1
|
Rai V, Deepu V, Agrawal DK. Targeting RAGE-signaling pathways in the repair of rotator-cuff injury. Mol Cell Biochem 2025; 480:2539-2554. [PMID: 39395136 PMCID: PMC11961478 DOI: 10.1007/s11010-024-05132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Rotator cuff injury (RCI) is a common musculoskeletal problem that can have a significant impact on the quality of life and functional abilities of those affected. Novel therapies, including proteomics-based, stem cells, platelet-rich plasma, and exosomes, are being developed to promote rotator-cuff healing. The receptor for advanced glycation end-products (RAGE) is a multifunctional receptor that is expressed on several cell types and is implicated in several physiologic and pathological processes, such as tissue repair, inflammation, and degeneration. Because of its capacity to bind with a variety of ligands and initiate signaling pathways that lead to inflammatory responses in RCI, RAGE plays a crucial role in inflammation. In this critical review article, we discussed the role of RAGE-mediated persistent inflammation in RCI followed by novel factors including PKCs, TIRAP, DIAPH1, and factors related to muscle injury with their therapeutic potential in RCI. These factors involve various aspects of muscle injury and signaling and the possibility of targeting these factors to improve the clinical outcomes in RCI still needs further investigation.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Vinitha Deepu
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
2
|
Nowakowska A, Marchelek-Myśliwiec M, Skórka-Majewicz M, Żwierełło W, Grzeszczak K, Gutowska I. The Impact of Recreational Diving to a Depth of 40 m on Selected Intracellular DAMPs. Int J Mol Sci 2025; 26:3061. [PMID: 40243713 PMCID: PMC11989067 DOI: 10.3390/ijms26073061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Increasingly popular, recreational diving is a physical activity that takes place under extreme environmental conditions, which include hyperoxia, hyperbaria and exposure to cold water. The effects of these factors on the human body induce increased levels of reactive oxygen and nitrogen species in divers' bodies, which may modulate damage-associated molecular pattern (DAMPs), their receptors and the antioxidant response. This study involved 21 divers who descended to a depth of 40 metres. Determinations of selected intracellular DAMPs (high-mobility group box protein 1,HMGB1, S100 calcium-binding proteins A9 and A8, S100A8 and S100A9, heat shock protein family A member 1A, HSPA1A (Hsp70), heat shock protein family B, (small) member 1, HSPB1(Hsp27), thioredoxin, TXN), their receptors (Toll-like receptor 4, TLR4 and receptors for advanced glycation end products, RAGE), nuclear factor-κB (NF-κB) and antioxidant defence markers were performed before, after and 1 h after the dive. A significant transient reduction in HMGB1 expression was observed immediately after the dive at both the mRNA and protein levels. We noted an increase in S100A9 expression, which occurred 1 h post-dive compared to the post-dive time point, and a post-dive decrease in TLR4 expression only at the mRNA level. Diving also influenced the expression of genes encoding key enzymes associated with glutathione synthesis, (glutamate-cysteine ligase, catalytic subunit, GCLC and glutathione synthetase, GSS), and reduced plasma glutathione levels. However, no significant changes were observed in the expression of NF-κB, nitric oxide synthase 2 (NOS2) or circulating DAMP receptors (TLR4 and RAGE). The findings suggest an adaptive response to diving-induced oxidative stress, which appears to be a protective mechanism against an excessive inflammatory response. To our knowledge, this is the first study to analyse the role of intracellular DAMPs in recreational divers.
