1
|
Alfei S, Schito GC. Antimicrobial Nanotubes: From Synthesis and Promising Antimicrobial Upshots to Unanticipated Toxicities, Strategies to Limit Them, and Regulatory Issues. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:633. [PMID: 40278498 DOI: 10.3390/nano15080633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of the presence of sp2 and sp3 bonds. Among NTs, CNTs are the most studied compounds due to their nonpareil electrical, mechanical, optical, and biomedical properties. Moreover, single-walled carbon nanotubes (SWNTs) have, in particular, demonstrated high ability as drug delivery systems and in transporting a wide range of chemicals across membranes and into living cells. Therefore, SWNTs, more than other NT structures, have generated interest in medicinal applications, such as target delivery, improved imaging, tissue regeneration, medication, and gene delivery, which provide nanosized devices with higher efficacy and fewer side effects. SWNTs and multi-walled CNTs (MWCNTs) have recently gained a great deal of attention for their antibacterial effects. Unfortunately, numerous recent studies have revealed unanticipated toxicities caused by CNTs. However, contradictory opinions exist regarding these findings. Moreover, the problem of controlling CNT-based products has become particularly evident, especially in relation to their large-scale production and the nanosized forms of the carbon that constitute them. Important directive rules have been approved over the years, but further research and regulatory measures should be introduced for a safer production and utilization of CNTs. Against this background, and after an overview of CNMs and CNTs, the antimicrobial properties of pristine and modified SWNTs and MWCNTs as well as the most relevant in vitro and in vivo studies on their possible toxicity, have been reported. Strategies and preventive behaviour to limit CNT risks have been provided. Finally, a debate on regulatory issues has also been included.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| |
Collapse
|
2
|
Singh G, Thakur N, Kumar R. Nanoparticles in drinking water: Assessing health risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174940. [PMID: 39047836 DOI: 10.1016/j.scitotenv.2024.174940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles (NPs) pose a significant concern in drinking water due to their potential health risks and environmental impact. This review provides a comprehensive analysis of the current understanding of NP sources and contamination in drinking water, focusing on health concerns, mitigation strategies, regulatory frameworks, and future perspectives. This review highlights the importance of nano-specific pathways, fate processes, health risks & toxicity, and the need for realistic toxicity assessments. Different NPs like titanium dioxide, silver, nanoplastics, nanoscale liquid crystal monomers, copper oxide, and others pose potential health risks through ingestion, inhalation, or dermal exposure, impacting organs and potentially leading to oxidative stress, inflammatory responses, DNA damage, cytotoxicity, disrupt intracellular energetic mechanisms, reactive oxygen species generation, respiratory and immune toxicity, and genotoxicity in humans. Utilizing case studies and literature reviews, we investigate the health risks associated with NPs in freshwater environments, emphasizing their relevance to drinking water quality. Various mitigation and treatment strategies, including filtration systems (e.g., reverse osmosis, and ultra/nano-filtration), adsorption processes, coagulation/flocculation, electrocoagulation, advanced oxidation processes, membrane distillation, and ultraviolet treatment, all of which demonstrate high removal efficiencies for NPs from drinking water. Regulatory frameworks and challenges for the production, applications, and disposal of NPs at both national and international levels are discussed, emphasizing the need for tailored regulations to address NP contamination and standardize safety testing and risk assessment practices. Looking ahead, this review underscores the necessity of advancing detection methods and nanomaterial-based treatment technologies while stressing the pivotal role of public awareness and tailored regulatory guidelines in upholding drinking water quality standards. This review emphasizes the urgency of addressing NP contamination in drinking water and provides insights into potential solutions and future research directions. Lastly, this review worth concluded with future recommendations on advanced analytical techniques and sensitive sensors for NP detection for safeguarding public health and policy implementations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Campus, Mandi, Himachal Pradesh 175001, India.
