rasi
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 31587-11167, Iran; (A.R.); (M.R.N.); (P.J.)
| | - Manijeh Sabokdast
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 31587-11167, Iran; (A.R.); (M.R.N.); (P.J.)
| | - Mohammad Reza Naghavi
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 31587-11167, Iran; (A.R.); (M.R.N.); (P.J.)
| | - Parisa Jariani
- Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 31587-11167, Iran; (A.R.); (M.R.N.); (P.J.)
| | - Beáta Dedičová
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU) Alnarp, Sundsvägen 10, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
4
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Gonçalves Dantas CA, Abreu LS, Viana VF, Gouveia Veloso CA, Agra MDF, da Silva MS, Tavares JF. Dereplication of tropane alkaloids from four Erythroxylum species using liquid chromatography coupled with ESI-MS n and HRESIMS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9629. [PMID: 37799035 DOI: 10.1002/rcm.9629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023]
Abstract
RATIONALE Tropane alkaloids represent an important class of secondary metabolites, but many of these compounds are already described in the scientific literature, so the use of guided identification and isolation strategies, such as dereplication, represent a fast and safe alternative. METHODS For the annotation of the tropane alkaloids the chloroform phases of the four Erythroxylum species were analyzed by high-performance liquid chromatography coupled to mass spectrometry with positive-mode electrospray ionization, then the ions of their protonated molecules, molecular formulas and fragmentation patterns were observed and a comparison of the obtained data with those present in the scientific literature was performed. The compounds not fully annotated were isolated and characterized by 1 H and 13 C nuclear magnetic resonance spectroscopy. RESULTS The annotation of 29 tropane alkaloids was performed, some being described for the first time in the family Erythroxylaceae. The chemical profiles of these secondary metabolites in the four Erythroxylum species analyzed were traced and compared. Isolation of three compounds whose mass spectral data were not sufficient for their full annotation was performed. They were 6-(benzoyloxy)-3-(3,5-dimethoxy-4-hydroxybenzoyloxy)tropane, 6-(benzoyloxy)-3-(3,4,5-trimethoxybenzoyloxy)tropane and 6-(benzoyloxy)-3-(3,4,5-trimethoxycinamoyloxy)tropane, first reported in the species Erythroxylum revolutum Mart. CONCLUSIONS This work contributes to the phytochemical knowledge of the genus Erythroxylum, and demonstrates the efficiency and importance of using guided isolation methodologies of secondary metabolites in natural products research. Since safe results were presented in the annotation of the compounds evidenced, employing small quantities of organic solvents, when compared to classical methodologies, besides promoting an optimization in the research time.
Collapse
Affiliation(s)
- César Augusto Gonçalves Dantas
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Lucas Silva Abreu
- Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niterói, Brazil
| | - Vinicius Ferreira Viana
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Carlos Arthur Gouveia Veloso
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Maria de Fátima Agra
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Marcelo Sobral da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Josean Fechine Tavares
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
6
|
Su H, Ding X, Liao B, Zhang D, Huang J, Bai J, Xu S, Zhang J, Xu W, Qiu X, Gong L, Huang Z. Comparative chloroplast genomes provided insights into the evolution and species identification on the Datureae plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1270052. [PMID: 37941675 PMCID: PMC10628451 DOI: 10.3389/fpls.2023.1270052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Generally, chloroplast genomes of angiosperms are always highly conserved but carry a certain number of variation among species. In this study, chloroplast genomes of 13 species from Datureae tribe that are of importance both in ornamental gardening and medicinal usage were studied. In addition, seven chloroplast genomes from Datureae together with two from Solanaceae species retrieved from the National Center for Biotechnology Information (NCBI) were integrated into this study. The chloroplast genomes ranged in size from 154,686 to 155,979 and from 155,497 to 155,919 bp for species of Datura and Brugmansia, respectively. As to Datura and Brugmansia, a total of 128 and 132 genes were identified, in which 83 and 87 protein coding genes were identified, respectively; Furthermore, 37 tRNA genes and 8 rRNA genes were both identified in Datura and Brugmansia. Repeats analysis indicated that the number and type varied among species for Simple sequence repeat (SSR), long repeats, and tandem repeats ranged in number from 53 to 59, 98 to 99, and 22 to 30, respectively. Phylogenetic analysis based on the plastid genomes supported the monophyletic relationship among Datura and Brugmansia and Trompettia, and a refined phylogenic relationships among each individual was resolved. In addition, a species-specific marker was designed based on variation spot that resulted from a comparative analysis of chloroplast genomes and verified as effective maker for identification of D. stramonium and D. stramonium var. inermis. Interestingly, we found that 31 genes were likely to be under positive selection, including genes encoding ATP protein subunits, photosystem protein subunit, ribosome protein subunits, NAD(P)H dehydrogenase complex subunits, and clpP, petB, rbcL, rpoCl, ycf4, and cemA genes. These genes may function as key roles in the adaption to diverse environment during evolution. The diversification of Datureae members was dated back to the late Oligocene periods. These chloroplast genomes are useful genetic resources for taxonomy, phylogeny, and evolution for Datureae.
