1
|
Ailawadhi S, Pafundi D, Peterson J. Advances and future directions in radiopharmaceutical delivery for cancer treatment. Expert Rev Anticancer Ther 2025; 25:351-361. [PMID: 40019019 DOI: 10.1080/14737140.2025.2472859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Targeted radiopharmaceutical therapies (RPTs) have emerged as a promising approach for the precise treatment of various cancers. Delivering ionizing radiation directly to cancer cells while sparing surrounding healthy tissue, radiopharmaceuticals offer enhanced efficacy and reduced toxicity compared to conventional external beam radiation therapy (i.e. photons and electrons). AREAS COVERED In the current era of personalized cancer care, the appropriate choice of RPTs for a clinical condition and the specific patient's care needs to be better understood. Several available RPT agents with their respective clinical applicability along with rapidly ongoing research in this field have now given RPTs the ability to lend themselves to a personalized medicine focus. This review provides an overview of recent advancements in RPT, including nuclide selection and development, molecular targeting strategies, radiopharmaceutical development, and clinical applications. EXPERT OPINION We discuss the underlying principles, challenges, and opportunities for future development. Furthermore, we explore emerging technologies and future directions in the field, highlighting the potential impact on personalized cancer care.
Collapse
Affiliation(s)
| | - Deanna Pafundi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Jennifer Peterson
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
2
|
Plichta KA, Buatti JM. The Emerging Potential of Lead-212 Theranostics. Hematol Oncol Clin North Am 2025; 39:221-236. [PMID: 39827042 DOI: 10.1016/j.hoc.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The field of theranostics uses radiopharmaceuticals to diagnose and treat disease, allowing for a personalized approach to treatment. Most theranostic therapies involve the use of beta-emitting radiopharmaceuticals. Because of their higher energies and decreased range, the use of alpha-emitting radiopharmaceuticals offers potential advantages over beta-emitting radiopharmaceuticals, including the potential for improved cell kill and decreased toxicity to normal tissues. This article focuses on the potential use of lead-212 as a theranostic treatment agent.
Collapse
Affiliation(s)
- Kristin A Plichta
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
3
|
Sobral MC, Mota SI, Oliveira PJ, Urbano AM, Paulo A. Two Targets, One Mission: Heterobivalent Metal-Based Radiopharmaceuticals for Prostate Cancer Imaging and Therapy. ChemMedChem 2025:e2500128. [PMID: 40117450 DOI: 10.1002/cmdc.202500128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/23/2025]
Abstract
Prostate cancer (PCa) is a significant healthcare challenge, associated with considerable mortality and morbidity among men, particularly in developed countries. PCa mortality and morbidity are primarily related to its most advanced form, metastatic castration-resistant PCa (mCRPC), for which there is presently no cure. Therefore, novel therapeutic approaches to increase mCRPC survival are critically needed. Due to PCa tumor heterogeneity and a complex tumor microenvironment, the efficacy of single-target radiopharmaceuticals, such as the Food and Drug Administration-approved [177Lu]Lu-PSMA-617, is currently under reassessment. The design and development of PCa dual-target radiopharmaceuticals have garnered considerable attention, due to their benefits over single-target counterparts, namely increased therapeutic specificity and efficacy, as well as the ability to overcome the challenge of inconsistent tumor visualization caused by variable receptor expression across diverse lesions, thereby enabling more comprehensive imaging. Several PCa biomarkers are currently being investigated as potential targets for dual-target radiopharmaceuticals, including prostate-specific membrane antigen, gastrin-releasing peptide receptor, integrin αvβ3 receptor, fibroblast activation protein, sigma-1 receptor, as well as albumin, the radiosensitive cell nucleus, and mitochondria. This review explores recent advancements in heterobivalent metal-based radiopharmaceuticals for dual targeting in PCa, highlighting their significance in theranostic and personalized medicine.
Collapse
Affiliation(s)
- Margarida C Sobral
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548, Coimbra, Portugal
- Molecular Physical Chemistry R&D Unit, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Sandra I Mota
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Ana M Urbano
- Molecular Physical Chemistry R&D Unit, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3001-301, Coimbra, Portugal
| | - António Paulo
- C2TN -Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, University of Lisboa, 2695-066, Lisboa, Portugal
- Department of Engineering and Nuclear Sciences, Instituto Superior Técnico, University of Lisboa, 2695-066, Lisboa, Portugal
| |
Collapse
|
4
|
Mortezaei A, Taghlabi KM, Al-Saidi N, Amasa S, Whitehead RE, Hoang A, Yaeger K, Faraji AH, Kadirvel R, Ghozy S. Advanced targeted microsphere embolization for arteriovenous malformations: state-of-the-art and future directions. Neuroradiology 2025:10.1007/s00234-025-03584-3. [PMID: 40088307 DOI: 10.1007/s00234-025-03584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Arteriovenous malformations (AVMs) present a significant therapeutic challenge, as current treatment modalities frequently fail to achieve complete and rapid obliteration and are associated with substantial morbidity in both the short and long term. This underscores the critical need for innovative therapeutic strategies that enable efficient AVM obliteration while minimizing patient risk. The current review aims to comprehensively assess the role of ATME in AVM management, examining its clinical efficacy, associated risks and benefits, and the economic and ethical implications to provide valuable foundation for future studies and guiding development in treatment strategies for AVMs. RESULTS Advanced targeted microsphere embolization (ATME) has emerged as a promising therapeutic option, initially developed for the localized treatment of AVMs and unresectable tumors, including liver cancer. By providing targeted delivery, ATME offers potential advantages over conventional approaches in achieving effective local control. CONCLUSIONS ATME are safe and effective for vascular disease and cancer. Although evidence for microspheres in AVMs is scarce, results are promising. Future research could refine eligibility criteria, evaluate treatment techniques, and optimize ATME.
Collapse
Affiliation(s)
- Ali Mortezaei
- Gonabad University of Medical Sciences, Gonabad, Iran
- Clinical Innovations Laboratory, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Khaled M Taghlabi
- Clinical Innovations Laboratory, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX, USA.
| | - Nadir Al-Saidi
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA.
| | - Saketh Amasa
- Department of Neurosurgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Rachael E Whitehead
- Clinical Innovations Laboratory, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alex Hoang
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Kurt Yaeger
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Amir H Faraji
- Clinical Innovations Laboratory, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Ramanathan Kadirvel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Sherief Ghozy
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Berner K, Hernes E, Kvassheim M, Revheim ME, Bastiansen J, Selboe S, Bakken CL, Grønningsæter SR, Bruland ØS, Larsen RH, Bouzelmat L, Jardine VL, Stokke C. First-in-Human Phase 0 Study of AB001, a Prostate-Specific Membrane Antigen-Targeted 212Pb Radioligand, in Patients with Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2025:jnumed.124.269299. [PMID: 40081958 DOI: 10.2967/jnumed.124.269299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
AB001, a prostate-specific membrane antigen (PSMA)-targeted small molecule labeled with the in vivo-generating α-emitter 212Pb, was investigated in a phase 0 trial in patients with metastatic castration-resistant prostate cancer (mCRPC). The primary objective was to explore the feasibility of γ-camera imaging to assess biodistribution and uptake in metastatic lesions. Methods: Three patients with progressive mCRPC and Eastern Cooperative Oncology Group performance status 1 were included, having prostate-specific antigen levels of 0.44, 0.75, and 15 µg/L. All had at least 3 PSMA-expressing metastatic lesions, with an SUVmax range of 10.1-77.4 on PSMA PET. Each patient received a microdose of 9.4 ± 0.3 MBq of AB001 intravenously. Planar γ-camera and SPECT/CT imaging was scheduled 1-3 h and 16-24 h after administration. Whole-body clearance was assessed with NaI probe measurements. Activity of 212Pb in whole blood and plasma was measured to investigate clearance from blood and in vivo stability of the ligand. Safety, tolerability, and efficacy biomarkers (prostate-specific antigen, alkaline phosphatase) were followed for 28 d. Results: AB001 uptake in the lesion with the highest PSMA expression, a retrocaval lymph node metastasis with a short-axis diameter of 11 mm, was visualized on SPECT. Uptake of AB001 was not clearly demonstrated for other metastatic lesions, possibly because of the lower PSMA expression of these metastases on PSMA PET, combined with the administered AB001 microdose and imaging system limitations. Kidney, urinary bladder with contents, and liver uptake of AB001 were clearly distinguishable from adjacent tissue, and the blood pool content was seen. Salivary glands were not visualized. Blood analyses indicated stability of AB001 after injection, and whole-body probe measurements demonstrated an effective half-life of 8 h. There were no complications related to injection of AB001 or adverse reactions during follow-up. As expected for a phase 0 study, there was no indication of therapeutic effects as assessed by prostate-specific antigen and alkaline phosphatase. Conclusion: The 212Pb-based radioligand AB001 was safely administered to mCRPC patients. γ-camera imaging of AB001 was feasible, even at a microdose, and demonstrated metastatic targeting, albeit for only 1 lesion. The promising biodistribution and clearance encourage further clinical investigation.