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
3
|
Li K, Ge P, Wu XL, Shen C. In vitro cytotoxicity assessment of carbonaceous gels for bone marrow mesenchymal stem cells. Food Chem Toxicol 2024; 193:114961. [PMID: 39197522 DOI: 10.1016/j.fct.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
The current work aimed to elucidate the potential applications of the carbonaceous gels and assess the in vitro cytotoxicity of these gels when suspended in a culture medium and exposed to bone marrow mesenchymal stem cells. Cellular viability, cell cycle distribution, apoptotic cell death, and mitochondrial membrane potential in bone marrow mesenchymal stem cells co-incubated with different concentrations of carbonaceous gels (0.1, 1, 10, 50, and 100 μg/mL) were evaluated. Flow cytometry and immunofluorescence were used to investigate apoptosis and cell cycle distribution. The expression of associated apoptotic proteins was analysed using Western Blot. Although the co-incubation of carbonaceous gels did not significantly affect cell viability, high dosages (100 μg/mL) of these gels led to cellular dysfunction. Specifically, cells exposed to high concentrations of these gels exhibited G2-phase arrest and increased levels of reactive oxygen species. However, the reported impacts did not cause considerable cell death. At the same time, carbonaceous gels did not significantly induce apoptosis. Compared to other carbon nanomaterials, carbonaceous gels' biotoxicity was relatively low, suggesting their potential for various biological applications. Nonetheless, caution should be exercised when considering the concentration of carbonaceous gels for future medical applications.
Collapse
Affiliation(s)
- Kaixuan Li
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Peng Ge
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xi-Lin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
Awad MG, Hanafy NAN, Ali RA, Abd El-Monem DD, El-Shafiey SH, El-Magd MA. Exploring the therapeutic applications of nano-therapy of encapsulated cisplatin and anthocyanin-loaded multiwalled carbon nanotubes coated with chitosan-conjugated folic acid in targeting breast and liver cancers. Int J Biol Macromol 2024; 280:135854. [PMID: 39307483 DOI: 10.1016/j.ijbiomac.2024.135854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
This study aimed to assess the targeted nano-therapy of encapsulated cisplatin (Cis) and anthocyanin (Ant)-loaded multiwalled carbon nanotubes (CNT) coated with chitosan conjugated folic acid on breast MCF7 and liver HepG2 cancer cells. Zeta potential, UV-spectroscopy, FTIR, TEM, and SEM were used to evaluate CNT, its modified form (CNT Mod), CNT-loaded Cis NPs, CNT-loaded Ant NPs, and CNT- Cis + Ant NPs. All treatments induced apoptosis-dependent cytotoxicity in both cell lines as revealed functionally by the MTT assay, morphologically (DNA degradation) by acridine orange/ethidium bromide (AO/EB) double staining, and molecularly (Bax upregulation and Bcl2 downregulation) by real-time PCR, with best effect for the combined treatment (CNT- Cis + Ant NPs). This combined treatment also significantly reduced inflammation (low TNFα), migration (low MMP9 and high TIMP1), and angiogenesis (low VEGF), while significantly increasing antioxidant status (high Nrf2 and OH-1) in MCF7 and HepG2 cells compared to other treatments. Interestingly, cells treated with CNT Mod exhibited higher cytotoxic, apoptotic, anti-migratory, and anti-angiogenic potentials relative to CNT-treated cells. In conclusion, targeted nano-therapy of encapsulated cisplatin and anthocyanin-loaded carbon nanotubes coated with chitosan conjugated folic acid can efficiently combat breast and liver cancers by sustained release, in addition to its apoptotic, antioxidant, anti-inflammatory, anti-metastatic, and anti-angiogenic effects.