Collapse
Affiliation(s)
- Anna Nowakowska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Małgorzata Marchelek-Myśliwiec
- Clinical Department of Nephrology, Transplantology & Internal Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| | - Konrad Grzeszczak
- Department of Laboratory Diagnostics, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| |
Collapse
|
3
|
Shirey KA, Joseph J, Coughlan L, Nijhuis H, Varley AW, Blanco JCG, Vogel SN. An adenoviral vector encoding an inflammation-inducible antagonist, HMGB1 Box A, as a novel therapeutic approach to inflammatory diseases. mBio 2025; 16:e0338724. [PMID: 39699172 PMCID: PMC11796352 DOI: 10.1128/mbio.03387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Influenza, as well as other respiratory viruses, can trigger local and systemic inflammation resulting in an overall "cytokine storm" that produces serious outcomes such as acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). We hypothesized that gene therapy platforms could be useful in these cases if the production of an anti-inflammatory protein reflects the intensity and duration of the inflammatory condition. The recombinant protein would be produced and released only in the presence of the inciting stimulus, avoiding immunosuppression or other unwanted side effects that may occur when treating infectious diseases with anti-inflammatory drugs. To test this hypothesis, we developed AdV.C3-Tat/HIV-Box A, an inflammation-inducible cassette that remains innocuous in the absence of inflammation but releases HMGB1 Box A, an antagonist of high mobility group box 1 (HMGB1), in response to inflammatory stimuli such as lipopolysaccharide (LPS) or influenza virus infection. We report here that this novel inflammation-inducible HMGB1 Box A construct in a non-replicative adenovirus (AdV) vector mitigates lung and systemic inflammation therapeutically in response to influenza infection. We anticipate that this strategy will apply to the treatment of multiple diseases in which HMGB1-mediated signaling is a central driver of inflammation.IMPORTANCEMany inflammatory diseases are mediated by the action of a host-derived protein, HMGB1, on Toll-like receptor 4 (TLR4) to elicit an inflammatory response. We have engineered a non-replicative AdV vector that produces HMGB1 Box A, an antagonist of HMGB1-induced inflammation, under the control of an endogenous complement component C3 (C3) promoter sequence, that is inducible by LPS and influenza in vitro and ex vivo in macrophages (Mϕ) and protects mice and cotton rats therapeutically against infection with mouse-adapted and human non-adapted influenza strains, respectively, in vivo. We anticipate that this novel strategy will apply to the treatment of multiple infectious and non-infectious diseases in which HMGB1-mediated TLR4 signaling is a central driver of inflammation.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - John Joseph
- Sigmovir Biosystems Inc., Rockville, Maryland, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Haye Nijhuis
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | | | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Krishna AA, Abhirami BL, Kumaran A. Pain in rheumatoid arthritis: Emerging role of high mobility group box 1 protein-HMGB1. Life Sci 2025; 362:123361. [PMID: 39761742 DOI: 10.1016/j.lfs.2024.123361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease where pain, driven by both inflammatory and non-inflammatory processes, is a major concern for patients. This pain can persist even after joint inflammation subsides. High mobility group box-1 (HMGB1) is a non-histone-DNA binding protein located in the nucleus that plays a key role in processes such as DNA transcription, recombination, and replication. HMGB1 can be released into the extracellular space through both passive and active mechanisms. Extracellular HMGB1 contributes to synovial inflammation, bone degradation, and the production of cytokines in RA by binding to toll-like receptors (TLRs) and receptors for advanced glycation end products (RAGE). It also forms complexes with molecules like lipopolysaccharide (LPS) and IL-1β, amplifying inflammatory responses. Due to its central role in these processes, HMGB1 is considered a promising therapeutic target in RA. It also acts as a nociceptive molecule in mediating pain in diseases such as diabetes and bone cancer. In this review, we explore how HMGB1 contributes to chronic pain in RA, supported by both in vitro and in vivo models. We begin by providing an overview of the mechanisms of pain in RA, the structure of HMGB1, its release mechanisms, and the therapeutic potential of targeting HMGB1 in RA. Following this, we highlight its role in peripheral and central pain sensitization through direct activation of the TLR4/MAPK/NF-κB pathway, as well as indirectly through downstream mediators, underscoring its potential as a target for managing RA pain.