Collapse
Affiliation(s)
- Kjetil Berner
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Eivor Hernes
- Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Monika Kvassheim
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Intervention Centre, Oslo University Hospital, Oslo, Norway
| | | | - Silje Selboe
- Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Simen R Grønningsæter
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Øyvind S Bruland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | - Caroline Stokke
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway;
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Lacerda S, de Kruijff RM, Djanashvili K. The Advancement of Targeted Alpha Therapy and the Role of Click Chemistry Therein. Molecules 2025; 30:1296. [PMID: 40142070 PMCID: PMC11944744 DOI: 10.3390/molecules30061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Recent years have seen a swift rise in the use of α-emitting radionuclides such as 225Ac and 223Ra as various radiopharmaceuticals to treat (micro)metastasized tumors. They have shown remarkable effectiveness in clinical practice owing to the highly cytotoxic α-particles that are emitted, which have a very short range in tissue, causing mainly double-stranded DNA breaks. However, it is essential that both chelation and targeting strategies are optimized for their successful translation to clinical application, as α-emitting radionuclides have distinctly different features compared to β--emitters, including their much larger atomic radius. Furthermore, upon α-decay, any daughter nuclide irrevocably breaks free from the targeting molecule, known as the recoil effect, dictating the need for faster targeting to prevent healthy tissue toxicity. In this review we provide a brief overview of the current status of targeted α-therapy and highlight innovations in α-emitter-based chelator design, focusing on the role of click chemistry to allow for fast complexation to biomolecules at mild labeling conditions. Finally, an outlook is provided on different targeting strategies and the role that pre-targeting can play in targeted alpha therapy.
Collapse
Affiliation(s)
- Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, France;
| | - Robin M. de Kruijff
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
| | - Kristina Djanashvili
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, Hu Y, Shi J. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther 2025; 10:74. [PMID: 40038239 DOI: 10.1038/s41392-024-02107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/01/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025] Open
Abstract
The successful approval of peptide-based drugs can be attributed to a collaborative effort across multiple disciplines. The integration of novel drug design and synthesis techniques, display library technology, delivery systems, bioengineering advancements, and artificial intelligence have significantly expedited the development of groundbreaking peptide-based drugs, effectively addressing the obstacles associated with their character, such as the rapid clearance and degradation, necessitating subcutaneous injection leading to increasing patient discomfort, and ultimately advancing translational research efforts. Peptides are presently employed in the management and diagnosis of a diverse array of medical conditions, such as diabetes mellitus, weight loss, oncology, and rare diseases, and are additionally garnering interest in facilitating targeted drug delivery platforms and the advancement of peptide-based vaccines. This paper provides an overview of the present market and clinical trial progress of peptide-based therapeutics, delivery platforms, and vaccines. It examines the key areas of research in peptide-based drug development through a literature analysis and emphasizes the structural modification principles of peptide-based drugs, as well as the recent advancements in screening, design, and delivery technologies. The accelerated advancement in the development of novel peptide-based therapeutics, including peptide-drug complexes, new peptide-based vaccines, and innovative peptide-based diagnostic reagents, has the potential to promote the era of precise customization of disease therapeutic schedule.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wenjie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junyi Mao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yonghe Hu
- School of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
8
|
Abdlkadir AS, Rosar F, Jalilian A, Moghrabi S, Al-Balooshi B, Rabei O, Kairemo K, Al-Ibraheem A. Harnessing Terbium Radioisotopes for Clinical Advancements: A Systematic Review. Nucl Med Mol Imaging 2025; 59:50-61. [PMID: 39881968 PMCID: PMC11772629 DOI: 10.1007/s13139-024-00891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 01/23/2025] Open
Abstract
Background this systematic review was conducted to assess the practical application of terbium radioisotopes, utilizing systematic search methodologies to identify relevant studies. Methods the databases of PubMed, Web of Science, and Scopus were systematically scoured, targeting the research on four terbium isotopes: 149 Tb, 152 Tb, 155 Tb, and 161 Tb. Various combinations of keywords related to terbium and its four radioisotopes were used in the search process. The search encompassed studies conducted up to July 27, 2024. Results following the removal of 335 duplicate research articles, a cohort of 429 papers was curated for potential inclusion in the study. Out of 429 articles reviewed, a mere nine addressed the potential uses of 161 Tb and 152 Tb. Notably, 155 Tb and 149 Tb have yet to be examined in human subjects. Conclusions the research trajectory is now veering towards clinical studies that provide in-human data, with the goal of advancing radiotheranostics and nuclear oncology. The preliminary outcomes are stimulating and have led to the initiation of several clinical trials. The success of these trials and the establishment of production facilities will be critical for the clinical adoption of these agents.
Collapse
Affiliation(s)
- Ahmed Saad Abdlkadir
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Queen Rania Street, Al Jubeiha, Amman, 11942 Jordan
| | - Florian Rosar
- Department of Nuclear Medicine, Saarland University – Medical Center, 66123 Homburg, Germany
| | - Amireza Jalilian
- Division of Physical and Chemical Sciences, International Atomic Energy Agency, 1220 Vienna, Austria
| | - Serin Moghrabi
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Queen Rania Street, Al Jubeiha, Amman, 11942 Jordan
| | - Batool Al-Balooshi
- Dubai Nuclear Medicine and Molecular Imaging Center, Dubai Health Authority, 1853 Dubai, UAE
| | - Obayda Rabei
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Queen Rania Street, Al Jubeiha, Amman, 11942 Jordan
| | - Kalevi Kairemo
- Department of Molecular Radiotherapy and Nuclear Medicine, International Comprehensive Cancer Center Docrates, Saukonpaadenranta 2, 00180 Helsinki, Finland
- Department of Nuclear Medicine, University of Texas, MD Anderson Cancer Center, Holcombe Blvd, Houston, TX 77030 USA
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Queen Rania Street, Al Jubeiha, Amman, 11942 Jordan
- School of Medicine, The University of Jordan, Amman, 11942 Jordan
| |
Collapse
|
9
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
10
|
Wenker STM, van Lith SAM, Tamborino G, Konijnenberg MW, Bussink J, Heskamp S. The potential of targeted radionuclide therapy to treat hypoxic tumor cells. Nucl Med Biol 2025; 140-141:108971. [PMID: 39579561 DOI: 10.1016/j.nucmedbio.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Tumor hypoxia contributes to cancer progression and therapy resistance. Several strategies have been investigated to relieve tumor hypoxia, of which some were successful. However, their clinical application remains challenging and therefore they are not used in daily clinical practice. Here, we review the potential of targeted radionuclide therapy (TRT) to eradicate hypoxic cancer cells. We present an overview of the published TRT strategies using β--particles, α-particles, and Auger electrons. Altogether, we conclude that α-particle emitting radionuclides are most promising since they can cause DNA double strand breaks independent of oxygen levels. Future directions for research are addressed, including more adequate in vitro and in vivo models to proof the potential of TRT to eliminate hypoxic cancer cells. Furthermore, dosimetry and radiobiology are identified as key to better understand the mechanism of action and dose-response relationships in hypoxic tumor areas. Finally, we can conclude that in order to achieve long-term anti-tumor efficacy, TRT combination treatment strategies may be necessary.
