1
|
Gafforov Y, Bekić S, Yarasheva M, Mišković J, Živanović N, Chen JJ, Petri E, Abdullaev B, Rapior S, Lim YW, Abdullaev I, Abbasi AM, Ghosh S, Wan-Mohtar WAAQI, Rašeta M. Bioactivity profiling of Sanghuangporus lonicerinus: antioxidant, hypoglycaemic, and anticancer potential via in-vitro and in-silico approaches. J Enzyme Inhib Med Chem 2025; 40:2461185. [PMID: 39992291 PMCID: PMC11852365 DOI: 10.1080/14756366.2025.2461185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
This study investigates the mycochemical profile and biological activities of hydroethanolic (EtOH), chloroform (CHCl3), and hot water (H2O) extracts of Sanghuangporus lonicerinus from Uzbekistan. Antioxidant capacity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), NO, and FRAP assays, and in vitro hypoglycaemic effects were evaluated through α-amylase and α-glucosidase inhibition. Antiproliferative potential was explored by analysing the binding affinities of EtOH and H2O extracts to estrogen receptor α (ERα), ERβ, androgen receptor (AR), and glucocorticoid receptor (GR), with molecular docking providing structural insights. LC-MS/MS analysis revealed solvent-dependent phenolic profiles, with the EtOH extract containing the highest total phenolic content (143.15 ± 6.70 mg GAE/g d.w.) and the best antioxidant capacity. The EtOH extract showed significant hypoglycaemic effects, with 85.29 ± 5.58% inhibition of α-glucosidase and 41.21 ± 0.79% inhibition of α-amylase. Moderate ERβ binding suggests potential for estrogen-mediated cancer therapy, while strong AKR1C3 inhibition by the EtOH extract supports its therapeutic potential.
Collapse
Affiliation(s)
- Yusufjon Gafforov
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Sofija Bekić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Manzura Yarasheva
- Microbiology Laboratory, Navruz International Corp. LLC, Kibray, Uzbekistan
| | - Jovana Mišković
- Department of Biology and Ecology, Faculty of Sciences, ProFungi Laboratory, University of Novi Sad, Novi Sad, Serbia
| | - Nemanja Živanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jia Jia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Bekhzod Abdullaev
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
| | - Sylvie Rapior
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, Montpellier, France
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, Montpellier, France
| | - Young Won Lim
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Republic of Korea
| | | | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Soumya Ghosh
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
- Department of Biology and Ecology, Faculty of Sciences, ProFungi Laboratory, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
2
|
Mekawy AAI, Alqhtani AH, Ali A, Yosri M. In vitro detection of antimicrobial impact, organic acids production and phytochemical screening of Musa acuminata wastes after treatment with fungi. BRAZ J BIOL 2025; 85:e288774. [PMID: 40136116 DOI: 10.1590/1519-6984.288774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/15/2025] [Indexed: 03/27/2025] Open
Abstract
The current study was performed to evaluate the bioactivity of banana wastes against some bacterial and fungal isolates, organic acids production, antioxidant and to screen the phytochemicals were present in Musa acuminate (M. acuminate) wastes. The waste was processed by some microbial species. The organic acids were evaluated in the yield using HPLC. Antioxidant impact of the yield was tested by DPPH assay. Qualitative analysis for phytochemicals were done after each treatment. M. acuminate (Banana) extracts showed moderate effect against the growth of tested microorganisms while this effect became much better after treated with fungal species (Fusarium moniliform; Rhizopus stolonifer; Aspergillus parasiticus; Alternaria alternate; Penicillium expansum and Aspergillus flavus). The MIC ranging from 6.25 to 100 mg/ml, MBC and MFC ranging from 3.125 to 250 mg/ml. Citric acid was the most produced organic acid obtained from banana wastes and highly increased after treatment with fungal isolates used. The antioxidant potential of M. acuminata leaves and pseudostem wastes enhanced after treatment with fungal extracts relative to butylated hydroxytoluene (BHT). Phytochemical screening confirmed the presence of active compounds like glycosides, tannins, saponnins, phenols, steroids and flavonoids in the M. acuminate extracts. The treated banana wastes using fungi could be used as a source of in citric acid production, antioxidant source and other chemical production to be applied in many applications.
Collapse
Affiliation(s)
- A A I Mekawy
- Al-Azhar University, The Regional Center for Mycology and Biotechnology, Nasr City, Cairo, Egypt
| | - A H Alqhtani
- King Saud University, Food and Agriculture Sciences College, Animal Production Department, Riyadh, Saudi Arabia
| | - A Ali
- Clemson University, Department of Animal and Veterinary Sciences, Clemson, South Carolina, United States of America
| | - M Yosri
- Al-Azhar University, The Regional Center for Mycology and Biotechnology, Nasr City, Cairo, Egypt
| |
Collapse
|
3
|
Addy BS, Firempong CK, Komlaga G, Addo-Fordjour P, Domfeh SA, Afolayan OD, Yaw Nyarko EN, Emikpe BO. A bioactive fraction from the leaves of Ceiba pentandra (L.) Gaertn. exhibits antiproliferative activity via cell cycle arrest at the G1/S checkpoint and initiation of apoptosis via poly [ADP-ribose] polymerase 1 (PARP1) cleavage in HeLa cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119363. [PMID: 39814326 DOI: 10.1016/j.jep.2025.119363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ceibapentandra (L.) Gaertn. (Malvaceae) has been used in Africa traditionally to manage a variety of illnesses, including cancer. The hydroethanolic extract of the leaves of C. pentandra has been shown to possess antiproliferative activity. However, the fractionation of antiproliferative bioactive constituents from the leaves of C. pentandra and the determination of the mechanisms of action of such bioactive constituents remain unexplored. AIM OF THE STUDY This work sought to fractionate the extract of C. pentandra leaves, establish the antiproliferative activity of the fractionated constituents, and determine the active constituents' possible mechanisms of action. MATERIAL AND METHODS Chromatographic techniques were used to fractionate bioactive constituents from C. pentandra leaves. The fractionated constituents were evaluated for their antiproliferative activity against four cancer cell lines (viz hepatocellular carcinoma, colorectal adenocarcinoma, cervical carcinoma, and mammary adenocarcinoma) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT)-based assay. The possible mechanisms of action of the active constituent, Fraction A (IsoA), were also determined via western blot analysis. RESULTS Six constituents were fractionated from the leaves of C. pentandra. Among the six constituents, IsoA stood out for its remarkable antiproliferative activity across the four cancer cell lines, with hepatocellular carcinoma (HepG2) cells being the most affected. With half-maximal inhibitory concentration (IC50) values ranging from 6.4±1.2 μg/mL to 19.2±3.4 μg/mL, IsoA demonstrated great potential in inhibiting cancer cell proliferation. Notably, IsoA's mechanisms of action involve critical molecular targets associated with cell cycle regulation and apoptosis. It significantly increased the levels of phosphorylated cyclin-dependent kinase 2 (Cdk2 pTyr15), a key regulator of cell cycle arrest, and cleaved poly [ADP-ribose] polymerase 1 (PARP1), a hallmark of apoptosis initiation. These findings underscore the therapeutic potential of IsoA in cancer treatment. CONCLUSIONS IsoA demonstrated highly promising in vitro antiproliferative activity by effectively arresting the cell cycle at the G1/S checkpoint, halting cancer cell proliferation. Additionally, IsoA induced programmed cell death (apoptosis) through mechanisms such as PARP1 cleavage, highlighting its potential as a candidate for cancer therapy.