Collapse
Affiliation(s)
- Anithakumari Aswathy Krishna
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Beena Levakumar Abhirami
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alaganandam Kumaran
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Sun HM, Feng QY, Qin BF, Guo X, Liu XK, Song J, Shi LQ. Bruceine A attenuates fibrogenesis and inflammation through NR2F2-regulated HMGB1 inflammatory signaling cascades in hepatic fibrosis. Eur J Pharmacol 2025; 987:177164. [PMID: 39615868 DOI: 10.1016/j.ejphar.2024.177164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
This investigation explored the hepatoprotective capabilities of Bruceine A (BA) and its underlying mechanisms in mitigating hepatic fibrosis. Hepatic stellate cells (HSCs) and mouse primary hepatocytes were treated with TGF-β and subsequently exposed to BA. To assess the effects of BA on the NR2F2-HMGB1 signaling cascade, these cells underwent transfection with a siRNA vector targeting NR2F2. The interaction between NR2F2 and the HMGB1 promoter was elucidated using a dual luciferase assay. In vivo, C57BL/6 mice were treated with thioacetamide (TAA) to induce liver damage, followed by administration of BA. The study found that BA moderated extracellular matrix (ECM) buildup, epithelial-mesenchymal transition (EMT), and inflammatory mediator levels, while concurrently reducing NR2F2 and HMGB1 expression in activated HSCs. Furthermore, BA lessened pyroptosis in hepatocytes, curtailing the inflammatory response. The absence of NR2F2 in HSCs or hepatocytes hindered BA's inhibitory effect on this pathway. It was demonstrated that NR2F2 binds directly to the HMGB1 promoter. Treatment with BA resulted in diminished serum levels of ALT and AST, mitigated damage in hepatic tissues, and decreased the ECM and neutrophil extracellular traps (NETs), thus protecting hepatocytes from fibrosis. Furthermore, BA suppressed the synthesis of inflammatory mediators such as NLRP3, caspase-1, and IL-1β by blocking the NR2F2-driven HMGB1 pathway, markedly reversing hepatic fibrosis. These observations highlight the efficacy of BA as a viable therapeutic candidate for hepatic fibrosis.
Collapse
Affiliation(s)
- Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| | - Qi-Yuan Feng
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| | - Bo-Feng Qin
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| | - Xin Guo
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua, Jilin Province, 134001, China
| | - Xue-Kun Liu
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua, Jilin Province, 134001, China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China.
| | - Li-Qiang Shi
- College of Pharmacy, Beihua University, Jilin, Jilin Province, 132013, China
| |
Collapse
|
6
|
Jang J, Lee J, Park J, Cha S, Lee SB, Park SM, Hong SH, Kim WJ, Lee M, Yang SR. Recombinant RAGE antagonist peptide promotes alveolar epithelial cell regeneration via the RAGE/MAPKs/MMP2 pathway in emphysema. Biochem Pharmacol 2025; 231:116668. [PMID: 39608502 DOI: 10.1016/j.bcp.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The progression of chronic obstructive pulmonary disease (COPD) results in irreversible pulmonary damage and sustained inflammatory responses. While alternative approaches have been explored, the specific role of alveolar epithelial cells in the pathogenesis of COPD remains unclear. Additionally, the association between emphysema and DAMP-RAGE signaling in COPD patients are not understood. Therefore, this study demonstrates to determine the therapeutic effect of a RAGE antagonist peptide (RAP), which we previously identified on the pathogenesis of COPD. We assessed the expression of RAGE ligands and RAGE binding signaling in COPD patients using GEO data. PPE-induced emphysema mouse model and AGER-/- mouse were employed, along treated with RAP. The association between RAGE and the development of emphysema was examined in H&E staining and western blot analysis in mouse lung tissue and BALF. We next analyzed the damage caused by oxidative stress and inflammation through CSE and RAP in human alveolar epithelial cell line A549. Our results show that inhibiting of RAGE alleviates emphysema by suppressing inflammation and MMP activity. Inhibition of RAGE in alveolar epithelial cells significantly induced the mitigation of lung injury, independent of macrophage infiltration. Furthermore, it was confirmed that RAP ameliorated CSE-induced oxidative stress, inflammation, and cell cycle arrest in human alveolar epithelial cells. These findings demonstrate that inhibiting RAGE in alveolar epithelial cells suppress lung injury and emphysema by inhibiting oxidative stress-induced inflammation and MMPs, while promoting alveolar epithelial cell proliferation. Furthermore, blocking of the DAMP-RAGE interaction through RAP offers a promising therapeutic approach for mitigating emphysema.