Collapse
Affiliation(s)
- S T M Wenker
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands; Department of Radiation Oncology, Radiotherapy & Oncoimmunology laboratory, Radboudumc, Nijmegen, the Netherlands
| | - S A M van Lith
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| | - G Tamborino
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - M W Konijnenberg
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - J Bussink
- Department of Radiation Oncology, Radiotherapy & Oncoimmunology laboratory, Radboudumc, Nijmegen, the Netherlands
| | - S Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
De Nardo L, Santi S, Dalla Pietà A, Ferro-Flores G, Azorín-Vega E, Nascimbene E, Barbieri V, Zorz A, Rosato A, Meléndez-Alafort L. Comparison of the dosimetry and cell survival effect of 177Lu and 161Tb somatostatin analog radiopharmaceuticals in cancer cell clusters and micrometastases. EJNMMI Phys 2024; 11:94. [PMID: 39535653 PMCID: PMC11561253 DOI: 10.1186/s40658-024-00696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND 177Lu-based radiopharmaceuticals (RPs) are the most used for targeted radionuclide therapy (TRT) due to their good response rates. However, the worldwide availability of 177Lu is limited. 161Tb represents a potential alternative for TRT, as it emits photons for SPECT imaging, β--particles for therapy, and also releases a significant yield of internal conversion (IE) and Auger electrons (AE). This research aimed to evaluate cell dosimetry with the MIRDcell code considering a realistic localization of three 161Tb- and 177Lu-somatostatin (SST) analogs in different subcellular regions as reported in the literature, various cell cluster sizes (25-1000 µm of radius) and percentage of labeled cells. Experimental values of the α- and β-survival coefficients determined by external beam photon irradiation were used to estimate the survival fraction (SF) of AR42J pancreatic cell clusters and micrometastases. RESULTS The different localization of RPs labeled with the same radionuclide within the cells, resulted in only slight variations in the dose absorbed by the nuclei (ADN) of the labeled cells with no differences observed in either the unlabeled cells or the SF. ADN of labeled cells (MDLC) produced by 161Tb-RPs were from 2.8-3.7 times higher than those delivered by 177Lu-RPs in cell clusters with a radius lower than 0.1 mm and 10% of labeled cells, due to the higher amount of energy emitted by 161Tb-disintegration in form of IE and AE. However, the 161Tb-RPs/177Lu-RPs MDLC ratio decreased below 1.6 in larger cell clusters (0.5-1 mm) with > 40% labeled cells, due to the significantly higher 177Lu-RPs cross-irradiation contribution. Using a fixed number of disintegrations, SFs of 161Tb-RPs in clusters with > 40% labeled cells were lower than those of 177Lu-RPs, but when the same amount of emitted energy was used no significant differences in SF were observed between 177Lu- and 161Tb-RPs, except for the smallest cluster sizes. CONCLUSIONS Despite the emissions of IE and AE from 161Tb-RPs, their localization within different subcellular regions exerted a negligible influence on the ADN. The same cell damage produced by 177Lu-RPs could be achieved using smaller quantities of 161Tb-RPs, thus making 161Tb a suitable alternative for TRT.
Collapse
Affiliation(s)
- Laura De Nardo
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131, Padua, Italy
- INFN-Padua, National Institute of Nuclear Physics, Via Marzolo 8, 35131, Padua, Italy
| | - Sara Santi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, 35128, Padua, Italy
| | - Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, 35128, Padua, Italy
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, National Institute of Nuclear Research (ININ), Carretera México-Toluca S/N, La Marquesa, 52750, Ocoyoacac, Mexico
| | - Erika Azorín-Vega
- Department of Radioactive Materials, National Institute of Nuclear Research (ININ), Carretera México-Toluca S/N, La Marquesa, 52750, Ocoyoacac, Mexico
| | - Emma Nascimbene
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128, Padua, Italy
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, 35128, Padua, Italy
| | - Alessandra Zorz
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128, Padua, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, 35128, Padua, Italy
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128, Padua, Italy
| | - Laura Meléndez-Alafort
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128, Padua, Italy.
| |
Collapse
|
12
|
Nelson BJ, Krol V, Bansal A, Andersson JD, Wuest F, Pandey MK. Aspects and prospects of preclinical theranostic radiopharmaceutical development. Theranostics 2024; 14:6446-6470. [PMID: 39479448 PMCID: PMC11519794 DOI: 10.7150/thno.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
This article provides an overview of preclinical theranostic radiopharmaceutical development, highlighting aspects of the preclinical development stages that can lead towards a clinical trial. The key stages of theranostic radiopharmaceutical development are outlined, including target selection, tracer development, radiopharmaceutical synthesis, automation and quality control, in vitro radiopharmaceutical analysis, selecting a suitable in vivo model, preclinical imaging and pharmacokinetic analysis, preclinical therapeutic analysis, dosimetry, toxicity, and preparing for clinical translation. Each stage is described and augmented with examples from the literature. Finally, an outlook on the prospects for the radiopharmaceutical theranostics field is provided.
Collapse
Affiliation(s)
- Bryce J.B. Nelson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
| | - Viktoria Krol
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan D. Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Mihei Y, Tani K, Ichinose J, Nagatsu K, Fukushi M, Kurihara O, Inoue K. Energy resolution improvement in simplified alpha spectroscopy for radionuclidic purity tests on 225Ac production floors. RADIATION PROTECTION DOSIMETRY 2024; 200:1443-1449. [PMID: 39231508 DOI: 10.1093/rpd/ncae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/16/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024]
Abstract
This study investigated the feasibility of a simplified method of alpha spectroscopy for radionuclidic purity tests at 225Ac production sites that eliminates the need for a vacuum chamber. The impact of enhancing the energy resolution using a collimator was evaluated through radiation transport simulations. The results showed that a full width at tenth maximum (FWTM) of <300 keV was achieved for alpha particles from 241Am, for which the main energy peak was 5.5 MeV. Experimental validation using an electrodeposition source containing 237Np, 241Am, and 244Cm confirmed an FWTM of 272 keV for both 241Am and 244Cm. These two peaks, with a difference of ~300 keV, were effectively separated. In response to the growing demand for targeted radioisotope therapy, this simplified alpha spectroscopy method offers the potential to detect 226Ra mixed with 225Ac generated by accelerators, given the alpha energy difference of ~700 keV.
Collapse
Affiliation(s)
- Yuma Mihei
- Department of Radiation Measurement and Dose Assessment, Institute of Radiological Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawaku, Tokyo 116-8551, Japan
| | - Kotaro Tani
- Department of Radiation Measurement and Dose Assessment, Institute of Radiological Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawaku, Tokyo 116-8551, Japan
| | - Jun Ichinose
- Department of Advanced Nuclear Medicine Sciences, Institute of medical Science, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Sciences, Institute of medical Science, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
| | - Masahiro Fukushi
- Department of Radiological Technology, Faculty of Health Science, Tsukuba International University, 6-20-1 Manabe, Tsuchiura, Ibaraki 300-0051, Japan
| | - Osamu Kurihara
- Department of Radiation Measurement and Dose Assessment, Institute of Radiological Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
| | - Kazumasa Inoue
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawaku, Tokyo 116-8551, Japan
| |
Collapse
|
14
|
Li K, Wang Q, Gao X, Xi H, Hua D, Jiang H, Qiu L, Lin J. Targeted delivery of activatable 131I-radiopharmaceutical for sustained radiotherapy with improved pharmacokinetics. J Control Release 2024; 373:967-977. [PMID: 38971427 DOI: 10.1016/j.jconrel.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Targeted radionuclide therapy (TRT) is an effective treatment for tumors. Self-condensation strategies can enhance the retention of radionuclides in tumors and enhance the anti-tumor effect. Considering legumain is overexpressed in multiple types of human cancers, a 131I-labeled radiopharmaceutical ([131I]MAAN) based on the self-condensation reaction between 2-cyanobenzothiazole (CBT) and cysteine (Cys) was developed by us recently for treating legumain-overexpressed tumors. However, liver enrichment limits its application. In this study, a new radiopharmaceutical [131I]IM(HE)3AAN was designed and synthesized by introducing a hydrophilic peptide sequence His-Glu-His-Glu-His-Glu ((HE)3) into [131I]MAAN to optimize the pharmacokinetics. Upon activation by legumain under a reducing environment, hydrophilic [131I]IM(HE)3AAN could react with its precursor to form heterologous dimer [131I]H-Dimer that is highly hydrophobic. Cerenkov imaging revealed that [131I]IM(HE)3AAN displayed superior tumor selectivity and longer tumor retention time as compared with [131I]MAAN, with a significant reduction in the liver uptake. After an 18-day treatment with [131I]IM(HE)3AAN, the tumor proliferation was obviously inhibited, while no obvious injury was observed in the normal organs. These findings suggest that [131I]IM(HE)3AAN could serve as a promising drug candidate for treating legumain-overexpressed tumors.