Collapse
Affiliation(s)
- Mai G Awad
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Nemany A N Hanafy
- Group of Bionanotechnology and Molecular Cell Biology, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Ramadan A Ali
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Dalia D Abd El-Monem
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Sara H El-Shafiey
- Zoology Department, Faculty of Women for Arts Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
5
|
Zhang R, Qiu X, He C, Deng R, Huo C, Fang B. From Life's Essential 8 to metabolic syndrome: insights from NHANES database and network pharmacology analysis of quercetin. Front Nutr 2024; 11:1452374. [PMID: 39434897 PMCID: PMC11491958 DOI: 10.3389/fnut.2024.1452374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Metabolic syndrome (MetS), or syndrome X, is a collection of metabolic illnesses that affect the body's health, particularly insulin resistance and obesity. The prevalence of MetS is on the rise, particularly among younger individuals. Quercetin, a natural flavonoid found in many traditional Chinese medicines, can impact various pathways to disrupt the pathological advancement of MetS with few negative effects. The American Heart Association recently introduced a cardiovascular health assessment termed Life's Essential 8 (LE8), which might impact the treatment of MetS. Methods Quercetin targets and their functions in MetS pathways were identified using a network pharmacology method and molecular docking techniques. The study examined quercetin's direct and indirect interactions with proteins linked to the pathogenic processes of MetS. Data were collected regarding the American Heart Association's LE8 cardiovascular health indicators, which include health behaviors (diet, physical activity, nicotine exposure, and sleep) and health factors (body mass index, non-high-density lipoprotein cholesterol, blood glucose, and blood pressure). The study assessed the connection between LE8 and the occurrence of MetS, taking into account dietary quercetin consumption as a variable of interest. Results The negative correlation between MetS and LE8 indicates that individuals with higher LE8 scores are less likely to develop MetS. Individuals in the fully adjusted highest group (LE8 ≥ 80) demonstrated a 79% lower likelihood of developing MetS than those in the lowest group (OR = 0.21; 95% CI, 0.17-0.26, p < 0.0001). Network pharmacology and molecular docking results show that quercetin may exert its therapeutic effects by modulating various biological response processes, including those related to xenobiotic stimuli, bacterial molecules, lipopolysaccharides, and oxidative stimuli. These processes involve key pathways associated with diabetic complications, such as the AGE-RAGE signaling pathway, pathways related to diabetic complications, and pathways involved in lipids and atherosclerosis. Therefore, quercetin may reduce cardiovascular risk, improve glucose-lipid metabolism, and alleviate insulin resistance and other biological processes by influencing multiple aspects of the lipid profile, blood glucose, and insulin resistance, ultimately impacting the links between LE8 score and MetS. Conclusion This study discovered that an optimal LE8 score is a marker of adopting a lifestyle of wellness and is connected with a reduced likelihood of developing MetS. Quercetin acts on core targets such as IL6, BCL2, TP53, IL1B, MAPK1, and CCL2, and then plays a therapeutic role in regulating lipid metabolism, anti-inflammation, immunomodulation, autophagy, etc., through the pathways of diabetic complications, lipids, atherosclerosis, etc., and has the characteristics of multi-targets, multi-pathways, and multi-functions in regulating interventions for MetS.
Collapse
Affiliation(s)
- Runze Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiuxiu Qiu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenming He
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rou Deng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenxing Huo