Collapse
Affiliation(s)
- Bright Selorm Addy
- Department of Biochemistry and Biotechnology, College of Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana; Department of Pharmaceutical Sciences, School of Pharmacy, Central University, Accra, Ghana.
| | - Caleb Kesse Firempong
- Department of Biochemistry and Biotechnology, College of Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Gustav Komlaga
- Department of Pharmacognosy, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Patrick Addo-Fordjour
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Seth Agyei Domfeh
- Department of Biochemistry and Biotechnology, College of Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Oluwatomisin Deborah Afolayan
- Department of Biochemistry and Biotechnology, College of Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Eric Nana Yaw Nyarko
- Department of Chemical Pathology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Benjamin Obukowho Emikpe
- Department of Veterinary Pathology, School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
4
|
Zamani K, Fakhri S, Kiani A, Abbaszadeh F, Farzaei MH. Rutin engages opioid/benzodiazepine receptors towards anti-neuropathic potential in a rat model of chronic constriction injury: relevance to its antioxidant and anti-inflammatory effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03842-4. [PMID: 39912904 DOI: 10.1007/s00210-025-03842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Neuropathic pain is a chronic type of pain caused by damage or dysfunction in the nervous system. It can be quite bothersome and often doesn't well respond to common painkillers. Among natural compounds, rutin (Rut) stands out for its remarkable antioxidant, and anti-inflammatory properties. In this research, our objective is to investigate the impact of Rut on an animal model of chronic constriction injury (CCI). A total of 54 adult Wistar rats were divided randomly into nine separate groups. Groups included sham, CCI, gabapentin (GBP, 100 mg/kg), Rut (10, 25 mg/kg), flumazenil (FLU, 0.5 mg/kg), naloxone (NAL, 0.1 mg/kg), Rut (10 mg/kg) + FLU (0.5 mg/kg), and Rut (10 mg/kg) + NAL (0.1 mg/kg). The aforementioned drug injection (intraperitoneal, i.p.) and sensorimotor behavioral tests were performed on days 1, 3, 5, 7, 9, 11, and 14. Biochemical (e.g., nitrite, catalase, glutathione), zymography (matrix-metalloproteinase 2 and 9), and histopathological tests were performed on day 14 after surgery. The findings demonstrated that Rut administration effectively alleviated symptoms of allodynia/hyperalgesia, and improved locomotor activity following CCI. Additionally, Rut administration resulted in increased catalase and glutathione activity, while reducing serum nitrite levels, as well as matrix metalloproteinase 2 and 9 activity. Additionally, histological results indicated that Rut improved sciatic nerve regeneration. Since the aforementioned effects of Rut were reversed by using opioid and benzodiazepine receptor antagonists (i.e., NAL and FLU, respectively), the receptors' involvement was revealed in the anti-neuropathic effects of Rut. In conclusion, Rut emerged as a potentially effective candidate for treating neuropathic pain and improving motor function by increasing antioxidant mediators, suppressing inflammation, and activating opioid/benzodiazepine receptors.
Collapse
Affiliation(s)
- Kimia Zamani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Amir Kiani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Regenerative Medicine Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| |
Collapse
|
5
|
Alfinaikh RS, Alamry KA, Hussein MA. Sustainable and biocompatible hybrid materials-based sulfated polysaccharides for biomedical applications: a review. RSC Adv 2025; 15:4708-4767. [PMID: 39958265 PMCID: PMC11826415 DOI: 10.1039/d4ra07277d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/26/2025] [Indexed: 02/18/2025] Open
Abstract
Sustainable biomaterials that are both efficient and environmentally friendly are the subject of research and development efforts among scientists and academics from a variety of contemporary scientific disciplines. Due to their significant involvement in several physiological and pathological processes, sulfated polysaccharides (SPs) have garnered growing interest across various application domains, including biomedicine. Nevertheless, mechanical and thermal stability are issues for unmodified polysaccharide materials. Interactions between polymers, such as the mixing of biopolymers with synthetic or biopolymers through chemical interaction or grafting into the main chain structure of raw materials to enhance their therapeutic effects, are essential to meet the high standards of biomedical features. Another way to improve the mechanical and thermal properties is to graft appropriate fillers onto the polysaccharide backbone. The characteristics of polysaccharide bio-nanocomposites in comparison to more traditional polymers have attracted a lot of interest. With an emphasis on anti-inflammatory, anticancer, antiviral, immunoregulatory, and anticoagulant properties, this review delves into the most recent biological uses of sulfated polysaccharides. As well as thoroughly outlining the factors that impact the biological properties, such as the extraction process, molecular weight (Mw), the degree of sulfation, distribution/position, modification procedures, and the filler size, etc., this review aims to: (1) provide a systematic and critical overview of the cutting-edge research on SPs and hybrid sulfated polysaccharide bio-nanocomposites; (2) identify the key factors, mechanisms, methods, and challenges impacting SPs bio-nanocomposites; (3) elucidate the current and potential biomedical applications, advantages, manufacturing challenges, and opportunities associated with SPs bio-nanocomposites; (4) offer insights into future research directions by suggesting improvements for bio-nanocomposites, including novel materials, and advanced processing techniques.
Collapse
Affiliation(s)
- Reem S Alfinaikh
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
6
|
Lazopoulos G, Matsia S, Maroulis M, Salifoglou A. Cornus mas L. Extracts Exhibit Neuroprotective Properties, Further Enhanced by Metal-Bound Energy-Linked Organic Substrates. Int J Mol Sci 2025; 26:1159. [PMID: 39940927 PMCID: PMC11817807 DOI: 10.3390/ijms26031159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Neurodegenerative diseases have been increasingly plaguing the global population, with attempts to understand their etiopathogenesis and pursue therapeutics being at the forefront of multidisciplinary efforts. To that end, research was launched in our lab, based on natural products and bioessential metal ion complex forms to peruse their antioxidant and neuroprotective potential at the cellular level. To that end, the bioactivity profile of optimized Cornus mas L. extracts and supplemented mixtures thereof with soluble-bioavailable well-characterized hybrid materials, Zn(II)-Cit and V(IV)-Cit, was investigated. In vitro experiments on sensitive brain tissue cell lines (N2a58, SH-SY5Y) showed that the extracts and the metal complexes were atoxic (morphology, proliferation, chemotacticity) in a concentration-dependent manner. Subsequently, the antioxidant potential of all materials was examined, with H2O2 as the oxidizing agent, thereby revealing through viability and reactive oxygen species (ROS) visualization significant antioxidant activity, while specific genes (NFE2L2, Hmox1, GCLM) were crucial in divulging mechanistic aspects of the antioxidation. Concurrently, the anti-inflammatory activity was evaluated through gene expression (TNF-a, IL-6), with Zn(II) bioavailability projecting intracellular levels linked to the observed sustainable activity. The collective bioactivity profile of the extracts and Zn(II)-Cit reveals significant neuroprotective properties, thereby meriting development of new naturally-based neutraceuticals that proactively avert neuropathological aberrations.