Collapse
Affiliation(s)
- Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qiqi Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiaoqing Gao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongjie Xi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Di Hua
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
15
|
Gharibkandi NA, Wawrowicz K, Walczak R, Majkowska-Pilip A, Wierzbicki M, Bilewicz A. 109Pd/ 109mAg in-vivo generator in the form of nanoparticles for combined β - - Auger electron therapy of hepatocellular carcinoma. EJNMMI Radiopharm Chem 2024; 9:59. [PMID: 39136900 PMCID: PMC11322470 DOI: 10.1186/s41181-024-00293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Convenient therapeutic protocols for hepatocellular carcinoma (HCC) are often ineffective due to late diagnosis and high tumor heterogeneity, leading to poor long-term outcomes. However, recently performed studies suggest that using nanostructures in liver cancer treatment may improve therapeutic effects. Inorganic nanoparticles represent a unique material that tend to accumulate in the liver when introduced in-vivo. Typically, this is a major drawback that prevents the therapeutic use of nanoparticles in medicine. However, in HCC tumours, this may be advantageous because nanoparticles may accumulate in the target organ, where the leaky vasculature of HCC causes their accumulation in tumour cells via the EPR effect. On the other hand, recent studies have shown that combining low- and high-LET radiation emitted from the same radionuclide, such as 161Tb, can increase the effectiveness of radionuclide therapy. Therefore, to improve the efficacy of radionuclide therapy for hepatocellular carcinoma, we suggest utilizing radioactive palladium nanoparticles in the form of 109Pd/109mAg in-vivo generator that simultaneously emits β- particles and Auger electrons. RESULTS Palladium nanoparticles with a size of 5 nm were synthesized using 109Pd produced through neutron irradiation of natural palladium or enriched 108Pd. Unlike the 109Pd-cyclam complex, where the daughter radionuclide diffuses away from the molecules, 109mAg remains within the nanoparticles after the decay of 109Pd. In vitro cell studies using radioactive 109Pd nanoparticles revealed that the nanoparticles accumulated inside cells, reaching around 50% total uptake. The 109Pd-PEG nanoparticles exhibited high cytotoxicity, even at low levels of radioactivity (6.25 MBq/mL), resulting in almost complete cell death at 25 MBq/mL. This cytotoxic effect was significantly greater than that of PdNPs labeled with β- (131I) and Auger electron emitters (125I). The metabolic viability of HCC cells was found to be correlated with cell DNA DSBs. Also, successful radioconjugate anticancer activity was observed in three-dimensional tumor spheroids, resulting in a significant treatment response. CONCLUSION The results indicate that nanoparticles labeled with 109Pd can be effectively used for combined β- - Auger electron-targeted radionuclide therapy of HCC. Due to the decay of both components (β- and Auger electrons), the 109Pd/109mAg in-vivo generator presents a unique potential in this field.
Collapse
Affiliation(s)
- Nasrin Abbasi Gharibkandi
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland
| | - Kamil Wawrowicz
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland.
- Department of Nuclear Medicine, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 St, Warsaw, 02-507, Poland.
| | - Mateusz Wierzbicki
- Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 St, Warsaw, 02-786, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland.
| |
Collapse
|
16
|
Pougoue Ketchemen J, Njotu FN, Babeker H, Ahenkorah S, Tikum AF, Nwangele E, Henning N, Cleeren F, Fonge H. Effectiveness of [ 67Cu]Cu-trastuzumab as a theranostic against HER2-positive breast cancer. Eur J Nucl Med Mol Imaging 2024; 51:2070-2084. [PMID: 38376808 DOI: 10.1007/s00259-024-06648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE To evaluate the imaging and therapeutic properties (theranostic) of 67Cu-labeled anti-human epidermal growth factor receptor II (HER2) monoclonal antibody trastuzumab against HER2-positive breast cancer (BC). METHODS We conjugated trastuzumab with p-SCN-Bn-NOTA, 3p-C-NETA-NCS, or p-SCN-Bn-DOTA, and radiolabeled with [67Cu]CuCl2. Immunoconjugate internalization was evaluated in BT-474, JIMT-1 and MCF-7 BC cells. In vitro stability was studied in human serum (HS) and Phosphate Buffered Saline (PBS). Flow cytometry, radioligand binding and immunoreactive fraction assays were carried out. ImmunoSPECT imaging of [67Cu]Cu-NOTA-trastuzumab was done in mice bearing BT-474, JIMT-1 and MCF-7 xenografts. Pharmacokinetic was studied in healthy Balb/c mice while dosimetry was done in both healthy Balb/c and in athymic nude mice bearing JIMT-1 xenograft. The therapeutic effectiveness of [67Cu]Cu-NOTA-trastuzumab was evaluated in mice bearing BT-474 and JIMT-1 xenografts after a single intravenous (i.v.) injection of ~ 16.8 MBq. RESULTS Pure immunoconjugates and radioimmunoconjugates (> 95%) were obtained. Internalization was HER2 density-dependent with highest internalization observed with NOTA-trastuzumab. After 5 days, in vitro stabilities were 97 ± 1.7%, 31 ± 6.2%, and 28 ± 4% in HS, and 79 ± 3.5%, 94 ± 1.2%, and 86 ± 2.3% in PBS for [67Cu]Cu-NOTA-trastuzumab, [67Cu]Cu-3p-C-NETA-trastuzumab and [67Cu]Cu-DOTA-trastuzumab, respectively. [67Cu]Cu-NOTA-trastuzumab was chosen for further evaluation. BT-474 flow cytometry showed low KD, 8.2 ± 0.2 nM for trastuzumab vs 26.5 ± 1.6 nM for NOTA-trastuzumab. There were 2.9 NOTA molecules per trastuzumab molecule. Radioligand binding assay showed a low KD of 2.1 ± 0.4 nM and immunoreactive fraction of 69.3 ± 0.9. Highest uptake of [67Cu]Cu-NOTA-trastuzumab was observed in JIMT-1 (33.9 ± 5.5% IA/g) and BT-474 (33.1 ± 10.6% IA/g) xenograft at 120 h post injection (p.i.). Effectiveness of the radioimmunoconjugate was also expressed as percent tumor growth inhibition (%TGI). [67Cu]Cu-NOTA-trastuzumab was more effective than trastuzumab against BT-474 xenografts (78% vs 54% TGI after 28 days), and JIMT-1 xenografts (90% vs 23% TGI after 19 days). Mean survival of [67Cu]Cu-NOTA-trastuzumab, trastuzumab and saline treated groups were > 90, 77 and 72 days for BT-474 xenografts, while that of JIMT-1 were 78, 24, and 20 days, respectively. CONCLUSION [67Cu]Cu-NOTA-trastuzumab is a promising theranostic agent against HER2-positive BC.
Collapse
Affiliation(s)
- Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Fabrice Ngoh Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Lab. Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
| | - Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Lab. Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
| | - Stephen Ahenkorah
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, Leuven, Belgium
| | - Anjong Florence Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Emmanuel Nwangele
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Lab. Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
| | - Nikita Henning
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, Leuven, Belgium
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada.
