1
|
Mohamed O, Kim H, Makowka S, AlMozayen A, Sawangsri K, Li R. Impact of speed sintering on the mechanical and optical properties of multilayered zirconia. J Prosthet Dent 2025; 133:280.e1-280.e6. [PMID: 39472162 DOI: 10.1016/j.prosdent.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/13/2025]
Abstract
STATEMENT OF PROBLEM Speed sintering techniques have been introduced to shorten the sintering time of zirconia ceramics, yet their impact on multilayered zirconia properties remains understudied. PURPOSE The purpose of this in vitro study was to assess the effect of speed sintering on the optical properties and the mechanical flexural strength of multilayered zirconia materials. MATERIAL AND METHODS A total of 360 disks (Ø14 ±2 mm ×1.2 ±0.02 mm) were fabricated by following the International Organization for Standardization (ISO) 6872:2015 standard using 2 types of Vita A2 shade multilayered zirconia materials: IPS e.max ZirCAD Prime (ZP) and IPS e.max ZirCAD Prime Esthetic (ZPE). Each material comprised translucent (Tr), gradient l (Gr), and dentin (De) layers, with 60 disks per layer. Half were sintered using a standard sintering protocol and half using a speed sintering protocol. Biaxial flexural strength was accessed using a universal testing machine equipped with the Blue Hill Universal software program by following the ISO 6872:2015 standard, with 20 disks per subgroup. The spectrophotometric analysis of optical properties (contrast ratio [CR], translucency parameter [TP], and total transmittance [Tt%]) was performed using a dual-beam spectrophotometer (Ultrascan VIS) in accordance with the ISO 7491:2000 standard, with 10 disks per subgroup. The comparison of the optical properties and the mechanical flexural strength between the speed and standard protocol was analyzed using an unpaired t test (α=.05). RESULTS Speed sintering reduced biaxial flexural strength in all ZP layers (P<.05) and in ZPE-Gr (P<.05). A statistically significant difference in the CR was observed in the ZP-Tr, ZP-Gr, and ZPE-Gr layers (P<.05). The TP of the ZP-Gr, ZP-De, and ZPE-Gr layers was significantly lower when using the speed sintering protocol. Tt% was significantly lower with speed sintering for both materials (P<.05). CONCLUSIONS Speed sintering statistically changed both the optical (CR, TP, Tt%) and mechanical (flexural strength) properties of multilayered zirconia materials, but the differences may not be clinically relevant.
Collapse
Affiliation(s)
- Omar Mohamed
- Assistant Professor, University of Alabama at Birmingham, School of Dentistry, Birmingham, AL
| | - Hyeongil Kim
- Associate Professor, Restorative Dentistry Department, University at Buffalo School of Dental Medicine, Buffalo, NY
| | - Steven Makowka
- Facility Director, Materials Testing Facility, University at Buffalo School of Dental Medicine, Buffalo, NY
| | - Ahmed AlMozayen
- Clinical Assistant Professor, Restorative Dentistry Department, University at Buffalo School of Dental Medicine, Buffalo, NY
| | - Kedith Sawangsri
- Clinical Assistant Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH
| | - Rui Li
- Assistant Professor, Restorative Dentistry Department, University at Buffalo School of Dental Medicine, Buffalo, NY.