Collapse
Affiliation(s)
| | | | | | - Athanasios Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.L.); (S.M.); (M.M.)
| |
Collapse
|
7
|
Shang Z, Sharma V, Pai L, Kumar T, Patil S. Optimizing the production and efficacy of antimicrobial bioactive compounds from Streptomyces kanamyceticus in combating multi-drug-resistant pathogens. Front Cell Infect Microbiol 2025; 14:1500440. [PMID: 39835274 PMCID: PMC11743287 DOI: 10.3389/fcimb.2024.1500440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Background The rise of antibiotic-resistant pathogens has intensified the search for novel antimicrobial agents. This study aimed to isolate Streptomyces kanamyceticus from local soil samples and evaluate its antimicrobial properties, along with optimizing the production of bioactive compounds. Methods Soil samples were collected from local regions, processed, and analysed for Streptomyces strains isolation using morphological characteristics and molecular identification through 16S rRNA gene PCR assay. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Candida albicans using the double-layer method, while Minimum Inhibitory Concentration (MIC) values were determined. The extracted compounds underwent Fourier Transform Infrared Spectroscopy (FTIR) analysis for functional group identification. Optimization of bioactive compound production was performed using a Central Composite Design (CCD) coupled with Partial Least Squares Regression (PLSR). Results A total of 25 distinct Streptomyces strains were isolated, with seven confirmed as S. kanamyceticus. These strains exhibited antimicrobial activity, with inhibition zones reaching 30 mm and MIC values between 20 and 70 µg/mL. The extraction yielded 150-200 mL of bioactive compounds. Optimization studies revealed that a medium containing 10 g/L glucose and 10 g/L glycine max meal maximized antibiotic production. Conclusion This study confirmed that S. kanamyceticus is a promising source of novel antibiotics. The combination of microbial isolation, antimicrobial testing, and statistical optimization successfully enhanced the production of bioactive compounds, contributing to the search for effective antimicrobial agents against resistant pathogens.
Collapse
Affiliation(s)
- Zifang Shang
- Guangdong Engineering Technological Research Centre of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou Academy of Medical Sciences, Meizhou People’s Hospital (Huangtang Hospital), Meizhou, China
| | - Vipasha Sharma
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Liu Pai
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Tarun Kumar
- Mkelly Biotech Pvt Ltd., Mohali, Punjab, India
| | - Sandip Patil
- Mkelly Biotech Pvt Ltd., Mohali, Punjab, India
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
8
|
Herrera-Pool E, Ramos-Díaz AL, Padilla de la Rosa JD, García-Cruz U, Lizardi-Jiménez MA, Ayora-Talavera T, Cuevas-Bernardino JC, Pacheco N. UPLC-PDA-ESI-MS based chemometric analysis for solvent polarity effect evaluation on phytochemical compounds and antioxidant activity in habanero pepper (Capsicum chinense Jacq) fruit extract. J Food Sci 2025; 90:e17630. [PMID: 39731723 DOI: 10.1111/1750-3841.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
The effect of solvents with different polarities on the recovery of phytochemicals (carotenoids, capsaicinoids, and phenolic compounds) from habanero pepper (Capsicum chinense) and their association with antioxidant activity (ABTS•+ and DPPH) was evaluated through Ultra-Performance-Liquid Chromatography coupled with a Photodiode Array Detector and a Electrospray Ionization Mass Spectrometry (UPLC-PDA-ESI-MS)-based chemometric analysis, including linear correlation, multiple linear regression, and principal component analysis (PCA). The solvent polarity scale was established according to solvent dielectric constants (ɛ). Color variation (ΔE) was used to determine the presence of carotenoids, with the highest ΔE obtained using low-polarity solvents (hexane and ethyl acetate). A high content of capsaicin and dihydrocapsaicin was recovered with acetone (4.29 and 3.76 mg g⁻¹ dry weight, respectively). Phenolic compounds such as N-caffeoyl putrescine and derivatives of luteolin and apigenin were identified through mass spectrometry. A high recovery (26.54-31.74 mg GAE g⁻¹ dry weight) of these compounds was obtained using intermediate-polarity solvents. The PCA revealed clustering of solvents based on their affinity for extracting specific compounds and their association with antioxidant activity. A significant correlation was observed between ΔE and DPPH, indicating that carotenoid pigments exhibited higher DPPH radical inhibition capacity than other compounds. Total phenolic content (TPC) and phenolic compounds (phenolpolyamides, hydroxycinnamic acids, and hydroxybenzoic acids) were clustered with the ABTS•+ radical inhibition assay. The information obtained is crucial for selecting suitable solvents in the extraction and purification protocols of bioactive compounds. It is also valuable for conducting plant metabolomic analyses and for studies focused on determining the effects of bioactive compounds in food, pharmaceutical, and cosmeceutical applications. PRACTICAL APPLICATION: The results describe the characteristics of the extracts obtained using different solvents. Therefore, the information may be useful for establishing extraction protocols for phytochemical compounds in fruits from Capsicum chinense for various purposes, such as metabolomic analysis, the recovery of specific compounds with antioxidant activity, and food applications.
Collapse
Affiliation(s)
- Emanuel Herrera-Pool
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico
| | - Ana Luisa Ramos-Díaz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico
| | - José Daniel Padilla de la Rosa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Unidad Zapopan, Av Normalistas Colinas de la Normal, Guadalajara, Jalisco, Mexico
| | - Ulises García-Cruz
- Escuela Nacional de Estudios Superiores, Unidad Mérida, UNAM, Yucatán, Mexico
| | | | - Teresa Ayora-Talavera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico
| | - Juan C Cuevas-Bernardino
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral 31264 Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico
| | - Neith Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico
| |
Collapse
|
9
|
Sood A, Kulharia M. Inhibition of IRF3-STING axis interaction in silicosis using natural compounds: an in-silico study using molecular docking, ADMET, molecular dynamics and MMPBSA approach. In Silico Pharmacol 2024; 13:1. [PMID: 39659978 PMCID: PMC11625707 DOI: 10.1007/s40203-024-00290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024] Open
Abstract
Silicosis is a chronic occupational lung disease characterized by persistent inflammation driven by the activation of the cGAS-STING pathway, leading to the downstream activation of IRF3. To develop a natural compound library of COCONUT database for this investigation, Lipinski's rule of five was used and we explored the potential of these compounds to disrupt the IRF3-STING interaction, thereby mitigating the inflammatory response. Molecular docking and molecular dynamics (MD) simulations were employed to assess the binding stability and interaction dynamics of these compounds with IRF3. The stable RMSD values indicate that the protein-ligand complexes maintained structural integrity throughout the simulation period. The compounds also demonstrated drug-like characteristics, a promising safety profile, and formed stable complexes with the target protein. Further, decomposition of binding free energy highlighted the key contributions of IRF3 residues VAL295, ASP308, PRO324, and ARG338 interacting with the selected compounds, potentially inhibiting the IRF3-STING interaction. The origin of the selected compounds was determined using ClassyFire, classifying compound CNP0310627 as a burfenolide and compound CNP0200121 as a psoralen. Both classes are recognized for their anti-inflammatory properties, reinforcing the therapeutic potential of these compounds in reducing inflammation associated with silicosis. Our findings suggest that these compounds could serve as promising candidates for further investigation in the development of anti-inflammatory therapeutic molecules in the cGAS-STING-IRF3 signaling pathway. However, to fully assess the therapeutic potential of these compounds, further in vitro and in vivo studies are required to validate their efficacy and safety in modulating the STING-IRF3 pathway. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00290-5.