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK, S7N 0W8, Canada.
| |
Collapse
|
17
|
Shea AG, Idrissou MB, Torres AI, Chen T, Hernandez R, Morris ZS, Sodji QH. Immunological effects of radiopharmaceutical therapy. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1331364. [PMID: 39355211 PMCID: PMC11440989 DOI: 10.3389/fnume.2024.1331364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 10/03/2024]
Abstract
Radiation therapy (RT) is a pillar of cancer therapy used by more than half of all cancer patients. Clinically, RT is mostly delivered as external beam radiation therapy (EBRT). However, the scope of EBRT is limited in the metastatic setting, where all sites of disease need to be irradiated. Such a limitation is attributed to radiation-induced toxicities, for example on bone marrow and hematologic toxicities, resulting from a large EBRT field. Radiopharmaceutical therapy (RPT) has emerged as an alternative to EBRT for the irradiation of all sites of metastatic disease. While RPT can reduce tumor burden, it can also impact the immune system and anti-tumor immunity. Understanding these effects is crucial for predicting and managing treatment-related hematological toxicities and optimizing their integration with other therapeutic modalities, such as immunotherapies. Here, we review the immunomodulatory effects of α- and β-particle emitter-based RPT on various immune cell lines, such as CD8+ and CD4+ T cells, natural killer (NK) cells, and regulatory T (Treg) cells. We briefly discuss Auger electron-emitter (AEE)-based RPT, and finally, we highlight the combination of RPT with immune checkpoint inhibitors, which may offer potential therapeutic synergies for patients with metastatic cancers.
Collapse
Affiliation(s)
- Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Malick Bio Idrissou
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ana Isabel Torres
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tessa Chen
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Reiner Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Quaovi H. Sodji
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
Ramonaheng K, Qebetu M, Ndlovu H, Swanepoel C, Smith L, Mdanda S, Mdlophane A, Sathekge M. Activity quantification and dosimetry in radiopharmaceutical therapy with reference to 177Lutetium. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1355912. [PMID: 39355215 PMCID: PMC11440950 DOI: 10.3389/fnume.2024.1355912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 10/03/2024]
Abstract
Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Milani Qebetu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cecile Swanepoel
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Liani Smith
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Mdlophane
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Peters S, Tran-Gia J, Agius S, Ivashchenko OV, Badel JN, Cremonesi M, Kurth J, Gabiña PM, Richetta E, Gleisner KS, Tipping J, Bardiès M, Stokke C. Implementation of dosimetry for molecular radiotherapy; results from a European survey. Phys Med 2024; 117:103196. [PMID: 38104033 DOI: 10.1016/j.ejmp.2023.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
PURPOSE The use of molecular radiotherapy (MRT) has been rapidly evolving over the last years. The aim of this study was to assess the current implementation of dosimetry for MRTs in Europe. METHODS A web-based questionnaire was open for treating centres between April and June 2022, and focused on 2020-2022. Questions addressed the application of 16 different MRTs, the availability and involvement of medical physicists, software used, quality assurance, as well as the target regions for dosimetry, whether treatment planning and/or verification were performed, and the dosimetric methods used. RESULTS A total of 173 responses suitable for analysis was received from centres performing MRT, geographically distributed over 27 European countries. Of these, 146 centres (84 %) indicated to perform some form of dosimetry, and 97 % of these centres had a medical physicist available and almost always involved in dosimetry. The most common MRTs were 131I-based treatments for thyroid diseases and thyroid cancer, and [223Ra]RaCl2 for bone metastases. The implementation of dosimetry varied widely between therapies, from almost all centres performing dosimetry-based planning for microsphere treatments to none for some of the less common treatments (like 32P sodium-phosphate for myeloproliferative disease and [89Sr]SrCl2 for bone metastases). CONCLUSIONS Over the last years, implementation of dosimetry, both for pre-therapeutic treatment planning and post-therapy absorbed dose verification, increased for several treatments, especially for microsphere treatments. For other treatments that have moved from research to clinical routine, the use of dosimetry decreased in recent years. However, there are still large differences both across and within countries.
Collapse
Affiliation(s)
- Steffie Peters
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Sam Agius
- Medical Imaging Department and Radioisotope Unit, Mater Dei Hospital, Msida, Malta
| | - Oleksandra V Ivashchenko
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Jean Noël Badel
- Centre de Lutte Contre le Cancer Léon-Bérard, CREATIS CNRS UMR 5220 INSERM U 1044, Université de Lyon, INSA-Lyon, Lyon, France
| | - Marta Cremonesi
- Unit of Radiation Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Pablo Minguez Gabiña
- Department of Medical Physics and Radiation Protection, Gurutzeta-Cruces University Hospital/Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Elisa Richetta
- Medical Physics Department, AO Ordine Mauriziano, Turin, Italy
| | | | - Jill Tipping
- The Christie NHS Foundation Trust, Nuclear Medicine, Manchester, UK
| | - Manuel Bardiès
- IRCM, UMR 1194 INSERM, Université de Montpellier and Institut Régional du Cancer de Montpellier (ICM), France & Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier (ICM), France
| | - Caroline Stokke
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway.
| |
Collapse
|
20
|
Sjögreen-Gleisner K, Flux G, Bacher K, Chiesa C, de Nijs R, Kagadis GC, Lima T, Georgosopoulou ML, Gabiña PM, Nekolla S, Peters S, Santos J, Sattler B, Stokke C, Tran-Gia J, Gilligan P, Bardiès M. EFOMP policy statement NO. 19: Dosimetry in nuclear medicine therapy - Molecular radiotherapy. Phys Med 2023; 116:103166. [PMID: 37926641 DOI: 10.1016/j.ejmp.2023.103166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
The European Council Directive 2013/59/Euratom (BSS Directive) includes optimisation of treatment with radiotherapeutic procedures based on patient dosimetry and verification of the absorbed doses delivered. The present policy statement summarises aspects of three directives relating to the therapeutic use of radiopharmaceuticals and medical devices, and outlines the steps needed for implementation of patient dosimetry for radioactive drugs. To support the transition from administrations of fixed activities to personalised treatments based on patient-specific dosimetry, EFOMP presents a number of recommendations including: increased networking between centres and disciplines to support data collection and development of codes-of-practice; resourcing to support an infrastructure that permits routine patient dosimetry; research funding to support investigation into individualised treatments; inter-disciplinary training and education programmes; and support for investigator led clinical trials. Close collaborations between the medical physicist and responsible practitioner are encouraged to develop a similar pathway as is routine for external beam radiotherapy and brachytherapy. EFOMP's policy is to promote the roles and responsibilities of medical physics throughout Europe in the development of molecular radiotherapy to ensure patient benefit. As the BSS directive is adopted throughout Europe, unprecedented opportunities arise to develop informed treatments that will mitigate the risks of under- or over-treatments.