| |
Collapse
|
2
|
Li Q, Zhan N, Ng T, Swain MV, Wan B, Jian Y, Wang X, Zhao K. The influence of hygroscopic expansion of resin supporting dies on the fracture resistance of ceramic restorations during thermal cycling. Dent Mater 2024; 40:1231-1243. [PMID: 38853105 DOI: 10.1016/j.dental.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVES To evaluate the hygroscopic expansion characterization of resin composite dies during thermal cycling, and their influence on the fracture resistance of dental ceramic materials as well as the effect of pre-immersion on these measurements. METHODS Disc-shaped specimens (φ = 15.0 mm, h = 1.2 mm) and anatomical crown dies of four resin composites (epoxy, Z350, P60, G10) were fabricated. Disc-shaped samples were continuously soaked in distilled water and the volume expansion was measured at different time point by Archimedes method. Disc-shaped samples were pre-immersed for 0, 7, or 30 days, elastic modulus and hardness were measured using Nanoindentation test; thermal cycling (TC) test was performed (5 °C-55 °C, 104 cycles), and volume expansion during TC was measured. Four kinds of resin die with pre-immersion for 0, 7, or 30 days were cemented to 5Y-Z crown, or epoxy dies without pre-immersion were cemented to 5Y-Z, 3Y-Z and lithium disilicate glass (LDG) crowns, and load-to-failure testing was performed before and after TC. Finite element analysis (FEA) and fractography analysis were also conducted. RESULTS The hygroscopic expansion was in the order: epoxy > Z350 > P60 > G10. Except for G10, the other three resin composites exhibited different degrees of hygroscopic expansion during TC. Only the elastic modulus and hardness of epoxy decreased after water storage. However, only the fracture loads of 5Y-Z and LDG crowns supported by epoxy dies were significantly decreased after TC. FEA showed a stress concentration at the cervical region of the crown after volume expansion of the die, leading to the increase of the peak stress at the crown during loading. SIGNIFICANCE Only the hygroscopic expansion of epoxy dies caused by TC led to the decrease in the fracture resistance of the 5Y-Z and LDG crown, which may be related to the decrease in the elastic modulus of the epoxy die and the tensile stress caused by it.
Collapse
Affiliation(s)
- Qiulan Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Ni Zhan
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Takkun Ng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Michael V Swain
- Don State Technical University, Rostov-on-Don 344000, Russia; AMME, Sydney University, Sydney, Australia
| | - Boyang Wan
- School of Aerospace, Mechanical and Mechatronic Engineering (AMME), The University of Sydney, NSW 2006, Australia
| | - Yutao Jian
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Institute of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| | - Xiaodong Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Ke Zhao
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
3
|
Li H, Yamaguchi S, Lee C, Benalcázar-Jalkh EB, Bonfante EA, Imazato S. In silico nonlinear dynamic finite-element analysis for biaxial flexural strength testing of CAD/CAM materials. J Prosthodont Res 2024; 68:474-481. [PMID: 38171769 DOI: 10.2186/jpr.jpr_d_23_00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE The aim of this study was to establish and assess the validity of in silico models of biaxial flexural strength (BFS) tests to reflect in vitro physical properties obtained from two commercially available computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic blocks and one CAD/CAM resin composite block. METHODS In vitro three-point bending and BFS tests were conducted for three CAD/CAM materials (n = 10): Katana Zirconia ST10 (raw material: super-translucent multilayered zirconia, ST10; Kuraray Noritake Dental, Niigata, Japan), Katana Zirconia HT10 (raw material: highly translucent multilayered zirconia, HT10; Kuraray Noritake Dental), and Katana Avencia N (AN; Kuraray Noritake Dental). Densities, flexural moduli, and fracture strains were obtained from the in vitro three-point bending test and used as an input for an in silico nonlinear finite element analysis. The maximum principal stress (MPS) distribution was obtained from an in silico BFS analysis. RESULTS The elastic moduli of AN, HT10, and ST10 were 6.513, 40.039, and 32.600 GPa, respectively. The in silico fracture pattern of ST10 observed after the in silico evaluation was similar to the fracture pattern observed after the in vitro testing. The MPS was registered in the center of the tensile surface for all three specimens. The projections of the supporting balls were in the form of a triple asymmetry. CONCLUSIONS The in silico approach established in this study provided an acceptable reflection of in vitro physical properties, and will be useful to assess biaxial flexural properties of CAD/CAM materials without wastage of materials.