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Susilawati E, Levita J, Susilawati Y, Sumiwi SA. Erythrina subumbrans (Hassk) Merr. (Fabaceae) Inhibits Insulin Resistance in the Adipose Tissue of High Fructose-Induced Wistar Rats. Drug Des Devel Ther 2024; 18:3825-3839. [PMID: 39219697 PMCID: PMC11365492 DOI: 10.2147/dddt.s472660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background The twigs and roots of Erythrina subumbrans (Hassk). Merr. Was reported to possess antidiabetic activity by reducing the activity of α-glucosidase and α-amylase. TNF-α is a pro-inflammatory cytokine in obesity and diabetes mellitus (DM). It inhibits the action of insulin, causing insulin resistance. Adiponectin is an anti-inflammatory peptide synthesized in white adipose tissue (WAT) and its high levels are linked with a decreased risk of DM. However, information about the effect of Erythrina subumbrans (Hassk). Merr. on insulin resistance are still lacking. Purpose To obtain the effects of the ethanol extract of E. subumbrans (Hassk) Merr. leaves (EES) in improving insulin resistance conditions. Methods The leaves were collected at Ciamis, West Java, Indonesia, and were extracted using ethanol 96%. The effects of EES were studied in fructose-induced adult male Wistar rats by performing the insulin tolerance test (ITT) and assessing blood glucose, TNF-α, adiponectin, and FFA levels. The number of WAT and BAT of the adipose tissues was also studied. The total phenols and flavonoids in EES were determined by the spectrophotometric method and the presence of quercetin in EES was analyzed using the LC-MS method. Results EES significantly reduced % weight gain, TNF-α levels, and increased adiponectin levels in fructose-induced Wistar rats. EES significantly reduced the FFA levels of fructose-induced Wistar rats and significantly affected the formation of BAT similar to that of metformin. All rats in EES and metformin groups improved insulin resistance as proven by higher ITT values (3.01 ± 0.91 for EES 100 mg/kg BW; 3.01 ± 1.22 for EES 200 mg/kg BW; 5.86 ± 3.13 for EES 400 mg/kg BW; and 6.44 ± 2.58 for metformin) compared with the fructose-induced group without treatment (ITT = 2.62 ± 1.38). EES contains polyphenol compounds (2.7638 ± 0.0430 mg GAE/g extract), flavonoids (1.9626 ± 0.0152 mg QE/g extract), and quercetin 0.246 µg/mL at m/z 301.4744. Conclusion Erythrina subumbrans (Hassk). Merr. extract may have the potential to be further explored for its activity in improving insulin resistance conditions. However, further studies are needed to confirm its role in alleviating metabolic disorders.
Collapse
Affiliation(s)
- Elis Susilawati
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
- Faculty of Pharmacy, Bhakti Kencana University, Bandung, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Yasmiwar Susilawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| |
Collapse
|
7
|
Silva BTDA, Martins-Perles JVC, Bossolani GDP, Lima MM, Sehaber-Sierakowski CC, Gremaschi LB, Cunha JPSE, Bersani-Amado CA, Zanoni JN. Quercetin and ibuprofen combination displayed anti-inflammatory effects and also extenuates the enteric neurons damage of arthritic rats. AN ACAD BRAS CIENC 2024; 96:e20230244. [PMID: 39140520 DOI: 10.1590/0001-3765202420230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2024] [Indexed: 08/15/2024] Open
Abstract
This study aimed to investigate the antioxidant and anti-inflammatory properties of quercetin on the cellular components of the Enteric Nervous System in the ileum of rats with arthritis. Rats were distributed into five groups: control (C), arthritic (AIA), arthritic treated with ibuprofen (AI), arthritic treated with quercetin (AQ) and arthritic treated with both ibuprofen and quercetin (AIQ). The ileum was processed for immunohistochemical techniques for HuC/D, calcitonin gene-related peptide, and vasoactive intestinal polypeptide. Measurements in histological sections, chemiluminescence assays, and total antioxidant capacity were also performed. Rheumatoid arthritis resulted in a decrease in neuronal density, yet neuroplasticity mechanisms were evident through observed changes in varicosities size and neuronal area compared to the control group. Reduced paw edema and neuroprotective effects were predominantly noted in both plexuses, as evidenced by the increased density preservation of HuC/D-IR neurons in the AIQ group. The increase of lipoperoxidation levels and paw edema volume in the AQ group was observed compared to the arthritic, whereas the AIQ group mainly showed similar results to those observed in the control. The enteropathy associated with arthritis proved to be significant in the field of gastroenterology, and the combination of quercetin and ibuprofen demonstrated promising anti-inflammatory and neuroprotective effects.