Collapse
Affiliation(s)
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Sutton, Surrey, UK
| | - Klaus Bacher
- Medical Physics, Ghent University, Ghent, Belgium
| | - Carlo Chiesa
- Nuclear Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Robin de Nijs
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - George C Kagadis
- 3DMI Research Group, Department of Medical Physics, University of Patras, Rion, Greece
| | - Thiago Lima
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, Lucerne, Switzerland/Faculty of Health Sciences and Medicine, University of Lucerne, Switzerland
| | | | - Pablo Minguez Gabiña
- Department of Medical Physics and Radiation Protection, Gurutzeta-Cruces University Hospital /Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Stephan Nekolla
- School of Medicine and Health, Department of Nuclear Medicine, Technical University Munich, Munich, Germany
| | - Steffie Peters
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joao Santos
- Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto Research Center, Portuguese Oncology Institute of Porto/Porto Comprehensive Cancer Center & Health Research Network, Porto, Portugal
| | - Bernhard Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, Germany
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway & Department of Physics, University of Oslo, Oslo, Norway
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Paddy Gilligan
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Manuel Bardiès
- IRCM, UMR 1194 INSERM, Université de Montpellier and Institut Régional du Cancer de Montpellier (ICM), France & Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier (ICM), France
| |
Collapse
|
21
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
22
|
Riveira-Martin M, Struelens L, Muñoz Iglesias J, Schoonjans W, Tabuenca O, Nogueiras JM, Salvador Gómez FJ, López Medina A. Radiation exposure assessment of nuclear medicine staff administering [ 177Lu]Lu-DOTA-TATE with active and passive dosimetry. EJNMMI Phys 2023; 10:70. [PMID: 37962683 PMCID: PMC10645926 DOI: 10.1186/s40658-023-00592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The use of lutetium-177 (177Lu)-based radiopharmaceuticals in peptide receptor nuclear therapy is increasing, but so is the number of nuclear medicine workers exposed to higher levels of radiation. In recent years, [177Lu]Lu-DOTA-TATE has begun to be widely used for the treatment of neuroendocrine tumours. However, there are few studies evaluating the occupational radiation exposure during its administration, and there are still some challenges that can result in higher doses to the staff, such as a lack of trained personnel or fully standardised procedures. In response, this study aims to provide a comprehensive analysis of occupational doses to the staff involved in the administration of [177Lu]Lu-DOTA-TATE. RESULTS A total of 32 administrations of [177Lu]Lu-DOTA-TATE (7.4 GBq/session) carried out by a physician and a nurse, were studied. In total, two physicians and four nurses were independently monitored with cumulative (passive) and/or real-time (active) dosemeters. Extremity, eye lens and whole-body doses were evaluated in terms of the dosimetric quantities Hp(0.07), Hp(3) and Hp(10), respectively. It was obtained that lead aprons reduced dose rates and whole-body doses by 71% and 69% for the physicians, respectively, and by 56% and 68% for the nurses. On average, normalised Hp(10) values of 0.65 ± 0.18 µSv/GBq were obtained with active dosimetry, which is generally consistent with passive dosemeters. For physicians, the median of the maximum normalised Hp(0.07) values was 41.5 µSv/GBq on the non-dominant hand and 45.2 µSv/GBq on the dominant hand. For nurses 15.4 µSv/GBq on the non-dominant and 13.9 µSv/GBq on the dominant hand. The ratio or correction factor between the maximum dose measured on the hand and the dose measured on the base of the middle/ring finger of the non-dominant hand resulted in a factor of 5/6 for the physicians and 3/4 for the nurses. Finally, maximum normalised Hp(3) doses resulted in 2.02 µSv/GBq for physicians and 1.76 µSv/GBq for nurses. CONCLUSIONS If appropriate safety measures are taken, the administration of [177Lu]Lu-DOTA-TATE is a safe procedure for workers. However, regular monitoring is recommended to ensure that the annual dose limits are not exceeded.
Collapse
Affiliation(s)
- Mercedes Riveira-Martin
- Genetic Oncology, Radiobiology and Radiointeraction Research Group, Galicia Sur Health Research Institute (IISGS), Vigo, Spain.
- Department of Radiology, Rehabilitation and Physiotherapy, Medicine School, Complutense University of Madrid, Madrid, Spain.
| | | | - José Muñoz Iglesias
- Nuclear Medicine Department (SERGAS), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
| | | | - Olga Tabuenca
- Nuclear Medicine Department (SERGAS), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
| | - José Manuel Nogueiras
- Nuclear Medicine Department (GALARIA), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
| | | | - Antonio López Medina
- Medical Physics and RP Department (GALARIA), Meixoeiro Hospital, University Hospital of Vigo, Vigo, Spain
- Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| |
Collapse
|
23
|
Plachouris D, Eleftheriadis V, Nanos T, Papathanasiou N, Sarrut D, Papadimitroulas P, Savvidis G, Vergnaud L, Salvadori J, Imperiale A, Visvikis D, Hazle JD, Kagadis GC. A radiomic- and dosiomic-based machine learning regression model for pretreatment planning in 177 Lu-DOTATATE therapy. Med Phys 2023; 50:7222-7235. [PMID: 37722718 DOI: 10.1002/mp.16746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Standardized patient-specific pretreatment dosimetry planning is mandatory in the modern era of nuclear molecular radiotherapy, which may eventually lead to improvements in the final therapeutic outcome. Only a comprehensive definition of a dosage therapeutic window encompassing the range of absorbed doses, that is, helpful without being detrimental can lead to therapy individualization and improved outcomes. As a result, setting absorbed dose safety limits for organs at risk (OARs) requires knowledge of the absorbed dose-effect relationship. Data sets of consistent and reliable inter-center dosimetry findings are required to characterize this relationship. PURPOSE We developed and standardized a new pretreatment planning model consisting of a predictive dosimetry procedure for OARs in patients with neuroendocrine tumors (NETs) treated with 177 Lu-DOTATATE (Lutathera). In the retrospective study described herein, we used machine learning (ML) regression algorithms to predict absorbed doses in OARs by exploiting a combination of radiomic and dosiomic features extracted from patients' imaging data. METHODS Pretreatment and posttreatment data for 20 patients with NETs treated with 177 Lu-DOTATATE were collected from two clinical centers. A total of 3412 radiomic and dosiomic features were extracted from the patients' computed tomography (CT) scans and dose maps, respectively. All dose maps were generated using Monte Carlo simulations. An ML regression model was designed based on ML algorithms for predicting the absorbed dose in every OAR (liver, left kidney, right kidney, and spleen) before and after the therapy and between each therapy session, thus predicting any possible radiotoxic effects. RESULTS We evaluated nine ML regression algorithms. Our predictive model achieved a mean absolute dose error (MAE, in Gy) of 0.61 for the liver, 1.58 for the spleen, 1.30 for the left kidney, and 1.35 for the right kidney between pretherapy 68 Ga-DOTATOC positron emission tomography (PET)/CT and posttherapy 177 Lu-DOTATATE single photon emission (SPECT)/CT scans. Τhe best predictive performance observed was based on the gradient boost for the liver, the left kidney and the right kidney, and on the extra tree regressor for the spleen. Evaluation of the model's performance according to its ability to predict the absorbed dose in each OAR in every possible combination of pretherapy 68 Ga-DOTATOC PET/CT and any posttherapy 177 Lu-DOTATATE treatment cycle SPECT/CT scans as well as any 177 Lu-DOTATATE SPECT/CT treatment cycle and the consequent 177 Lu-DOTATATE SPECT/CT treatment cycle revealed mean absorbed dose differences ranges from -0.55 to 0.68 Gy. Incorporating radiodosiomics features from the 68 Ga-DOTATOC PET/CT and first 177 Lu-DOTATATE SPECT/CT treatment cycle scans further improved the precision and minimized the standard deviation of the predictions in nine out of 12 instances. An average improvement of 57.34% was observed (range: 17.53%-96.12%). However, it's important to note that in three instances (i.e., Ga,C.1 → C3 in spleen and left kidney, and Ga,C.1 → C2 in right kidney) we did not observe an improvement (absolute differences of 0.17, 0.08, and 0.05 Gy, respectively). Wavelet-based features proved to have high correlated predictive value, whereas non-linear-based ML regression algorithms proved to be more capable than the linear-based of producing precise prediction in our case. CONCLUSIONS The combination of radiomics and dosiomics has potential utility for personalized molecular radiotherapy (PMR) response evaluation and OAR dose prediction. These radiodosiomic features can potentially provide information on any possible disease recurrence and may be highly useful in clinical decision-making, especially regarding dose escalation issues.
Collapse
Affiliation(s)
- Dimitris Plachouris
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | | | - Thomas Nanos
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | | | | | | | | | | | | | | | | | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George C Kagadis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
24
|
Baun C, Dam JH, Hildebrandt MG, Ewald JD, Kristensen BW, Gammelsrød VS, Olsen BB, Thisgaard H. Preclinical evaluation of [ 58mCo]Co-DOTA-PSMA-617 for Auger electron therapy of prostate cancer. Sci Rep 2023; 13:18837. [PMID: 37914790 PMCID: PMC10620164 DOI: 10.1038/s41598-023-43429-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/23/2023] [Indexed: 11/03/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA), highly expressed in prostate cancer, is a promising target for radionuclide therapy. Auger electron-emitting radionuclides are well suited for targeted radionuclide therapy if they can be delivered close to the DNA of the targeted cells. This preclinical study evaluated the theranostic pair [55/58mCo]Co-DOTA-PSMA-617 for PET imaging and Auger electron therapy of prostate cancer. [58mCo]Co-DOTA-PSMA-617 was successfully prepared with > 99% radiochemical yield and purity. In vitro, uptake and subcellular distribution assays in PSMA-positive prostate cancer cells showed PSMA-specific uptake with high cell-associated activity in the nucleus. Incubation with [58mCo]Co-DOTA-PSMA-617 reduced cell viability and clonogenic survival in a significant dose-dependent manner (p < 0.05). Biodistribution of xenografted mice showed high specific tumor uptake of the cobalt-labeled PSMA ligand for all time points with rapid clearance from normal tissues, which PET imaging confirmed. In vivo, therapy with [58mCo]Co-DOTA-PSMA-617 in tumor-bearing mice demonstrated significantly increased median survival for treated mice compared to control animals (p = 0.0014). In conclusion, [55/58mCo]Co-DOTA-PSMA-617 displayed excellent in vitro and in vivo properties, offering significant survival benefits in mice with no observed toxicities.