Collapse
Affiliation(s)
- He Su
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxia Ding
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baosheng Liao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danchun Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juan Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Junqi Bai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Subing Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wen Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lu Gong
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Mahmoudi S, Chaichi MJ, Shamsipur M, Nazari OL, Samadi-Maybodi A. Fe 3 O 4 and bimetal-organic framework Zn/Mg composite peroxide-like catalyze luminol chemiluminescence for specific measurement of atropine in Datura plant. LUMINESCENCE 2023; 38:1711-1719. [PMID: 37455562 DOI: 10.1002/bio.4557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/10/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
Atropine (AT) is an anticholinergic drug. AT is abundantly in Datura plant seeds. Fe3 O4 @Zn/Mg MOF (Fe3 O4 @MOF) composite was synthesized. The compound had a high peroxidase-like activity in a chemiluminescence (CL) reaction. Addition of AT quenched CL. The linear range and limit of detection were 5-600 μg L-1 and 2 × 10-2 μg L-1 . This method is fast, reversible, and selective, without biodegradability effects, high accuracy, and precision for measuring AT in the Datura plant.
Collapse
Affiliation(s)
- Shaida Mahmoudi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
- Department of Analytical Chemistry, Faculty of Chemistry, University of Razi, Kermanshah, Iran
| | - Mohamad Javad Chaichi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mojtaba Shamsipur
- Department of Analytical Chemistry, Faculty of Chemistry, University of Razi, Kermanshah, Iran
| | - Ome Leila Nazari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
8
|
Lawal BA, Ayipo YO, Adekunle AO, Amali MO, Badeggi UM, Alananzeh WA, Mordi MN. Phytoconstituents of Datura metel extract improved motor coordination in haloperidol-induced cataleptic mice: Dual-target molecular docking and behavioural studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115753. [PMID: 36162546 DOI: 10.1016/j.jep.2022.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a prominent health challenge characterized by complex aetiology and limited therapeutic breakthroughs. Datura metel (DM) is a medicinal plant containing active phytoconstituents with neuropharmacological potentials. In traditional medicine, it exerts anticholinergic, anti-inflammatory and antioxidant effects, and protection from organophosphate poisoning inclusively involved in the pharmacotherapy of PD. Its other PD-related medicinal potency includes treatment of motor sickness and bradycardia. However, the exact mechanisms of anti-PD effects of its phytoconstituents remain underexplored. MATERIALS AND METHODS In this study, methanolic extract of DM was evaluated for anti-PD behavioural effects in vivo haloperidol-induced cataleptic mice. The GC-MS-identified phytochemicals were studied for one-drug-multi-target inhibitory mechanisms against some key targets for PD treatment, alpha-synuclein (ASN) and dopa decarboxylase (DDC) using molecular docking. RESULTS and discussion: Chronic administration of 50, 100 and 200 mg/kg of DM extract improved the 14-s latency time induced by haloperidol to 54, 54 and 57 s respectively, whereas levodopa (30 mg/kg) produced 47 s in rotarod tests. Similarly, the descending times for haloperidol-induced cataleptic mice were significantly reduced from 110 s to 17.7, 17.7 and 12.5 s by the respective chronic doses of DM extract, whereas levodopa-administered mice spent 17.5 s descending the same 30 cm pole. The interesting motor coordination enhancements are suggestively due to synergistic inhibition of ASN and DCC by the phytoconstituents of DM, especially, atropine and scopolamine. From the docking analysis, the two phytochemicals interacted more potently with the active therapeutic sites of the dual targets than levodopa and carbidopa. CONCLUSION Methanolic extract of DM contains active phytochemicals for multi-target-directed antiparkinsonian mechanisms amenable for further studies.