Collapse
Affiliation(s)
- Ashita Sood
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dadroli, India
| | - Mahesh Kulharia
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dadroli, India
| |
Collapse
|
10
|
Jung DM, Lee S, Kim EM, Choi CW, Kim KK. Mangiferin, a component of Mangifera indica leaf extracts, inhibits lipid synthesis in human sebocytes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1489-1501. [PMID: 38952150 DOI: 10.1080/10286020.2024.2369279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Inhibition of lipid synthesis in sebocytes is essential for acne treatments. The effects of natural product-derived substances on lipid synthesis are unknown. This study investigated the effects of water extract of Mangifera indica leaves (WEML) on lipid synthesis in human sebocytes. Sebocyte differentiation in low serum conditions increased lipid accumulation and proliferator-activated receptor γ expression. WEML treatment significantly inhibited lipid accumulation and adipogenic mRNA expression in sebocytes. Mangiferin, a bioactive compound in WEML, also reduced lipid accumulation and adipogenic mRNA expression via the AKT pathway. Thus, WEML and mangiferin effectively inhibit lipid synthesis in sebocytes, showing promise for acne treatment.
Collapse
Affiliation(s)
- Da-Min Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Sangsoo Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Bio and Environmental Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Chong Won Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Cañizares-Carmenate Y, González-Mosquera DM, Perera-Sardiña Y, Hernández-Rodríguez EW, Díaz-Amador R, Castillo-Garit JA, Tuenter E. Natriuretic effect of 4',5-dihydroxy-6,7-methylenedioxyflavonol-3- O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside from Boldoa purpurascens: in silico and in vivo studies. J Biomol Struct Dyn 2024:1-11. [PMID: 39552460 DOI: 10.1080/07391102.2024.2426075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/09/2024] [Indexed: 11/19/2024]
Abstract
Aqueous leaf extracts of Boldoa purpurascens are widely used because of their diuretic, natriuretic, antiurolithiatic, anti-inflammatory and antihypertensive properties. The major component of the extract is the flavonoid 4',5-dihydroxy-6,7-methylenedioxyflavonol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside, but it is not known if this compound is responsible for the biological activity. The objective of this work is to develop effective in silico tools that allow predicting the possible activity of the flavonoid aglycone as an inhibitor of metalloproteases that regulate renal fluid excretion. First, a mathematical ligand-based classification model was developed, using an artificial intelligence and machine learning technique of support vector machines to find the relationship between chemical structure and biological activity. This showed good fit of the statistical parameters with an accuracy greater than 90%, offering a priori information of the flavonoid activity. Subsequently, the flavonoid aglycone was docked to the active site of the enzymes thermolysin (PDB: 6YMS), angiotensin-converting enzyme (PDB: 6TT4) and neprilysin (PDB: 6SUK) using the Extra Precision glide method (Glide-XP), showing conformations with binding energies lower than -5 Kcal/mol. In this study, possible interactions were determined at the catalytic site, where the coordination of negatively charged pharmacophoric groups with the zinc atom of these enzymes is observed. Finally, a preliminary in vivo evaluation was carried out using a diuresis-natriuresis model with sodium quantification in urine which revealed good activity profiles. These results are in correspondence with the ethnopharmacological use of the plant as a diuretic-natriuretic and for the treatment of hypertension.
Collapse
Affiliation(s)
- Yudith Cañizares-Carmenate
- Unit of Computer-Aided Molecular "Biosilico" Discovery and Bioinformatic Research (CAMD-BIR Unit), Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Villa Clara, Cuba
| | - Dulce M González-Mosquera
- Unit of Computer-Aided Molecular "Biosilico" Discovery and Bioinformatic Research (CAMD-BIR Unit), Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Villa Clara, Cuba
| | - Yunier Perera-Sardiña
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Erix W Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Roberto Díaz-Amador
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Juan A Castillo-Garit
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Kedir G, Ayele AG, Shibeshi W. In-vivo evaluation of analgesic and anti-inflammatory activities of the 80% methanol extract of Acacia seyal stem bark in rodent models. J Pharm Health Care Sci 2024; 10:75. [PMID: 39558415 PMCID: PMC11575448 DOI: 10.1186/s40780-024-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Pain and inflammation are the major medical condition commonly addressed with traditional remedies. Acacia seyal is a traditional herb widely used in Ethiopian folk medicine for pain management. However, its effectiveness has yet to be validated through scientific or experimental research. Therefore, the current study aims at evaluating the in vivo analgesic and anti-inflammatory effects of 80% methanolic stem bark extract of Acacia seyal in rodent models. METHODS After successful extractions of the stem barks of Acacia seyal with 80% methanol, the pain relieving effects of 100, 200 and 400 mg/kg extract were evaluated using acetic acid-induced writhing test and hot plate method whereas the anti-inflammatory profile was determined by carrageenan induced paw-edema model and cotton pellet induced granuloma technique. RESULTS The 80% methanol Acacia seyal stem bark extract exhibited substantial (p < 0.001) analgesic effect in acetic acid induced writing test (p < 0.001). The plant extract also witnessed significant central analgesic effect in hot plate method beginning at 30 min with maximum % elongation time occurred at 120 min. Furthermore, the acacia stem bark extract produced anti-inflammatory effect against carrageenan induced paw-edema model. In cotton pellet induced granuloma model, the 200 and 400 mg/kg doses of the current plant material appeared to inhibit granuloma mass formation and exudate reduction significantly (p < 0.001). CONCLUSION The collective findings of the current study revealed that 80% methanol extracts of Acacia seyal exhibited considerable analgesic and anti-inflammatory activities, supporting the plant's traditional use for management of pain and inflammatory disorders.
Collapse
Affiliation(s)
- Gena Kedir
- Department of Pharmacy, College of Health Sciences, Mettu University, Mettu, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University Addis Ababa, PO. Box: 1176, Emial, Ethiopia.