Collapse
Affiliation(s)
- Hefei Li
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Satoshi Yamaguchi
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Chunwoo Lee
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ernesto B Benalcázar-Jalkh
- Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Estevam A Bonfante
- Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
4
|
Alshahrani AM, Lim CH, Wolff MS, Janal MN, Zhang Y. Current speed sintering and high-speed sintering protocols compromise the translucency but not strength of yttria-stabilized zirconia. Dent Mater 2024; 40:664-673. [PMID: 38378371 PMCID: PMC11015968 DOI: 10.1016/j.dental.2024.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES To investigate the impacts of speed and high-speed sintering on the densification, microstructure, phase composition, translucency, and flexural strength of yttria-stabilized zirconia (YSZ). METHODS A total of 162 disc-shaped specimens (n = 18) were cold-isostatically pressed from 3YSZ (Zpex), 4YSZ (Zpex 4), and 5YSZ (Zpex Smile) powders (Tosoh Corporation) and sintered according to the following protocols: conventional (control, ∼12 h), speed (∼28 min for 3YSZ; ∼60 min for 4YSZ and 5YSZ), and high-speed (∼18 min) sintering. Dimensions of zirconia specimens after sintering and polishing (1-μm diamond grit finish) were Ø13.75 × 1 mm. Density, microstructure, phase content, translucency parameter, and biaxial flexural strength were evaluated using Archimedes', SEM, XRD, spectrophotometric, and piston-on-3-ball methods, respectively. Data were analyzed with either one-way ANOVA and Tukey's test or Kruskal-Wallis with Dunn's test (α = 0.05). RESULTS For all YSZ compositions, conventional sintering yielded the highest density followed by speed then high-speed sintering. All sintering protocols resulted in similar strength values; however, speed and high-speed sintering protocols afforded significantly lower translucency relative to conventional sintering. XRD analysis revealed similar spectra for YSZs sintered by various protocols. The speed sintered specimens had the smallest grain size whereas the high-speed sintered 5YSZ possessed the largest grain size among all groups. SEM examination of all YSZ compositions revealed that the average pore size was an order of magnitude smaller than the average grain size. SIGNIFICANCE Speed and high-speed sintering of YSZs yield similar strength but diminished density and translucency relative to their conventionally sintered counterparts.
Collapse
Affiliation(s)
- Abdulaziz M Alshahrani
- Laboratories for Microstructure Physics & Mechanics of Materials, Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Chek Hai Lim
- Laboratories for Microstructure Physics & Mechanics of Materials, Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark S Wolff
- Morton Amsterdam Dean, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malvin N Janal
- Department of Epidemiology & Health Promotion, New York University College of Dentistry, New York, NY 10010, USA
| | - Yu Zhang
- Laboratories for Microstructure Physics & Mechanics of Materials, Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Miura S, Shinya A, Koizumi H, Vallittu P, Lassila L, Fujisawa M. Effect of low-temperature degradation and sintering protocols on the color of monolithic zirconia crowns with different yttria contents. Dent Mater J 2024; 43:164-171. [PMID: 38296512 DOI: 10.4012/dmj.2023-194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
This study investigated the effects of low-temperature degradation (LTD) on the L*, a*, and b* values of highly translucent zirconia crowns. Four types of zirconia disks with different yttria contents (IPS e.max ZirCAD LT, IPS e.max ZirCAD MT, IPS e.max ZirCAD MT Multi, IPS e.max ZirCAD Prime, Ivoclar) and two shades (A2 and BL) were used. A crown was manufactured using four types of zirconia and LTD treated. Color measurements were performed, and the color difference (ΔE00) before and after LTD was calculated. The microstructure was determined through X-ray fluorescence and X-ray diffractometry. Highly translucent zirconia crowns showed greater changes in the a* and b* values than in the L* value after LTD, regardless of the shade. The Multi2 crowns exhibited a discernible color change due to the LTD treatment. The X-ray fluorescence results did not reveal any apparent change in the microstructure between sintering programs for all zirconia specimens.