Collapse
Affiliation(s)
- Bruna Thais DA Silva
- Universidade Estadual de Maringá, Departamento de Biologia, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | | | - Gleison Daion P Bossolani
- Universidade Estadual de Maringá, Departamento de Farmácia, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Mariana M Lima
- Universidade Estadual de Maringá, Departamento de Farmácia, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Camila C Sehaber-Sierakowski
- Universidade Estadual de Maringá, Departamento de Farmácia, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Lucas B Gremaschi
- Universidade Estadual de Maringá, Departamento de Medicina, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - João Paulo Silveira E Cunha
- Universidade Estadual de Maringá, Departamento de Ciências, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Ciomar A Bersani-Amado
- Universidade Estadual de Maringá, Departamento de Farmacologia e Terapêutica, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Jacqueline N Zanoni
- Universidade Estadual de Maringá, Departamento de Ciências, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
8
|
del Giudice G, Serra A, Pavel A, Torres Maia M, Saarimäki LA, Fratello M, Federico A, Alenius H, Fadeel B, Greco D. A Network Toxicology Approach for Mechanistic Modelling of Nanomaterial Hazard and Adverse Outcomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400389. [PMID: 38923832 PMCID: PMC11348149 DOI: 10.1002/advs.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Indexed: 06/28/2024]
Abstract
Hazard assessment is the first step in evaluating the potential adverse effects of chemicals. Traditionally, toxicological assessment has focused on the exposure, overlooking the impact of the exposed system on the observed toxicity. However, systems toxicology emphasizes how system properties significantly contribute to the observed response. Hence, systems theory states that interactions store more information than individual elements, leading to the adoption of network based models to represent complex systems in many fields of life sciences. Here, they develop a network-based approach to characterize toxicological responses in the context of a biological system, inferring biological system specific networks. They directly link molecular alterations to the adverse outcome pathway (AOP) framework, establishing direct connections between omics data and toxicologically relevant phenotypic events. They apply this framework to a dataset including 31 engineered nanomaterials with different physicochemical properties in two different in vitro and one in vivo models and demonstrate how the biological system is the driving force of the observed response. This work highlights the potential of network-based methods to significantly improve their understanding of toxicological mechanisms from a systems biology perspective and provides relevant considerations and future data-driven approaches for the hazard assessment of nanomaterials and other advanced materials.
Collapse
Affiliation(s)
- Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
| | - Angela Serra
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
- Tampere Institute for Advanced StudyTampere UniversityTampere33100Finland
| | - Alisa Pavel
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Marcella Torres Maia
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
| | - Michele Fratello
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Antonio Federico
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
- Tampere Institute for Advanced StudyTampere UniversityTampere33100Finland
| | - Harri Alenius
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Bengt Fadeel
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
- Tampere Institute for Advanced StudyTampere UniversityTampere33100Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| |
Collapse
|
9
|
Abass SA, Elgazar AA, El-kholy SS, El-Refaiy AI, Nawaya RA, Bhat MA, Farrag FA, Hamdi A, Balaha M, El-Magd MA. Unraveling the Nephroprotective Potential of Papaverine against Cisplatin Toxicity through Mitigating Oxidative Stress and Inflammation: Insights from In Silico, In Vitro, and In Vivo Investigations. Molecules 2024; 29:1927. [PMID: 38731418 PMCID: PMC11085772 DOI: 10.3390/molecules29091927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Cisplatin is a potent compound in anti-tumor chemotherapy; however, its clinical utility is hampered by dose-limiting nephrotoxicity. This study investigated whether papaverine could mitigate cisplatin-induced kidney damage while preserving its chemotherapeutic efficacy. Integrative bioinformatics analysis predicted papaverine modulation of the mechanistic pathways related to cisplatin renal toxicity; notably, mitogen-activated protein kinase 1 (MAPK1) signaling. We validated protective effects in normal kidney cells without interfering with cisplatin cytotoxicity on a cancer cell line. Concurrent in vivo administration of papaverine alongside cisplatin in rats prevented elevations in nephrotoxicity markers, including serum creatinine, blood urea nitrogen, and renal oxidative stress markers (malondialdehyde, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines), as tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). Papaverine also reduced apoptosis markers such as Bcl2 and Bcl-2-associated X protein (Bax) and kidney injury molecule-1 (KIM-1), and histological damage. In addition, it upregulates antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) while boosting anti-inflammatory signaling interleukin-10 (IL-10). These effects were underlined by the ability of Papaverine to downregulate MAPK-1 expression. Overall, these findings show papaverine could protect against cisplatin kidney damage without reducing its cytotoxic activity. Further research would allow the transition of these results to clinical practice.