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University Addis Ababa, PO. Box: 1176, Emial, Ethiopia.
| |
Collapse
|
13
|
Królak K, Ścieszka S, Kordialik-Bogacka E, Oracz J, Ditrych M, Szczygieł T, Dybka-Stępień K, Otlewska A, Żyżelewicz D. Antibacterial efficacy of berry juices against Bacillus cereus relative to their phytochemical composition and antioxidant properties. Sci Rep 2024; 14:28298. [PMID: 39550491 PMCID: PMC11569148 DOI: 10.1038/s41598-024-79155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Ensuring the safety and stability of minimally processed foods using natural preservatives is of great scientific and commercial interest in modern biotechnology. Berry juice supplementation is increasingly recognized within this field. This study investigated the effectiveness of juices from four berry species Aronia melanocarpa, Ribes nigrum, Vaccinium macrocarpon, and Sambucus nigra, against the food pathogen Bacillus cereus. Overall, the antibacterial potency of juice supplements (up to 10% v/v in tryptic soy broth) followed the order of chokeberry > blackcurrant > cranberry > elderberry, with the latter showing no inhibitory effects. Notably, chokeberry and elderberry juices presented lower acidity and significantly greater phenolic contents (p < 0.05) than blackcurrant and cranberry juices did, suggesting that B. cereus susceptibility is not strictly dependent upon low extracellular pH or elevated anthocyanin levels. Instead, it is inferred to correlate with pro-oxidative effects induced directly at the intracellular level. Accordingly, this paper discusses the antioxidative, acidic, and lipophilic attributes of juices and their constituent fractions, including anthocyanins, to elucidate their biopreservative potential. The results of this study increase our understanding of the antibacterial susceptibility of B. cereus.
Collapse
Affiliation(s)
- Kamil Królak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska, 90-530, Lodz, Poland.
| | - Sylwia Ścieszka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska, 90-530, Lodz, Poland
| | - Edyta Kordialik-Bogacka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska, 90-530, Lodz, Poland
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Bohdana Stefanowskiego, 90-537, Lodz, Poland
| | - Maciej Ditrych
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska, 90-530, Lodz, Poland
| | - Tomasz Szczygieł
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska, 90-530, Lodz, Poland
| | - Katarzyna Dybka-Stępień
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska, 90-530, Lodz, Poland
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska, 90-530, Lodz, Poland
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Bohdana Stefanowskiego, 90-537, Lodz, Poland
| |
Collapse
|
14
|
Pricop MA, Lukinich-Gruia AT, Cristea IM, Păunescu V, Tatu CA. Aristolochia clematitis L. Ethanolic Extracts: In Vitro Evaluation of Antioxidant Activity and Cytotoxicity on Caco-2 Cell Line. PLANTS (BASEL, SWITZERLAND) 2024; 13:2987. [PMID: 39519906 PMCID: PMC11547917 DOI: 10.3390/plants13212987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Aristolochia sp. plants are used in traditional medicine because of their immunostimulatory and anticarcinogenic properties, despite their content of aristolochic acids (AAs), carcinogenic and nephrotoxic agents. Therefore, ethanolic extracts of Aristolochia clematitis leaves, a specie growing in Western Romania, were obtained to study antioxidant and cytotoxic effects. The antioxidant capacity of the extract was evaluated by five in vitro chemical-based assays, proving that ABTS assay was a better method for this type of evaluation showing an IC50 of 160.89 ± 0.21 µg/mL. Furthermore, the cytotoxic effects of the extract were established by an IC50 of 216 µg/mL for 24 h by MTT assay, followed by a cell-based assay on Caco-2 cells by the ABTS method. The antioxidant effects of the A. clematitis extract demonstrate potential therapeutic applications in complementary medicine.
Collapse
Affiliation(s)
- Maria-Alexandra Pricop
- OncoGen Centre, County Hospital Pius Branzeu, 156 Liviu Rebreanu Blvd., 300736 Timisoara, Romania; (M.-A.P.); (I.-M.C.); (V.P.)
- Department of Applied Chemistry and Environmental Engeneering and Inorganic Compounds, Faculty of Industrial Chemistry, Biotechnology and Environmental Engeneering, Polytechnic University of Timisoara, Vasile Pârvan 6, 300223 Timisoara, Romania
| | | | - Iustina-Mirabela Cristea
- OncoGen Centre, County Hospital Pius Branzeu, 156 Liviu Rebreanu Blvd., 300736 Timisoara, Romania; (M.-A.P.); (I.-M.C.); (V.P.)
| | - Virgil Păunescu
- OncoGen Centre, County Hospital Pius Branzeu, 156 Liviu Rebreanu Blvd., 300736 Timisoara, Romania; (M.-A.P.); (I.-M.C.); (V.P.)
- Department of Functional Sciences, Center of Immuno-Physiology (CIFBIOTEH), University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| | - Călin Adrian Tatu
- OncoGen Centre, County Hospital Pius Branzeu, 156 Liviu Rebreanu Blvd., 300736 Timisoara, Romania; (M.-A.P.); (I.-M.C.); (V.P.)
- Department of Functional Sciences, Center of Immuno-Physiology (CIFBIOTEH), University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| |
Collapse
|
15
|
Banu HS, Parvin IS, Priyadharshini SD, Gayathiri E, Prakash P, Pratheep T. Molecular insights into the antioxidant and anticancer properties: A comprehensive analysis through molecular modeling, docking, and dynamics studies. J Cell Biochem 2024; 125:e30564. [PMID: 38747366 DOI: 10.1002/jcb.30564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 10/13/2024]
Abstract
Plants are rich sources of therapeutic compounds that often lack the side effects commonly found in synthetic chemicals. Researchers have effectively synthesized pharmaceuticals from natural sources, taking inspiration from traditional medicine, in their pursuit of modern drugs. This study aims to evaluate the phenolic and flavonoid content of Solanum virginianum seeds using different solvent extracts, enzymatic assays including 2,2-diphenyl-1-picrylhydrazyl activity, reducing power, and superoxide activity. Our phytochemical screening identified active compounds, such as phenols, flavonoids, tannins, and alkaloids. The methanol extract notably possesses higher levels of total phenolic and flavonoid content in comparison to the other extracts. The results highlight the superior antioxidant activity of methanol-extracted leaves, demonstrated by their exceptional IC50 values, which surpass the established standard. In this study, molecular docking techniques were used to assess the binding affinity and to predict the binding conformation of the compounds. Quercetin 3-O beta-d-galactopyranoside displayed a binding energy of -8.35 kcal/mol with several important amino acid residues, PHE222, TRP440, ILE184, LEU192, VAL221, LEU218, SER185, and ALA188. Kaempferol 3-O-beta-l-glucopyranoside exhibited a binding energy of -8.33 kcal/mol, interacting with specific amino acid residues including ALA 441, VAL318, VAL322, MET307, ILI409, GLY442, and PHE439. The results indicate that the methanol extract has a distinct composition of biologically active constituents compared to the other extracts. Overall, seeds exhibit promise as natural antioxidants and potential agents for combating cancer. This study highlights the significance of utilizing the therapeutic capabilities of natural compounds and enhancing our comprehension of their pharmacological characteristics.