Collapse
Affiliation(s)
- Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Center for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark
| | - Johan Hygum Dam
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Center for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark
- Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| | - Jesper Dupont Ewald
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Vigga Sand Gammelsrød
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Birgitte Brinkmann Olsen
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000, Odense C, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
25
|
Gharibkandi NA, Wawrowicz K, Majkowska-Pilip A, Żelechowska-Matysiak K, Wierzbicki M, Bilewicz A. Au@ 109Pd core-shell nanoparticle conjugated to trastuzumab for the therapy of HER2+ cancers: studies on the applicability of 109Pd/ 109mAg in vivo generator in combined β - auger electron therapy. EJNMMI Radiopharm Chem 2023; 8:26. [PMID: 37821747 PMCID: PMC10567614 DOI: 10.1186/s41181-023-00212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND In radionuclide therapy, to enhance therapeutic efficacy, an intriguing alternative is to ensure the simultaneous implementation of low- and high-LET radiation emitted from a one radionuclide. In the present study, we introduce the concept of utilizing 109Pd (T1/2 = 13.7 h) in the form of a 109Pd/109mAg in vivo generator. In this system, 109Pd emits beta particles of medium energy, while 109mAg releases a cascade of conversion and Auger electrons. 109Pd was utilized in the form of 15 nm gold nanoparticles, which were coated with a monolayer of 109Pd. In this system, the 109Pd atoms are on the surface of the nanoparticle, while the 109mAg atoms generated in the decay reaction possess the capability for unhindered emission of Auger electrons. RESULTS 109Pd, obtained through neutron irradiation of natural palladium, was deposited onto 15-nm gold nanoparticles, exceeding a efficiency rate of 95%. In contrast to previously published data on in vivo generators based on chelators, where the daughter radionuclide diffuses away from the molecules, daughter radionuclide 109mAg remains on the surface of gold nanoparticles after the decay of 109Pd. To obtain a radiobioconjugate with an affinity for HER2 receptors, polyethylene glycol chains and the monoclonal antibody trastuzumab were attached to the Au@Pd nanoparticles. The synthesized bioconjugate contained an average of 9.5 trastuzumab molecules per one nanoparticle. In vitro cell studies indicated specific binding of the Au@109Pd-PEG-trastuzumab radiobioconjugate to the HER2 receptor on SKOV-3 cells, resulting in 90% internalization. Confocal images illustrated the accumulation of Au@109Pd-PEG-trastuzumab in the perinuclear area surrounding the cell nucleus. Despite the lack of nuclear localization, which is necessary to achieve an effective cytotoxic effect of Auger electrons, a substantial cytotoxic effect, significantly greater than that of pure β- and pure Auger electron emitters was observed. We hypothesize that in the studied system, the cytotoxic effect of the Auger electrons could have also occurred through the damage to the cell's nuclear membrane by Auger electrons emitted from nanoparticles accumulated in the perinuclear area. CONCLUSION The obtained results show that trastuzumab-functionalized 109Pd-labeled nanoparticles can be suitable for the application in combined β--Auger electron targeted radionuclide therapy. Due to both components decay (β- and conversion/Auger electrons), the 109Pd/109mAg in vivo generator presents unique potential in this field. Despite the lack of nuclear localization, which is highly required for efficient Auger electron therapy, an adequate cytotoxic effect was attained.
Collapse
Affiliation(s)
- Nasrin Abbasi Gharibkandi
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195, Warsaw, Poland
| | - Kamil Wawrowicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195, Warsaw, Poland
- Center for Theranostics, Jagiellonian University, Kopernika 40 St., 31-501, Cracow, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195, Warsaw, Poland
- Department of Nuclear Medicine, Central Clinical Hospital of the Ministry of the Interior and Administration, Wołoska 137 St., Warsaw, 02-507, Poland
| | - Kinga Żelechowska-Matysiak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195, Warsaw, Poland
| | - Mateusz Wierzbicki
- Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786, Warsaw, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195, Warsaw, Poland.
| |
Collapse
|
26
|
Selting KA, Simon J, Lattimer JC, Ketring A, Axiak-Bechtel S, Frank K, Wendt RE, Bryan JN, Tate D, Maitz C, Lunceford J, Donnelly L, Keegan K, Henry CJ. Phase I evaluation of CycloSam ® (Sm-153-DOTMP) bone seeking radiopharmaceutical in dogs with spontaneous appendicular osteosarcoma. Vet Radiol Ultrasound 2023; 64:982-991. [PMID: 37431065 DOI: 10.1111/vru.13274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 07/12/2023] Open
Abstract
153 Sm-DOTMP (CycloSam® ) is a newly-patented radiopharmaceutical for bone tumor treatment. DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonate) is a macrocyclic chelating agent with superior binding properties to 153 Sm when compared with EDTMP (Quadramet™, used for palliative treatment of bone cancer). CycloSam® was administered at 1 mCi/kg (37 MBq/kg) in a prospective pilot study to seven dogs with bone cancer resulting in no myelosuppression. Then, 13 dogs were enrolled in a prospective clinical trial study using traditional 3+3 dose escalation and starting at 1.5 mCi/kg. Baseline evaluation included hematologic and biochemical testing, diagnosis confirmation, thoracic and limb radiographs, technetium-99 m-HDP bone scintigraphy, and 18 F-FDG PET scan (SUVmax). Toxicity (primary endpoint) was assessed through weekly blood counts and adverse events. Dogs received 1.5 mCi/kg (n = 4), 1.75 mCi/kg (n = 6), and 2 mCi/kg (n = 3) of 153 Sm-DOTMP. Dose-limiting neutropenia and thrombocytopenia were seen at 2 mCi/kg. No dose-limiting nonhematologic toxicities occurred. Efficacy (secondary endpoint) was assessed by objective lameness measurement (body-mounted inertial sensors), owner quality-of-life (QoL) questionnaire, and repeat PET scan. Objective lameness measurement improved in four dogs (53%-60% decrease) was equivocal in three dogs, and worsened in four dogs (66%-115% increase); two dogs were not evaluable. Repeat 18 F-FDG PET scan results varied and change in lameness did not consistently correlate with SUVmax changes. QoL score worsened (n = 5) or was improved/stable (n = 7). Carboplatin chemotherapy (300 mg/m2 IV every 3 weeks ×4) started 4 weeks after 153 Sm-DOTMP injection. No dog died of chemotherapy-related complications. All dogs completed study monitoring. The recommended dose for CycloSam® in dogs is 1.75 mCi/kg, which resulted in some pain control with minimal toxicity and was safely combined with chemotherapy.