Collapse
Affiliation(s)
- Shoko Miura
- Division of Fixed Prosthodontics, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
| | - Akikazu Shinya
- Department of Dental Materials Sciences, School of Life Dentistry at Tokyo, The Nippon Dental University
- Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku
| | - Hiroyasu Koizumi
- Department of Dental Materials, Nihon University School of Tokyo
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
- Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku
- Welfare District of County of Southwest Finland
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
| | - Masanori Fujisawa
- Division of Fixed Prosthodontics, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry
| |
Collapse
|
6
|
Yousry M, Hammad I, Halawani ME, Aboushelib M. Translucency of recent zirconia materials and material-related variables affecting their translucency: a systematic review and meta-analysis. BMC Oral Health 2024; 24:309. [PMID: 38443872 PMCID: PMC10913643 DOI: 10.1186/s12903-024-04070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Recent forms of translucent zirconia material have been developed, offering a wide range of options and varieties for enhancing aesthetics, making it a preferred choice in the field of prosthetic dentistry. However, there is insufficient understanding regarding the recent types of zirconia materials and their optical behavior. Understanding the variables that influence the translucency of zirconia and identifying strategies to enhance its esthetics are crucial. PURPOSE The current systemic review highlights a comprehensive understanding of different zirconia generations in relation to their optical characteristics and evaluates material-related variables affecting their translucency. METHODS The present review studied in-vitro studies that evaluated the optical characteristics of different yttria content of yttria stabilized materials. The topics explored were: (1) the different zirconia material generations and their optical behavior; (2) material-related factors that affect their translucency. The research was restricted to online publication in the English language from July 1, 2010, to July 31, 2023, using PubMed, Scopus, and Science Direct resources. The search key terms and their combinations were "zirconia," "translucent zirconia," "cubic zirconia," "highly translucent zirconia," "yttria partially stabilized zirconia," "monolithic zirconia," "translucency," "optical properties," and "light transmission." RESULTS The data obtained from fifty-three studies addressed the optical characteristics of various zirconia generations. They reported that changing yttria content had a significant impact on translucency. Different kinds of zirconia ceramics of the same generation have varying translucencies. Achieving optimum aesthetics with monolithic zirconia is challenging due to factors related to material aspects such as the presence of additives, point defects, microstructure, thickness, phase distribution, and sintering conditions. CONCLUSIONS Newly developed monolithic dental zirconia ceramics have improved aesthetics and translucency. However, additional research is necessary to evaluate their performance and long-term durability. TRIAL REGISTRATION This systematic review was registered in PROSPERO, under number CRD42023474482.
Collapse
Affiliation(s)
- Mahinour Yousry
- Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Ihab Hammad
- Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mohamed El Halawani
- Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Moustafa Aboushelib
- Department of Dental Materials Science, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Lakhloufi S, Labjar N, Labjar H, Serghini-Idrissi M, El Hajjaji S. Electrochemical behavior and surface stability of dental zirconia ceramics in acidic environments. J Mech Behav Biomed Mater 2024; 150:106288. [PMID: 38109814 DOI: 10.1016/j.jmbbm.2023.106288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Dental zirconia ceramics, widely employed in dentistry for their biocompatibility and mechanical properties, face challenges in long-term viability within the oral cavity. This study focuses on analyzing the electrochemical behavior of a commercial dental zirconia ceramic type in acidic environments. Through extensive electrochemical investigations, including Electrochemical Impedance Spectroscopy (EIS) and cyclic polarization resistance (Cpol), corrosion resistance was assessed. Despite indications of material dissolution, our results demonstrate significant corrosion resistance, as reflected in low corrosion current density (Icorr) values. Notably, the study reveals the development of a protective oxide layer at the ceramic-electrolyte interface, contributing to material stability. XRD analysis confirms the presence of stable crystallographic phases (t-ZrO2) even after exposure to acidic media. Surface characterizations utilizing scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) affirm minimal surface damage and maintained elemental composition. These findings illuminate the intricate electrochemical behavior of dental zirconia ceramics in challenging environments, underscoring their potential for durable dental restorations. This interdisciplinary research bridges dentistry and materials science, providing valuable insights for optimizing material properties and advancing dental materials and restorative techniques.