Collapse
Affiliation(s)
- Hamza Serina Banu
- Department of Chemistry, Vellalar College for Women (Autonomous), Erode, Tamilnadu, India
| | - Ismail Sheriff Parvin
- Department of Chemistry, Vellalar College for Women (Autonomous), Erode, Tamilnadu, India
| | | | - Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, India
| | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| |
Collapse
|
16
|
Charoensedtasin K, Naksawat M, Norkaew C, Kheansaard W, Roytrakul S, Tanyong D. Menthol induces extracellular vesicle regulation of apoptosis via ATG3 and caspase-3 in acute leukemic cells. Heliyon 2024; 10:e33081. [PMID: 39021955 PMCID: PMC11252965 DOI: 10.1016/j.heliyon.2024.e33081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Leukemia is one of the most deadly cancers in Thailand. Natural compounds have been developed for cancer treatment. Menthol, a peppermint compound, has shown pharmacological properties such as anti-cancer activity. However, the mechanism of menthol inducing extracellular vesicles in leukemic cells is not yet understood. In this study, we investigated the effects of menthol on leukemic extracellular vesicles and their role in apoptosis. NB4 and Molt-4 leukemic cells were cultured with menthol in various concentrations and times. Bioinformatic analysis was used to investigate target proteins of extracellular vesicle and apoptosis, followed by mRNA and protein expression by RT‒PCR and western blotting, respectively. Our findings indicate that menthol inhibits leukemic cell proliferation and increases extracellular vesicles. Furthermore, menthol treated leukemic extracellular vesicles induce apoptosis and upregulate the expression of ATG3 and caspase-3 in both mRNA and protein levels. These results suggest that menthol has an antileukemic effect through ATG3 and caspase-3 in apoptosis of leukemic extracellular vesicles.
Collapse
Affiliation(s)
- Kantorn Charoensedtasin
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Mashima Naksawat
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chosita Norkaew
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Wasinee Kheansaard
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, 12120, Thailand, 73170, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
17
|
Jangid H, Garg S, Kashyap P, Karnwal A, Shidiki A, Kumar G. Bioprospecting of Aspergillus sp. as a promising repository for anti-cancer agents: a comprehensive bibliometric investigation. Front Microbiol 2024; 15:1379602. [PMID: 38812679 PMCID: PMC11133633 DOI: 10.3389/fmicb.2024.1379602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer remains a significant global health challenge, claiming nearly 10 million lives in 2020 according to the World Health Organization. In the quest for novel treatments, fungi, especially Aspergillus species, have emerged as a valuable source of bioactive compounds with promising anticancer properties. This study conducts a comprehensive bibliometric analysis to map the research landscape of Aspergillus in oncology, examining publications from 1982 to the present. We observed a marked increase in research activity starting in 2000, with a notable peak from 2005 onwards. The analysis identifies key contributors, including Mohamed GG, who has authored 15 papers with 322 citations, and El-Sayed Asa, with 14 papers and 264 citations. Leading countries in this research field include India, Egypt, and China, with King Saud University and Cairo University as the leading institutions. Prominent research themes identified are "endophyte," "green synthesis," "antimicrobial," "anti-cancer," and "biological activities," indicating a shift towards environmentally sustainable drug development. Our findings highlight the considerable potential of Aspergillus for developing new anticancer therapies and underscore the necessity for further research to harness these natural compounds for clinical use.
Collapse
Affiliation(s)
- Himanshu Jangid
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Sonu Garg
- Department of Biotechnology, Mahatma Jyoti Rao Phoole University, Jaipur, Rajasthan, India
| | - Piyush Kashyap
- School of Agriculture, Lovely Professional University, Jalandhar, Punjab, India
| | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Amrullah Shidiki
- Department of Microbiology, National Medical College & Teaching Hospital, Birgunj, Nepal
| | - Gaurav Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| |
Collapse
|
18
|
Kritsi E, Christodoulou P, Tsiaka T, Georgiadis P, Zervou M. A Computational Approach for the Discovery of Novel DNA Methyltransferase Inhibitors. Curr Issues Mol Biol 2024; 46:3394-3407. [PMID: 38666943 PMCID: PMC11049320 DOI: 10.3390/cimb46040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, the explosion of knowledge in the field of epigenetics has revealed new pathways toward the treatment of multifactorial diseases, rendering the key players of the epigenetic machinery the focus of today's pharmaceutical landscape. Among epigenetic enzymes, DNA methyltransferases (DNMTs) are first studied as inhibition targets for cancer treatment. The increasing clinical interest in DNMTs has led to advanced experimental and computational strategies in the search for novel DNMT inhibitors. Considering the importance of epigenetic targets as a novel and promising pharmaceutical trend, the present study attempted to discover novel inhibitors of natural origin against DNMTs using a combination of structure and ligand-based computational approaches. Particularly, a pharmacophore-based virtual screening was performed, followed by molecular docking and molecular dynamics simulations in order to establish an accurate and robust selection methodology. Our screening protocol prioritized five natural-derived compounds, derivatives of coumarins, flavones, chalcones, benzoic acids, and phenazine, bearing completely diverse chemical scaffolds from FDA-approved "Epi-drugs". Their total DNMT inhibitory activity was evaluated, revealing promising results for the derived hits with an inhibitory activity ranging within 30-45% at 100 µM of the tested compounds.
Collapse
Affiliation(s)
- Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (P.C.); (T.T.); (P.G.)
| | | | | | | | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (P.C.); (T.T.); (P.G.)
| |
Collapse
|
19
|
Sharma N, Radha, Kumar M, Kumari N, Rais N, Pundir A, Anitha T, Balamurugan V, Senapathy M, Dhumal S, Natta S, Deshmukh VP, Kumar S, Pandiselvam R, Lorenzo JM, Mekhemar M. Beneath the rind: A review on the remarkable health benefits and applications of the wood apple fruit. Heliyon 2024; 10:e29202. [PMID: 38623209 PMCID: PMC11016700 DOI: 10.1016/j.heliyon.2024.e29202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Limonia acidissima Groff, commonly referred to as the Wood apple, is a tropical fruit belonging to Rutaceae family. Indigenous to Sri Lanka, India, and Myanmar, it is extensively cultivated throughout Southeast Asia. This fruit holds a profound historical significance in traditional medicine due to its exceptional nutritional and therapeutic attributes. Wood apple pulp is significantly abundant in β-carotene, a precursor to vitamin A, and contains a substantial amount of vitamin B, including riboflavin and thiamine, as well as trace amounts of ascorbic acid (vitamin C). Moreover health-benefitting properties associated with L. acidissima, such as, antioxidant, hepatoprotective, antimicrobial, neuroprotective, antidiabetic, anti-inflammatory, anti-spermatogenic, analgesic, antiulcer, and antihyperlipidemic properties, are attributed to a diverse range of phytochemicals. These encompass polyphenolic compounds, saponins, phytosterols, tannins, triterpenoids, coumarins, amino acids, tyramine derivatives, and vitamins. From the findings of the various studies, it was observed that wood apple fruit shows significant anticancer activity by inhibiting the proliferation of cancer. Furthermore, wood apple finds wide-ranging commercial applications in the formulation of ready-to-serve beverages, syrups, jellies, chutneys, and various other food products. In summary, this review highlights the nutritional and phytochemical constituents of wood apple, depicts its antioxidant, anti-inflammatory, and anti-diabetic capabilities, and explores its potential in value-added product development. Nevertheless, it is crucial to acknowledge that the molecular mechanisms supporting these properties remain an underexplored domain. To ensure the safe integration of wood apple fruit into the realms of the food, cosmetics, and pharmaceutical sectors, rigorous clinical trials, including toxicity assessments, are required. These endeavors hold the potential to promote innovation and contribute significantly to both research and industrial sectors.