Collapse
Affiliation(s)
- Kim A Selting
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Jaime Simon
- IsoTherapeutics Group LLC, Angleton, Texas, USA
| | - Jim C Lattimer
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Alan Ketring
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Sandra Axiak-Bechtel
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Keith Frank
- IsoTherapeutics Group LLC, Angleton, Texas, USA
| | - Richard E Wendt
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Deborah Tate
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Charles Maitz
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Joni Lunceford
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Lindsay Donnelly
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin Keegan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Carolyn J Henry
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Medicine, Division of Internal Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
27
|
Pistone D, Amato E, Auditore L, Baldari S, Italiano A. Updating 90Y Voxel S-Values including internal Bremsstrahlung: Monte Carlo study and development of an analytical model. Phys Med 2023; 112:102624. [PMID: 37354805 DOI: 10.1016/j.ejmp.2023.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023] Open
Abstract
PURPOSE Internal Bremsstrahlung (IB) is a process accompanying β-decay but neglected in Voxel S-Values (VSVs) calculation. Aims of this work were to calculate, through Monte Carlo (MC) simulation, updated 90Y-VSVs including IB, and to develop an analytical model to evaluate 90Y-VSVs for any voxel size of practical interest. METHODS GATE (Geant4 Application for Tomographic Emission) was employed for simulating voxelized geometries of soft tissue, with voxels sides l ranging from 2 to 6 mm, in steps of 0.5 mm. The central voxel was set as a homogeneous source of 90Y when IB photons are not modelled. For each l, the VSVs were computed for 90Y decays alone and for 90Y + IB. The analytical model was then built through fitting procedures of the VSVs including IB contribution. RESULTS Comparing GATE-VSVs with and without IB, differences between + 25% and + 30% were found for distances from the central voxel larger than the maximum β-range. The analytical model showed an agreement with MC simulations within ± 5% in the central voxel and in the Bremsstrahlung tails, for any l value examined, and relative differences lower than ± 40%, for other distances from the source. CONCLUSIONS The presented 90Y-VSVs include for the first time the contribution due to IB, thus providing a more accurate set of dosimetric factors for three-dimensional internal dosimetry of 90Y-labelled radiopharmaceuticals and medical devices. Furthermore, the analytical model constitutes an easy and fast alternative approach for 90Y-VSVs estimation for non-standard voxel dimensions.
Collapse
Affiliation(s)
- Daniele Pistone
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy
| | - Ernesto Amato
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy; Health Physics Unit, University Hospital "Gaetano Martino", Messina, Italy.
| | - Lucrezia Auditore
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; Nuclear Medicine Unit, University Hospital "Gaetano Martino", Messina, Italy
| | - Antonio Italiano
- INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy; Department of Mathematical and Computational Sciences, Physics Sciences and Earth Sciences (MIFT), University of Messina, Messina, Italy
| |
Collapse
|
28
|
Patell K, Kurian M, Garcia JA, Mendiratta P, Barata PC, Jia AY, Spratt DE, Brown JR. Lutetium-177 PSMA for the treatment of metastatic castrate resistant prostate cancer: a systematic review. Expert Rev Anticancer Ther 2023; 23:731-744. [PMID: 37194261 DOI: 10.1080/14737140.2023.2213892] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Metastatic castrate resistant prostate cancer (mCPRC) remains an aggressive form of prostate cancer that no longer responds to traditional hormonal treatment alone. Despite the advent of novel anti-androgen medications, many patients continue to progress, and as a result, there is a growing need for additional treatment options. AREAS COVERED Lutetium-177 (177Lu) - PSMA-617 has become one of the new frontline treatment options for refractory metastatic castrate resistant prostate cancer after the failure of novel anti-androgen therapy and chemotherapy. Lu-177 has been used in real-world prospective trials and is now becoming utilized in newer phase III clinical trials. Here, we present a comprehensive overview of the current literature, covering retrospective studies, prospective studies, and clinical trials that established Lutetium-177-PSMA-617 (177Lu-PSMA-617) for the treatment of mCRPC. EXPERT OPINION 177Lu - PSMA-617 has been approved for treatment of mCRPC based on positive phase III studies. While this treatment is tolerable and effective, biomarkers are necessary to determine which patients will benefit. In the future, radioligand treatments will likely be utilized in earlier lines of therapy and potentially in combination with other prostate cancer treatments.
Collapse
Affiliation(s)
- Kanchi Patell
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Matthew Kurian
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Jorge A Garcia
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Prateek Mendiratta
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Pedro C Barata
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Angela Y Jia
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Jason R Brown
- Deparment of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
29
|
Lankoff A, Czerwińska M, Kruszewski M. Nanoparticle-Based Radioconjugates for Targeted Imaging and Therapy of Prostate Cancer. Molecules 2023; 28:molecules28104122. [PMID: 37241862 DOI: 10.3390/molecules28104122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer is the second most frequent malignancy in men worldwide and the fifth leading cause of death by cancer. Although most patients initially benefit from therapy, many of them will progress to metastatic castration-resistant prostate cancer, which still remains incurable. The significant mortality and morbidity rate associated with the progression of the disease results mainly from a lack of specific and sensitive prostate cancer screening systems, identification of the disease at mature stages, and failure of anticancer therapy. To overcome the limitations of conventional imaging and therapeutic strategies for prostate cancer, various types of nanoparticles have been designed and synthesized to selectively target prostate cancer cells without causing toxic side effects to healthy organs. The purpose of this review is to briefly discuss the selection criteria of suitable nanoparticles, ligands, radionuclides, and radiolabelling strategies for the development of nanoparticle-based radioconjugates for targeted imaging and therapy of prostate cancer and to evaluate progress in the field, focusing attention on their design, specificity, and potential for detection and/or therapy.
Collapse
Affiliation(s)
- Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 15, 25-406 Kielce, Poland
| | - Malwina Czerwińska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska, 02-776 Warsaw, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
30
|
Benfante V, Stefano A, Ali M, Laudicella R, Arancio W, Cucchiara A, Caruso F, Cammarata FP, Coronnello C, Russo G, Miele M, Vieni A, Tuttolomondo A, Yezzi A, Comelli A. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics (Basel) 2023; 13:diagnostics13071210. [PMID: 37046428 PMCID: PMC10093267 DOI: 10.3390/diagnostics13071210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Radionuclides are unstable isotopes that mainly emit alpha (α), beta (β) or gamma (γ) radiation through radiation decay. Therefore, they are used in the biomedical field to label biomolecules or drugs for diagnostic imaging applications, such as positron emission tomography (PET) and/or single-photon emission computed tomography (SPECT). A growing field of research is the development of new radiopharmaceuticals for use in cancer treatments. Preclinical studies are the gold standard for translational research. Specifically, in vitro radiopharmaceutical studies are based on the use of radiopharmaceuticals directly on cells. To date, radiometric β- and γ-counters are the only tools able to assess a preclinical in vitro assay with the aim of estimating uptake, retention, and release parameters, including time- and dose-dependent cytotoxicity and kinetic parameters. This review has been designed for researchers, such as biologists and biotechnologists, who would like to approach the radiobiology field and conduct in vitro assays for cellular radioactivity evaluations using radiometric counters. To demonstrate the importance of in vitro radiopharmaceutical assays using radiometric counters with a view to radiogenomics, many studies based on 64Cu-, 68Ga-, 125I-, and 99mTc-labeled radiopharmaceuticals have been revised and summarized in this manuscript.
Collapse
Affiliation(s)
- Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | | | - Walter Arancio
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Antonino Cucchiara
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Fabio Caruso
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Claudia Coronnello
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Monica Miele
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Alessandra Vieni
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
31
|
Chen Y, Yang Y, Tang H, Zhang Z, Zhou X, Xu W. ROS-Responsive and pH-Sensitive Aminothiols Dual-Prodrug for Radiation Enteritis. Antioxidants (Basel) 2022; 11:antiox11112145. [PMID: 36358517 PMCID: PMC9686648 DOI: 10.3390/antiox11112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Radiation exposure can immediately trigger a burst of reactive oxygen species (ROS), which can induce severe cell death and long-term tissue damage. Therefore, instantaneous release of sufficient radioprotective drugs is vital to neutralize those accumulated ROS in IR-exposed areas. To achieve this goal, we designed, synthesized, and evaluated a novel oral ROS-responsive radioprotective compound (M1) with high biocompatibility and efficient ROS-scavenging ability to act as a promising oral drug for radiation protection. The compound is stably present in acidic environments and is hydrolyzed in the intestine to form active molecules rich in thiols. M1 can significantly remove cellular ROS and reduce DNA damage induced by γ-ray radiation. An in vivo experiment showed that oral administration of M1 effectively alleviates acute radiation-induced intestinal injury. Immunohistochemical staining showed that M1 improved cell proliferation, reduced cell apoptosis, and enhanced the epithelial integrity of intestinal crypts. This study provides a promising oral ROS-sensitive agent for acute intestinal radiation syndrome.
Collapse
|