Collapse
Affiliation(s)
- Soraya Lakhloufi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, CERNE2D, ENSAM, Mohammed V University in Rabat, Morocco
| | - Najoua Labjar
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, CERNE2D, ENSAM, Mohammed V University in Rabat, Morocco.
| | - Houda Labjar
- Faculty of Sciences and Technologies, Mohammedia, Hassan II University, Casablanca, Morocco
| | - Malika Serghini-Idrissi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Souad El Hajjaji
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| |
Collapse
|
8
|
Tian JM, Ho WF, Hsu HC, Song Y, Wu SC. Evaluation of Feasibility on Dental Zirconia-Accelerated Aging Test by Chemical Immersion Method. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7691. [PMID: 38138835 PMCID: PMC10744630 DOI: 10.3390/ma16247691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
The aim of this study was to investigate the low-temperature degradation (LTD) kinetics of tetragonal zirconia with 3 mol% yttria (3Y-TZP) dental ceramic using two degradation methods: hydrothermal degradation and immersed degradation. To study transformation kinetics, we prepared 3Y-TZP powders. We pressed these powders uniaxially into a stainless mold at 100 MPa. We then sintered the compacted bodies at intervals of 50 °C between 1300 °C and 1550 °C and immersed the specimens at various temperatures from 60 °C to 80 °C in 4% acetic acid or from 110 °C to 140 °C for the hydrothermal method. We used a scanning electron microscope (SEM) to confirm crystalline grain size and used X-ray diffraction to analyze the zirconia phase. As the sintering temperature increased, the calculated crystalline grain size also increased. We confirmed this change with the SEM image. The higher sintering temperatures were associated with more phase transformation. According to the Mehl-Avrami-Johnson equation, the activation energies achieved using the hydrothermal method were 101 kJ/mol, 95 kJ/mol, and 86 kJ/mol at sintering temperatures of 1450 °C, 1500 °C, and 1550 °C, respectively. In addition, the activation energies of the specimens immersed in 4% acetic acid were 60 kJ/mol, 55 kJ/mol, 48 kJ/mol, and 35 kJ/mol, with sintered temperatures of 1400 °C, 1450 °C, 1500 °C, and 1550 °C, respectively. The results showed that a lower sintering temperature would restrain the phase transformation of zirconia because of the smaller crystalline grain size. As a result, the rate of LTD decreased.