Collapse
Affiliation(s)
- Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, 305004, India
| | - Ashok Pundir
- School of Mechanical and Civil Engineering, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - T. Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam, 625604, India
| | - V. Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Madurai, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong, 737106, India
| | - Vishal P. Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR – Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124, Kerala, India
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105, Kiel, Germany
| |
Collapse
|
20
|
Wang L, Qu Z, Sun Q, Mao Z, Si P, Wang W. 4-Hydroxysesamin, a Modified Natural Compound, Attenuates Neuronal Apoptosis After Ischemic Stroke via Inhibiting MAPK Pathway. Neuropsychiatr Dis Treat 2024; 20:523-533. [PMID: 38469210 PMCID: PMC10926873 DOI: 10.2147/ndt.s444760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Background The 4-hydroxysesamin (4-HS, a di-tetrahydrofuran lignin) is a modified sesamin that was prepared in the laboratory. This preclinical study was designed to preliminarily investigate the neuroprotective properties of 4-HS. Methods In vitro, neuronal injury and inflammation were simulated by oxygen-glucose deprivation and lipopolysaccharide (LPS) exposure in mouse hippocampal neuronal HT22 cell line, and treated with 4-HS and/or metformin (MET, MAPK pathway activator for exploring mechanism). CCK-8, flow cytometry, and enzyme-linked immunosorbent assay were performed to evaluate cell viability, apoptosis, and inflammation. Apoptosis- and pathway-related proteins were detected by Western blotting. Middle cerebral artery occlusion (MCAO) was constructed as a stroke model and treated with 4-HS for in vivo confirmation. Histological staining was used for in vivo evaluation of 4-HS properties. Results The 4-HS showed similar anti-inflammatory activity to sesamin but did not affect the cell viability of HT22 cells. In vitro, 4-HS improved the cell viability, ameliorated neuronal apoptosis, along with the reversion of apoptotic proteins (Bax, cleaved-caspase 3/9, Bcl-2) expression and inflammatory cytokines (IL-6, TNF-α, IL-10) in LPS-treated HT22 cells. The 4-HS suppressed the phosphorylation of ERK, JNK, and p38 but the addition of MET reversed 4-HS-induced changes of phenotype and protein expression in LPS-treated cells. In vivo, 4-HS showed apparent improvement in cerebral infarction, brain tissue morphology, neuronal architecture, apoptosis, and inflammation of MCAO mice, and also showed inhibiting effects on the phosphorylation of ERK, JNK, and p38, confirming in vivo results. Conclusion In this first pre-clinical study on 4-HS, we preliminarily demonstrated the neuroprotective properties of 4-HS both in cell and animal models, and proposed that the underlying mechanism might be associated with the MAPK pathway.
Collapse
Affiliation(s)
- Lina Wang
- Internal Medicine-Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhenzhen Qu
- Internal Medicine-Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Qian Sun
- Internal Medicine-Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhuofeng Mao
- Internal Medicine-Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Peipei Si
- Internal Medicine-Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Weiping Wang
- Internal Medicine-Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
21
|
Lopes RP, Ferreira FL, Faria de Sousa G, Cruz Nizer WSD, Magalhães CLDB, Ferreira JMS, Tótola AH, Duarte LP, de Magalhães JC. Activity of extracts and terpenoids from Tontelea micrantha (Mart. ex Schult.) A.C.Sm. (Celastraceae) against pathogenic bacteria. Nat Prod Res 2024:1-10. [PMID: 38328949 DOI: 10.1080/14786419.2024.2309554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
The pharmacological properties of plant extracts and phytochemicals, such as flavonoids and terpenoids, remain of great interest. In this work, the effect of extracts, friedelan-3,21-dione, and 3β-O-D-glucosyl-sitosterol isolated from Tontelea micrantha roots was evaluated against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Klebsiella oxytoca and Escherichia coli. The antibacterial activity was evaluated by the minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively), and the synergistic effect was assessed by the Checkerboard assay. Furthermore, the cytotoxicity of the plant-derived compounds against Vero cells was measured by the 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide (MTT) method. The biological effects of the isolated compounds were predicted using the PASS online software. The chloroform and hexane extracts of T. micrantha roots showed promising antibacterial effect, with MIC in the range of 4.8-78.0 µg/mL. Further analyses showed that these compounds do not affect the integrity of the membrane. The combination with streptomycin strongly reduced the MIC of this antibiotic and extracts. The extracts were highly toxic to Vero cells, and no cytotoxicity was detected for the two terpenoids isolated from them (i.e. friedelan-3,21-dione and 3β-O-D-glucosyl-sitosterol; CC50 > 1000 μg/mL). Therefore, extracts obtained from T. micrantha roots significantly inhibited bacterial growth and are considered promising agents against pathogenic bacteria. The cytotoxicity results were very relevant and can be tested in bioassays.
Collapse
Affiliation(s)
- Ranieli Paiva Lopes
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | | | | | | | | | | | - Antônio Helvécio Tótola
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos de Magalhães
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| |
Collapse
|
22
|
Fu Y, Jiao H, Sun J, Okoye CO, Zhang H, Li Y, Lu X, Wang Q, Liu J. Structure-activity relationships of bioactive polysaccharides extracted from macroalgae towards biomedical application: A review. Carbohydr Polym 2024; 324:121533. [PMID: 37985107 DOI: 10.1016/j.carbpol.2023.121533] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Macroalgae are valuable and structurally diverse sources of bioactive compounds among marine resources. The cell walls of macroalgae are rich in polysaccharides which exhibit a wide range of biological activities, such as anticoagulant, antioxidant, antiviral, anti-inflammatory, immunomodulatory, and antitumor activities. Macroalgae polysaccharides (MPs) have been recognized as one of the most promising candidates in the biomedical field. However, the structure-activity relationships of bioactive polysaccharides extracted from macroalgae are complex and influenced by various factors. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with MPs. In line with these challenges and knowledge gaps, this paper summarized the structural characteristics of marine MPs from different sources and relevant functional and bioactive properties and particularly highlighted those essential effects of the structure-bioactivity relationships presented in biomedical applications. This review not only focused on elucidating a particular action mechanism of MPs, but also intended to identify a novel or potential application of these valued compounds in the biomedical field in terms of their structural characteristics. In the last, the challenges and prospects of MPs in structure-bioactivity elucidation were further discussed and predicted, where they were emphasized on exploring modern biotechnology approaches potentially applied to expand their promising biomedical applications.
Collapse
Affiliation(s)
- Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Water, Energy, Environment and Agrifood, Cranfield University, Cranfield MK43 0AL, UK
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechu Lu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
23
|
Knisz J, Eckert R, Gieg LM, Koerdt A, Lee JS, Silva ER, Skovhus TL, An Stepec BA, Wade SA. Microbiologically influenced corrosion-more than just microorganisms. FEMS Microbiol Rev 2023; 47:fuad041. [PMID: 37437902 PMCID: PMC10479746 DOI: 10.1093/femsre/fuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023] Open
Abstract
Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern that affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines are limited. A truly interdisciplinary approach, which would be logical for this material/biology/chemistry-related challenge, is rarely taken. In this review, we highlight critical non-biological aspects of MIC that can sometimes be overlooked by microbiologists working on MIC but are highly relevant for an overall understanding of this phenomenon. Here, we identify gaps, methods, and approaches to help solve MIC-related challenges, with an emphasis on the MIC of metals. We also discuss the application of existing tools and approaches for managing MIC and propose ideas to promote an improved understanding of MIC. Furthermore, we highlight areas where the insights and expertise of microbiologists are needed to help progress this field.