Collapse
Affiliation(s)
- Shimaa A. Abass
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Sanad S. El-kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Amal I. El-Refaiy
- Department of Agricultural Zoology and Nematology, Faculty of Agriculture (Girls), Al-Azhar University, Cairo 11884, Egypt;
| | - Reem A. Nawaya
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Foad A. Farrag
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Marwa Balaha
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei vestini, 31-66100 Chieti, Italy;
| | - Mohammed A. El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
10
|
Türedi S, Çelik H, Dağlı ŞN, Taşkın S, Şeker U, Deniz M. An Examination of the Effects of Propolis and Quercetin in a Rat Model of Streptozotocin-Induced Diabetic Peripheral Neuropathy. Curr Issues Mol Biol 2024; 46:1955-1974. [PMID: 38534744 DOI: 10.3390/cimb46030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The purpose of this study was to reveal the combined effects of propolis (P) and quercetin (Q) against diabetic peripheral neuropathy developing with streptozotocin-induced diabetes in rats. Sixty-four adult male rats were divided into eight equal groups: control, P (100 mg/kg/day), Q (100 mg/kg/day), P + Q (100 mg/day for both), diabetes mellitus (DM) (single-dose 60 mg/kg streptozotocin), DM + P, DM + Q, and DM + P + Q. The rats were sacrificed, and blood and sciatic nerve tissues were collected. Blood glucose and malondialdehyde (MDA) levels increased, while IL-6 and total antioxidant status decreased in the DM group (p = 0.016 and p = 0.047, respectively). Ultrastructural findings showed degeneration of the axon and myelin sheath. The apoptotic index (AI %), TNF-α, and IL-1β immunopositivity increased significantly in the DM group (p < 0.001). Morphological structures approaching those of the controls were observed in the DM + P, DM + Q, and DM + P + Q groups. Morphometric measurements increased markedly in all treatment groups (p < 0.001), while blood glucose and MDA levels, AI (%), TNF-α, and IL-1β immunopositivity decreased. In conclusion, the combined effects of propolis and quercetin in diabetic neuropathy may provide optimal morphological protection with neuroprotective effects by reducing hyperglycemia, and these may represent a key alternative supplement in regenerative medicine.
Collapse
Affiliation(s)
- Sibel Türedi
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| | - Hakim Çelik
- Department of Physiology, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| | - Şeyda Nur Dağlı
- Department of Physiology, Faculty of Medicine, İstinye University, İstanbul 34000, Turkey
| | - Seyhan Taşkın
- Department of Physiology, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| | - Uğur Şeker
- Department of Histology and Embryology, Faculty of Medicine, Mardin Artuklu University, Mardin 47100, Turkey
| | - Mustafa Deniz
- Department of Anatomy, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| |
Collapse
|
11
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
12
|
Shaban AM, Raslan M, Qahl SH, Elsayed K, Abdelhameed MS, Oyouni AAA, Al-Amer OM, Hammouda O, El-Magd MA. Ameliorative Effects of Camel Milk and Its Exosomes on Diabetic Nephropathy in Rats. MEMBRANES 2022; 12:1060. [PMID: 36363614 PMCID: PMC9697163 DOI: 10.3390/membranes12111060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Contradictory results were obtained regarding the effects of extracellular vesicles such as exosomes (EXOs) on diabetes and diabetic nephropathy (DN). Some studies showed that EXOs, including milk EXOs, were involved in the pathogenesis of DN, whereas other studies revealed ameliorative effects. Compared to other animals, camel milk had unique components that lower blood glucose levels. However, little is known regarding the effect of camel milk and its EXOs on DN. Thus, the present study was conducted to evaluate this effect on a rat model of DN induced by streptozotocin. Treatment with camel milk and/or its EXOs ameliorated DN as evidenced by (1) reduced levels of kidney function parameters (urea, creatinine, retinol-binding protein (RBP), and urinary proteins), (2) restored redox balance (decreased lipid peroxide malondialdehyde (MDA) and increased the activity of antioxidants enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)), (3) downregulated expression of DN-related genes (transforming growth factor-beta 1 (TGFβ1), intercellular adhesion molecules 1 (ICAM1), and transformation specific 1 (ETS1), integrin subunit beta 2 (ITGβ2), tissue inhibitors of matrix metalloproteinase 2 (TIMP2), and kidney injury molecule-1 (KIM1)), and (4) decreased renal damage histological score. These results concluded that the treatment with camel milk and/or its EXOs could ameliorate DN with a better effect for the combined therapy.