Collapse
Affiliation(s)
- Ju-Mei Tian
- Department of Stomatology of Xiamen Medical College, Engineering Research Center of Stomatological Biomaterials, Fujian Province University, Xiamen 361023, China
| | - Wen-Fu Ho
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan;
| | - Hsueh-Chuan Hsu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
| | - Yi Song
- Department of Dental Technology, School of Medical Technology, Taizhou Polytechnic College, Taizhou 225300, China;
| | - Shih-Ching Wu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
| |
Collapse
|
9
|
Yousry MA, Hammad IA, El Halawani MT, Aboushelib MN. Effect of sintering time on microstructure and optical properties of yttria-partially stabilized monolithic zirconia. Dent Mater 2023; 39:1169-1179. [PMID: 37845165 DOI: 10.1016/j.dental.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVES To evaluate the impact of speed sintering on the microstructure and optical properties of 3 and 5 mol% yttria-partially stabilized monolithic zirconias. METHODS 120 plate-shaped zirconia specimens (10x10x 0.4 mm) were prepared from three commercial 5 mol% yttria-partially stabilized zirconia blocks (5Y-PSZs); Katana UTML (Kuraray Noritake), Cercon xtML (Dentsply Sirona), and Zolid FX white (Amann Girrbach), and two commercial 3 mol% yttria-partially stabilized zirconia blocks (3Y-PSZs); Lava Plus (3 M ESPE) and InCoris (Sirona, GmbH). Specimens were either conventional sintered (CS) using a 7-hour program or speed sintered (SS) using a quick 90-minute program. The microstructure was inspected with a scanning electron microscope (SEM), and phase fractions were detected using x-ray diffraction analysis (XRD). Translucency (TP00), and contrast ratio (CR) were obtained using a spectrophotometer (VITA Easyshade V). Color difference (ΔE00) between both sintering processes was calculated with the CIEDE2000 formula. ΔE00 up to 1.8 was set as the acceptability threshold. Data were analyzed using two-way ANOVA, Krusakll-Wallis, and Mann-Whitney U tests. (n = 12, α = .05). RESULTS Grain size was significantly decreased after SS for all tested materials (P < .0001). The average grain sizes of 5Y-PSZs were significantly larger than those of 3Y-PSZs. The atomic structure, microstructure, and transparency of CS and SS were all affected by the amount of yttria, the size of the crystals, and tetragonality. SS significantly reduced TP00 (F = 7135.95, P < 0.0001) and increased CR (F = 453.21, P < 0.0001). The CS Katana presented the highest TP00 and lowest CR value. ΔE00 between the CS and SS groups were clinically acceptable except for Lava, which had values above the set threshold (1.89). SIGNIFICANCE SS altered the grain size and internal structure of the tested materials, which was reflected in translucency.
Collapse
Affiliation(s)
- Mahinour A Yousry
- Division of Fixed Prosthodontics, Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Ihab A Hammad
- Division of Fixed Prosthodontics, Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mohamed T El Halawani
- Division of Fixed Prosthodontics, Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Moustafa N Aboushelib
- Department of Dental Materials Science, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Mory N, Cascos R, Celemín-Viñuela A, Gómez-Polo C, Agustín-Panadero R, Gómez-Polo M. Comparison of the Surface Roughness of CAD/CAM Metal-Free Materials Used for Complete-Arch Implant-Supported Prostheses: An In Vitro Study. Biomedicines 2023; 11:3036. [PMID: 38002036 PMCID: PMC10669478 DOI: 10.3390/biomedicines11113036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The roughness of the intra-oral surfaces significantly influences the initial adhesion and the retention of microorganisms. The aim of this study was to analyze the surface texture of four different CAD-CAM materials (two high-performance polymers and two fifth-generation zirconia) used for complete-arch implant-supported prostheses (CAISPs), and to investigate the effect of artificial aging on their roughness. A total of 40 milled prostheses were divided into 4 groups (n = 10) according to their framework material, bio.HPP (B), bio.HPP Plus (BP), zirconia Luxor Z Frame (ZF), and Luxor Z True Nature (ZM). The areal surface roughness "Sa" and the maximum height "Sz" of each specimen was measured on the same site after laboratory fabrication (lab as-received specimen) and after thermocycling (5-55 °C, 10,000 cycles) by using a noncontact optical profilometer. Data were analyzed using SPSS version 28.0.1. One-way ANOVA with multiple comparison tests (p = 0.05) and repeated measures ANOVA were used. After thermocycling, all materials maintained "Sa" values at the laboratory as-received specimen level (p = 0.24). "Sz" increased only for the zirconia groups (p = 0.01). B-BP exhibited results equal/slightly better than ZM-ZF. This study provides more realistic surface texture values of new metal-free materials used in real anatomical CAISPs after the manufacturing and aging processes and establishes a detailed and reproducible measurement workflow.