Collapse
Affiliation(s)
- J Knisz
- Department of Water Supply and Sewerage, Faculty of Water Sciences, University of Public Service, 6500, Baja, Hungary
| | - R Eckert
- Microbial Corrosion Consulting, LLC, Commerce Township, 48382, MI, USA
| | - L M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - A Koerdt
- Federal Institute for Materials Research and Testing (BAM), 12205, Berlin, Germany
| | - J S Lee
- Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, 39529, MS, USA
| | - E R Silva
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisboa, Portugal
- CERENA - Centre for Natural Resources and the Environment, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - T L Skovhus
- Research Center for Built Environment, Energy, Water and Climate, VIA, University College, 8700, Horsens, Denmark
| | - B A An Stepec
- Department of Energy and Technology, NORCE Norwegian Research Centre AS, Nygårdsgaten 112, 5008 Bergen, Norway
| | - S A Wade
- Bioengineering Research Group, Swinburne University of Technology, 3122, Melbourne, Australia
| |
Collapse
|
24
|
Šukele R, Lauberte L, Kovalcuka L, Logviss K, Bārzdiņa A, Brangule A, Horváth ZM, Bandere D. Chemical Profiling and Antioxidant Activity of Tanacetum vulgare L. Wild-Growing in Latvia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1968. [PMID: 37653885 PMCID: PMC10221018 DOI: 10.3390/plants12101968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 07/15/2023]
Abstract
The Tanacetum vulgare L. (Tansy) has several ethnobotanical uses, mostly related to the essential oil and sesquiterpene lactones, whereas information regarding other compounds is scarce. This research is designed to characterize the phenolic compounds (flavonoids, phenolic acids, and tannins) to analyze the thujone (which is toxic in high concentrations) content and to detect the antioxidant activity (DPPH assay) of extracts. The main highlights of our work provide a chemical profile of phenolic compounds of T. vulgare harvested from different regions of Latvia, as well as simultaneously support the ethnomedicinal uses for wild T. vulgare through the integration of phenolic compounds as one of the value constituents of leaves and flowers. The extraction yield was 18 to 20% for leaves and 8 to 16% for flowers. The total phenol content in the extracts of T. vulgare as well as their antioxidant activity was different between collection regions and the aerial parts ranging from 134 to 218 mg GAE/g and 32 to 182 mg L-1, respectively. A remarkable variation in the thujone (α + β) content (0.4% up to 6%) was detected in the extracts. T. vulgare leaf extracts were rich in tannins (up to 19%). According to the parameters detected, the extracts of T. vulgare could be considered promising for the development of new herbal products.
Collapse
Affiliation(s)
- Renāte Šukele
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Department of Pharmaceuticals, Red Cross Medical College of Riga Stradiņš University, LV-1009 Riga, Latvia
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Liga Kovalcuka
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Konstantins Logviss
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Ance Bārzdiņa
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Zoltán Márk Horváth
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| |
Collapse
|
25
|
Maradesha T, Martiz RM, Patil SM, Prasad A, Babakr AT, Silina E, Stupin V, Achar RR, Ramu R. Integrated network pharmacology and molecular modeling approach for the discovery of novel potential MAPK3 inhibitors from whole green jackfruit flour targeting obesity-linked diabetes mellitus. PLoS One 2023; 18:e0280847. [PMID: 36716329 PMCID: PMC9886246 DOI: 10.1371/journal.pone.0280847] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
The current study investigates the effectiveness of phytocompounds from the whole green jackfruit flour methanol extract (JME) against obesity-linked diabetes mellitus using integrated network pharmacology and molecular modeling approach. Through network pharmacology, druglikeness and pharmacokinetics, molecular docking simulations, GO analysis, molecular dynamics simulations, and binding free energy analyses, it aims to look into the mechanism of the JME phytocompounds in the amelioration of obesity-linked diabetes mellitus. There are 15 predicted genes corresponding to the 11 oral bioactive compounds of JME. The most important of these 15 genes was MAPK3. According to the network analysis, the insulin signaling pathway has been predicted to have the strongest affinity to MAPK3 protein, which was chosen as the target. With regard to the molecular docking simulation, the greatest notable binding affinity for MAPK3 was discovered to be caffeic acid (-8.0 kJ/mol), deoxysappanone B 7,3'-dimethyl ether acetate (DBDEA) (-8.2 kJ/mol), and syringic acid (-8.5 kJ/mol). All the compounds were found to be stable inside the inhibitor binding pocket of the enzyme during molecular dynamics simulation. During binding free energy calculation, all the compounds chiefly used Van der Waal's free energy to bind with the target protein (caffeic acid: 102.296 kJ/mol, DBDEA: -104.268 kJ/mol, syringic acid: -100.171 kJ/mol). Based on these findings, it may be inferred that the reported JME phytocompounds could be used for in vitro and in vivo research, with the goal of targeting MAPK3 inhibition for the treatment of obesity-linked diabetes mellitus.
Collapse
Affiliation(s)
- Tejaswini Maradesha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ashwini Prasad
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- * E-mail:
| |
Collapse
|
26
|
Synthesis, pharmacological and molecular docking investigations of 1,3,4-oxadiazole-5-thionyl derivatives of extracted cis-clerodane diterpenoid from Cistus monspeliensis. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Zhang J, Yang R, Li L, Liu J, Liu Y, Song H, Wang Q. Design, Synthesis, and Bioactivity Study of Novel Tryptophan Derivatives Containing Azepine and Acylhydrazone Moieties. Molecules 2022; 27:molecules27196700. [PMID: 36235237 PMCID: PMC9573203 DOI: 10.3390/molecules27196700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Based on the scaffolds widely used in drug design, a series of novel tryptophan derivatives containing azepine and acylhydrazone moieties have been designed, synthesized, characterized, and evaluated for their biological activities. The bioassay results showed that the target compounds possessed moderate to good antiviral activities against the tobacco mosaic virus (TMV), among which compounds 5c, 6a, 6h, 6t, 6v, and 6y exhibited higher inactivation, curative, and protection activities in vivo than that of ribavirin (40 ± 1, 37 ± 1, 39 ± 2% at 500 mg/L). Especially, 6y showed comparable activities to that of ningnanmycin (57 ± 2, 55 ± 3, 58 ± 1% at 500 mg/L). Meanwhile, we were pleased to find that almost all these derivatives showed good larvicidal activities against Plutella xylostella. Meanwhile, these derivatives also showed a broad spectrum of fungicidal activities.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Rongxin Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Lili Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jianhua Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Correspondence: (H.S.); (Q.W.); Tel./Fax: +86-22-235-039-52 (Q.W.)
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Correspondence: (H.S.); (Q.W.); Tel./Fax: +86-22-235-039-52 (Q.W.)
| |
Collapse
|