Collapse
Affiliation(s)
- Amira M. Shaban
- Biotechnology & Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mai Raslan
- Biotechnology & Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Khaled Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed Sayed Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Osama M. Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Ola Hammouda
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohammed A. El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh 33516, Egypt
| |
Collapse
|
13
|
Parsaei M, Akhbari K. Smart Multifunctional UiO-66 Metal-Organic Framework Nanoparticles with Outstanding Drug-Loading/Release Potential for the Targeted Delivery of Quercetin. Inorg Chem 2022; 61:14528-14543. [PMID: 36074039 DOI: 10.1021/acs.inorgchem.2c00743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, UiO-66 and its two functional analogs (with -NO2 and -NH2 functional groups) were synthesized, and their potential ability as pH stimulus nanocarriers of quercetin (QU), an anticancer agent, was studied. UiO-66 is a low-toxicity, biocompatible metal-organic framework with a large surface area and good stability, which can be prepared through a facile and inexpensive method. Before and after drug loading, various analyses were conducted to characterize the synthesized nanocarriers. Moreover, Monte Carlo simulations were performed to investigate their structures and interactions with quercetin. The most promising drug loading potential and prolonged drug release (over 25 days) were observed in QU@UiO-66-NO2 with 37% drug loading content, which was the best-tested sample that exhibited a higher release rate under acidic conditions (pH = 5) than that in normal cells (pH = 7.4). This behavior is known as pH-stimulus-controlled ability. The cell treatment with free QU, UiO-66-R, and QU@UiO-66-R (R = -H, -NO2, and -NH2) was performed, and an MTT assay was conducted on HEK-293 and MDA-MB-231 cells for the cytotoxicity study. Additionally, the kinetic modeling of drug release was investigated on the basis of the analysis of the drug release profiles.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
14
|
Quercetin alleviated multi-walled carbon nanotubes-induced neurotoxicity in mice through inhibition of oxidation, inflammation, and pyroptosis. Biomed Pharmacother 2022; 151:113160. [PMID: 35605300 DOI: 10.1016/j.biopha.2022.113160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Recently, we reported that quercetin (Que) could alleviate immunotoxicity induced by pristine multi-walled carbon nanotubes (MWCNTs) in mice. In the present study, we explored whether Que could also relieve MWCNTs-induced neurotoxicity. MWCNTs injection induced a dose-dependent neurotoxic effect in mice as evidenced by increased oxidative stress, inflammation, and pyroptosis in the brain. However, treatment with Que ameliorated MWCNTs-induced neurotoxicity as revealed by 1) elevated acetylcholinesterase (AChE) activity, 2) reduced lipid peroxidation biomarker malondialdehyde (MDA), 3) improved antioxidant status as indicated by increased levels of reduced glutathione (GSH) and activities of superoxide dismutase (SOD), catalase (CAT), as well as upregulated expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) genes, 4) decreased levels and expression of inflammatory biomarkers [nitric oxide (NO), interleukin 1 beta (IL1ß), tumor necrosis factor-alpha (TNFα), and nuclear factor kappa B (NF-κB)], 5) downregulated expression of pyroptosis-related genes [nod-like receptor protein inflammasome 3 (Nlrp3) and caspase 1 (Casp1)] but with no effect on the apoptotic Casp3 gene, 6) minimized axonal degeneration and number of microglia in the cerebral medulla, and 7) diminished the number of degenerated neurons in hippocampus and cerebellum. Taken together, Que could ameliorate MWCNT-induced neurotoxicity through antioxidant, anti-inflammatory, and anti-pyroptotic mechanisms.
Collapse
|