Collapse
Affiliation(s)
- Nataly Mory
- Department of Conservative Dentistry and Orofacial Prosthodontics, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.); (A.C.-V.); (M.G.-P.)
| | - Rocío Cascos
- Department of Conservative Dentistry and Orofacial Prosthodontics, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.); (A.C.-V.); (M.G.-P.)
- Department of Nursing and Estomatology, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
- Department of Prosthetic Dentistry, School of Dentistry, European University of Madrid, 28670 Madrid, Spain
| | - Alicia Celemín-Viñuela
- Department of Conservative Dentistry and Orofacial Prosthodontics, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.); (A.C.-V.); (M.G.-P.)
| | - Cristina Gómez-Polo
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| | - Rubén Agustín-Panadero
- Prosthodontic and Occlusion Unit, Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain;
| | - Miguel Gómez-Polo
- Department of Conservative Dentistry and Orofacial Prosthodontics, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.); (A.C.-V.); (M.G.-P.)
| |
Collapse
|
11
|
Kongkiatkamon S, Rokaya D, Kengtanyakich S, Peampring C. Current classification of zirconia in dentistry: an updated review. PeerJ 2023; 11:e15669. [PMID: 37465158 PMCID: PMC10351515 DOI: 10.7717/peerj.15669] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
Zirconia, a crystalline oxide of zirconium, holds good mechanical, optical, and biological properties. The metal-free restorations, mostly consisting of all-ceramic/zirconia restorations, are becoming popular restorative materials in restorative and prosthetic dentistry choices for aesthetic and biological reasons. Dental zirconia has increased over the past years producing wide varieties of zirconia for prosthetic restorations in dentistry. At present, literature is lacking on the recent zirconia biomaterials in dentistry. Currently, no article has the latest information on the various zirconia biomaterials in dentistry. Hence, the aim of this article is to present an overview of recent dental zirconia biomaterials and tends to classify the recent zirconia biomaterials in dentistry. This article is useful for dentists, dental technicians, prosthodontists, academicians, and researchers in the field of dental zirconia.
Collapse
Affiliation(s)
- Suchada Kongkiatkamon
- Department of Prosthetic Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Dinesh Rokaya
- Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Santiphab Kengtanyakich
- Prosthodontic Section, Department of Restorative Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Chaimongkon Peampring
- Department of Prosthetic Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
12
|
Oyar P, Durkan R. The effects of heating rate and sintering time on the biaxial flexural strength of monolithic zirconia ceramics. BIOMED ENG-BIOMED TE 2023:bmt-2022-0338. [PMID: 36930871 DOI: 10.1515/bmt-2022-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
The strength of zirconia ceramic materials used in restorations is dependent upon sintering. Varying sintering protocols may affect the biaxial flexural strength of zirconia materials. This in vitro study was conducted to investigate the effects of sintering parameters on the biaxial flexural strength of monolithic zirconia. Two different monoblock zirconia ceramics were used. Following coloration, samples of both types of ceramics were divided into groups according to whether or not biaxial flexural strength testing was performed directly after sintering or following thermocycling. Biaxial flexural strength data was analysed with a Shapiro Wilk normality test, followed by 1-way ANOVA, Tukey post hoc tests for inter-group comparisons, and paired samples t-tests for intra-group comparisons. A significant difference was found between the biaxial flexural strengths of Zircon X and Upcera ceramics before thermocycling (p<0.05). In both Zircon X and Upcera ceramic groups, the thermocycling process created a significant difference in the biaxial flexural strength values of the ceramic samples in Group 6 (p<0.05) which had the slowest heating rate and longest holding time. The zirconia ceramics have higher BFS at higher heating rates either before or after thermocycling. The holding time has significant effects on thermocycling and flexural strength. The zirconia achieved its optimum strength when it sintered at longer time regardless of heating rates.