Collapse
Affiliation(s)
- Bilqis Abiola Lawal
- Department of Pharmacognosy and Drug Development, University of Ilorin, P.M.B., 1515, Ilorin, Nigeria
| | - Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulauz, Pinang, Malaysia; Department of Chemistry and Industrial Chemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria.
| | | | - Mohammed Otuofu Amali
- Department of Pharmacology and Toxicology, University of Ilorin, P.M.B., 1515, Ilorin, Nigeria
| | - Umar Muhammad Badeggi
- Department of Chemistry, Ibrahim Badamasi Babangida University, Lapai, PMB 11, Niger State, Nigeria
| | - Waleed A Alananzeh
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulauz, Pinang, Malaysia
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulauz, Pinang, Malaysia
| |
Collapse
|
9
|
Drug repurposing strategy II: from approved drugs to agri-fungicide leads. J Antibiot (Tokyo) 2023; 76:131-182. [PMID: 36707717 PMCID: PMC9880955 DOI: 10.1038/s41429-023-00594-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023]
Abstract
Epidemic diseases of crops caused by fungi deeply affected the course of human history and processed a major restriction on social and economic development. However, with the enormous misuse of existing antimicrobial drugs, an increasing number of fungi have developed serious resistance to them, making the diseases caused by pathogenic fungi even more challenging to control. Drug repurposing is an attractive alternative, it requires less time and investment in the drug development process than traditional R&D strategies. In this work, we screened 600 existing commercially available drugs, some of which had previously unknown activity against pathogenic fungi. From the primary screen at a fixed concentration of 100 μg/mL, 120, 162, 167, 85, 102, and 82 drugs were found to be effective against Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea, Phytophthora capsici, Fusarium graminearum and Fusarium oxysporum, respectively. They were divided into nine groups lead compounds, including quinoline alkaloids, benzimidazoles/carbamate esters, azoles, isothiazoles, pyrimidines, pyridines, piperidines/piperazines, ionic liquids and miscellaneous group, and simple structure-activity relationship analysis was carried out. Comparison with fungicides to identify the most promising drugs or lead structures for the development of new antifungal agents in agriculture.
Collapse
|
10
|
Lian W, Wang Y, Zhang J, Yan Y, Xia C, Gan H, Wang X, Yang T, Xu J, He J, Zhang W. The genus Datura L. (Solanaceae): A systematic review of botany, traditional use, phytochemistry, pharmacology, and toxicology. PHYTOCHEMISTRY 2022; 204:113446. [PMID: 36152725 DOI: 10.1016/j.phytochem.2022.113446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The genus Datura has been used as an important traditional medicine in China, as well as in other countries worldwide. This review summarizes the latest progress and perspective of the genus Datura, from the aspects of botany, traditional uses, phytochemistry, pharmacology, and toxicology. Up to May 2022, literatures were collected from online scientific databases, including Google Scholar, PubMed, SciFinder, CNKI, ACS, and Web of Science, and information was also obtained from "Flora Republicae Populairs Sinicae", Chinese Pharmacopoeia, Chinese herbal classic books, and Ph.D. and M. Sc. dissertations. Studies on chemical constituents, pharmacological activities, and toxicity are mainly focused on D. metel, D. stramonium, and D. inoxia. Furthermore, 496 compounds have been discovered from the genus Datura, including withanolides, alkaloids, flavonoids, terpenoids, phenylpropanoids, steroids, amino acids, aromatics, and aliphatics. Among them, withanolides and alkaloids are two main active constituents. Pharmacological activities of extracts and compounds have been studied from the aspects of antitumor, antiinflammation, antioxidant, antimicrobial, antispasmodic, anticoagulant, analgesic, hypoglycemic and xanthine oxidase inhibitory activities, as well as the effects on central nervous system and immune system. Modern pharmacological studies have provided more clues to elucidate the traditional usages. The toxicity of the genus Datura is noteworthy, especially the potential toxicity on organs. This review would provide a comprehensive and constructive overview for new drug development and utilization of the genus Datura.