Collapse
Affiliation(s)
- Perihan Oyar
- Professor, Dental Prosthetics Technology, Vocational School of Health Services, Hacettepe University, Ankara, Türkiye
| | - Rukiye Durkan
- Department of Prosthodontics, Faculty of Dentistry, Istanbul Okan University, Istanbul, Türkiye
| |
Collapse
|
13
|
Mechanical Properties of Translucent Zirconia: An In Vitro Study. PROSTHESIS 2023. [DOI: 10.3390/prosthesis5010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: The introduction of translucent zirconia has improved mimetics: nevertheless, a reduction in the mechanical performance was registered. The study aim was to investigate the mechanical characteristics of a high-translucent zirconia used for monolithic restorations before and after the aging process compared to a low-translucent zirconia. Methods: A total of 23 specimens were used in the present study. Group A (n = 10) was made of a high-translucent Y-TZP; group B (n = 7) was made of a low-translucent Y-TZP and finally group C (n = 6) was an aged high-translucent Y-TZP. Flexural strength, fracture toughness, brittleness, microcrack’s propagation and grain size were analyzed. Results: The Vickers hardness was: 1483 ± 187 MPa (group C); 1102 ± 392 MPa (group A); 1284 ± 32 MPa (group B). The flexural strength was: 440 (±96.2) MPa (group C); 427 (±59.5) MPa (group A); 805 (±198.4) MPa (group B). The fracture toughness was: 5.1 (±0.7) MPa.m1/2 (group C); 4.9 (±0.9) MPa.m1/2 (group A); 8.9 (±1.1) MPa.m1/2 (group B). The brittleness was: 295 (±42.8) (group C), 230.9 (±46.4) (group A) and 144.9 (±20.3) (group B). The grain size was: 2.75 (±1.2) µm2 (group A); 0.16 (±0.05) µm2 (group B); 3.04 (±1.1) µm2 (group C). Conclusions: The significant reduction in the mechanical properties of high-translucent zirconia, compared to the traditional one, suggests their use in the anterior/lateral area (up to premolars).
Collapse
|
14
|
Kongkiatkamon S, Peampring C. Comparison of Regular and Speed Sintering on Low-Temperature Degradation and Fatigue Resistance of Translucent Zirconia Crowns for Implants: An In Vitro Study. J Funct Biomater 2022; 13:jfb13040281. [PMID: 36547541 PMCID: PMC9785840 DOI: 10.3390/jfb13040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although there are a few studies which compare fast and slow sintering in normal zirconia crowns, it is essential to compare the cracks and load-bearing capacity in zirconia screw-retained implant crowns between regular and speed sintering protocols. This research aimed to compare the surface structure, cracks, and load-bearing capacity in zirconia screw-retained implant crowns between regular sintering (RS) and speed sintering (SS) protocol with and without cyclic loading (fatigue). METHODS A total of 60 screw-retained crowns were fabricated from zirconia (Katana STML Block) by the CAD/CAM system. Then, 30 crowns were subjected to the RS protocol and 30 crowns were subjected to the SS protocol. Cyclic loading was done in half zirconia crowns (15 crowns in each group) using a chewing simulator CS-4.8/CS-4.4 at room temperature. The loading force was applied on the middle of the crowns by a metal stylus underwater at room temperature with a chewing simulator at an axial 50 N load for 240,000 cycles and lateral movement at 2 mm. Scanning electron microscopy was done to study the surface of the crowns and the cracks in the crowns of the regular and speed sintering protocols, with and without fatigue. RESULTS For the speed sintering group, the surface looks more uniform, and the crack lines are present at a short distance compared to regular sintering. The sintering protocol with a larger Weibull module and durability increases the reliability. It showed that the Speed group showed the maximum fracture load, followed by the regular, speed fatigue, and regular fatigue groups. The fracture load in various groups showed significant differences. CONCLUSIONS It was found that the speed group showed the maximum fracture load followed by the regular, speed fatigue, and regular fatigue. The crack lines ran from occlusal to bottoms (gingiva) and the arrest lines were perpendicular to the crack propagations.
Collapse
|