Collapse
Affiliation(s)
- Wenwen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yuwei Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Congyuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - He Gan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaoyan Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ting Yang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jiekun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Weiku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
11
|
Mihálik D, Hančinský R, Kaňuková Š, Mrkvová M, Kraic J. Elicitation of Hyoscyamine Production in Datura stramonium L. Plants Using Tobamoviruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3319. [PMID: 36501358 PMCID: PMC9740805 DOI: 10.3390/plants11233319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Datura stramonium L. produces tropane alkaloids, and the hyoscyamine is dominant among them. Hyoscyamine is produced by hairy root cultures in vitro derived from native plants or plants with the genetically modified biosynthetic pathway for hyoscyamine. A common procedure is extraction from cultivated plants. Elicitors for increased production can be used in both cases. Live viruses are not well known for use as elicitors, therefore, D. stramonium plants grown in soil were artificially infected with the tobamoviruses Pepper mild mottle virus (PMMoV), Tomato mosaic virus (ToMV), and Tobacco mosaic virus (TMV). Differences in the content of hyoscyamine were between capsules and roots of infected and non-infected plants. Elicitation increased content of hyoscyamine in capsules 1.23-2.34 times, compared to the control. The most effective viruses were PMMoV and ToMV (isolate PV143), which increased content to above 19 mg/g of fresh weight of a capsule. The effect of each virus elicitor was expressed also in hyoscyamine content in roots. Elicited plants contained 5.41-16.54 times more hyoscyamine in roots compared to non-elicited plants. The most effective elicitor was ToMV SL-1, which raised production above 20 mg/g fresh weight of roots. It has been shown that tobamoviruses can be used as biotic elicitors.
Collapse
Affiliation(s)
- Daniel Mihálik
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia
| | - Richard Hančinský
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
| | - Šarlota Kaňuková
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia
| | - Michaela Mrkvová
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia
| | - Ján Kraic
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia
| |
Collapse
|
12
|
Nikolić N, Šoštarčić V, Pismarović L, Šćepanović M, Masin R. Germination Response of Datura stramonium L. to Different pH and Salinity Levels under Different Temperature Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:3259. [PMID: 36501298 PMCID: PMC9736371 DOI: 10.3390/plants11233259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Weeds can be one of the most severe threats to crop production, especially when they are widespread and highly adaptable. Part of the adaptive strategy of plants is the ability to germinate in different conditions. Germination is the first developmental phase of plant life and is fundamental for its establishment. In this work, the germination of two populations of Datura stramonium L. at two different sites in Croatia (one cropped, the other non-agricultural) was tested under a wide range of salinity stress, 4, 8, 12, and 16 dS/m, and pH stress, values 1-9, at two temperature ranges of 15-25 °C and 18-30 °C. The results show that this species can tolerate high salinity, with a high number of seeds germinating, even under the highest level of saline stress and especially at higher temperatures: 21.7% of seeds germinated at 15-25 °C and 51.2% at 18-30 °C. D. stramonium also appears to be quite acid tolerant, with a significant reduction in germination only at pH 2, and no germination only at pH 1. Germination was always higher at higher temperatures, independently of abiotic stress. Although there were some differences between the two populations in the final germination percentages, they were similar in their responses to the abiotic stresses.
Collapse
Affiliation(s)
- Nebojša Nikolić
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, PD, Italy
| | - Valentina Šoštarčić
- Department of Weed Science, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10 000 Zagreb, Croatia
| | - Laura Pismarović
- Department of Weed Science, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10 000 Zagreb, Croatia
| | - Maja Šćepanović
- Department of Weed Science, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10 000 Zagreb, Croatia
| | - Roberta Masin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, PD, Italy
| |
Collapse
|
13
|
CHANDAN G, KUMAR C, SATTI NK, TULI HS, FAGOONEE S, HAQUE S, SAINI AK, SAINI RV. Daturalactones as immunomodulators: activation of immune cells conferring cytotoxicity towards colon and pancreatic cancer cells. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2022; 34. [DOI: 10.23736/s2724-542x.22.02931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
|
14
|
He Y, Liu K, Han L, Han W. Clustering Analysis, Structure Fingerprint Analysis, and Quantum Chemical Calculations of Compounds from Essential Oils of Sunflower (Helianthus annuus L.) Receptacles. Int J Mol Sci 2022; 23:ijms231710169. [PMID: 36077567 PMCID: PMC9456235 DOI: 10.3390/ijms231710169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Sunflower (Helianthus annuus L.) is an appropriate crop for current new patterns of green agriculture, so it is important to change sunflower receptacles from waste to useful resource. However, there is limited knowledge on the functions of compounds from the essential oils of sunflower receptacles. In this study, a new method was created for chemical space network analysis and classification of small samples, and applied to 104 compounds. Here, t-SNE (t-Distributed Stochastic Neighbor Embedding) dimensions were used to reduce coordinates as node locations and edge connections of chemical space networks, respectively, and molecules were grouped according to whether the edges were connected and the proximity of the node coordinates. Through detailed analysis of the structural characteristics and fingerprints of each classified group, our classification method attained good accuracy. Targets were then identified using reverse docking methods, and the active centers of the same types of compounds were determined by quantum chemical calculation. The results indicated that these compounds can be divided into nine groups, according to their mean within-group similarity (MWGS) values. The three families with the most members, i.e., the d-limonene group (18), α-pinene group (10), and γ-maaliene group (nine members) determined the protein targets, using PharmMapper. Structure fingerprint analysis was employed to predict the binding mode of the ligands of four families of the protein targets. Thence, quantum chemical calculations were applied to the active group of the representative compounds of the four families. This study provides further scientific information to support the use of sunflower receptacles.
Collapse
Affiliation(s)
| | | | - Lu Han
- Correspondence: (L.H.); (W.H.)
| | | |
Collapse
|
15
|
Exploring the potential of benzoic acid derived from the endophytic fungus strain Neurospora crassa SSN01 as a promising antimicrobial agent in wound healing. Microbiol Res 2022; 262:127108. [DOI: 10.1016/j.micres.2022.127108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022]
|
16
|
A Theme Issue to Celebrate Professor Robert Verpoorte's 75th Birthday: "The Past, Current, and Future of Natural Products". Molecules 2021; 26:molecules26237226. [PMID: 34885808 PMCID: PMC8658858 DOI: 10.3390/molecules26237226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
|
17
|
Luo X, Zhao Y, Tao S, Yang ZT, Luo H, Yang W. A simple and efficient copper-catalyzed three-component reaction to synthesize ( Z)-1,2-dihydro-2-iminoquinolines. RSC Adv 2021; 11:31152-31158. [PMID: 35496874 PMCID: PMC9041411 DOI: 10.1039/d1ra06330h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
A operationally simple synthesis of (Z)-1,2-dihydro-2-iminoquinolines that proceeds under mild conditions is achieved by copper-catalyzed reaction of 1-(2-aminophenyl)ethan-1-ones, sulfonyl azides and terminal ynones. In particular, the reaction goes through a base-free CuAAC/ring-opening process to obtain the Z-configured products due to hydrogen bonding.
Collapse
Affiliation(s)
- Xiai Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Department of Pharmacy, Hunan University of Medicine Huaihua 418000 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Susu Tao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Zhong-Tao Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| |
Collapse
|