Collapse
Affiliation(s)
- Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Jaehyun Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Sangryul Cha
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Se Bi Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon State 24341, Republic of Korea; Institute of Medical Science, School of Medicine, Kangwon National University, Chuncheon, Gangwon State, South Korea.
| |
Collapse
|
7
|
Shen P, Zhang L, Jiang X, Yu B, Zhang J. Targeting HMGB1 and Its Interaction with Receptors: Challenges and Future Directions. J Med Chem 2024; 67:21671-21694. [PMID: 39648929 DOI: 10.1021/acs.jmedchem.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin protein predominantly located in the nucleus. However, under pathological conditions, HMGB1 can translocate from the nucleus to the cytoplasm and subsequently be released into the extracellular space through both active secretion and passive release mechanisms. The distinct cellular locations of HMGB1 facilitate its interaction with various endogenous and exogenous factors, allowing it to perform diverse functions across a range of diseases. This Perspective provides a comprehensive overview of the structure, release mechanisms, and multifaceted roles of HMGB1 in disease contexts. Furthermore, it introduces the development of both small molecule and macromolecule inhibitors targeting HMGB1 and its interaction with receptors. A detailed analysis of the predicted pockets is also presented, aiming to establish a foundation for the future design and development of HMGB1 inhibitors.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
8
|
Semchyshyn H. Fructose-mediated AGE-RAGE axis: approaches for mild modulation. Front Nutr 2024; 11:1500375. [PMID: 39698244 PMCID: PMC11652219 DOI: 10.3389/fnut.2024.1500375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose is a valuable and healthy nutrient when consumed at normal levels (≤50 g/day). However, long-term consumption of excessive fructose and elevated endogenous production can have detrimental health impacts. Fructose-initiated nonenzymatic glycation (fructation) is considered as one of the most likely mechanisms leading to the generation of reactive species and the propagation of nonenzymatic processes. In the later stages of glycation, poorly degraded advanced glycation products (AGEs) are irreversibly produced and accumulated in the organism in an age- and disease-dependent manner. Fructose, along with various glycation products-especially AGEs-are present in relatively high concentrations in our daily diet. Both endogenous and exogenous AGEs exhibit a wide range of biological effects, mechanisms of which can be associated with following: (1) AGEs are efficient sources of reactive species in vivo, and therefore can propagate nonenzymatic vicious cycles and amplify glycation; and (2) AGEs contribute to upregulation of the specific receptor for AGEs (RAGE), amplifying RAGE-mediated signaling related to inflammation, metabolic disorders, chronic diseases, and aging. Therefore, downregulation of the AGE-RAGE axis appears to be a promising approach for attenuating disease conditions associated with RAGE-mediated inflammation. Importantly, RAGE is not specific only to AGEs; it can bind multiple ligands, initiating a complex RAGE signaling network that is not fully understood. Maintaining an appropriate balance between various RAGE isoforms with different functions is also crucial. In this context, mild approaches related to lifestyle-such as diet optimization, consuming functional foods, intake of probiotics, and regular moderate physical activity-are valuable due to their beneficial effects and their ability to mildly modulate the fructose-mediated AGE-RAGE axis.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
9
|
Li Y, Wu J, Du F, Tang T, Lim JCW, Karuppiah T, Liu J, Sun Z. Neuroprotective Potential of Glycyrrhizic Acid in Ischemic Stroke: Mechanisms and Therapeutic Prospects. Pharmaceuticals (Basel) 2024; 17:1493. [PMID: 39598404 PMCID: PMC11597102 DOI: 10.3390/ph17111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Ischemic stroke is a leading cause of disability and mortality worldwide, with current therapies limited in addressing its complex pathophysiological mechanisms, such as inflammation, oxidative stress, apoptosis, and impaired autophagy. Glycyrrhizic acid (GA), a bioactive compound from licorice (Glycyrrhiza glabra L.), has demonstrated neuroprotective properties in preclinical studies. This review consolidates current evidence on GA's pharmacological mechanisms and assesses its potential as a therapeutic agent for ischemic stroke. Methods: This review examines findings from recent preclinical studies and reviews on GA's neuroprotective effects, focusing on its modulation of inflammation, oxidative stress, apoptosis, and autophagy. Studies were identified from major scientific databases, including PubMed, Web of Science, and Embase, covering research from January 2000 to August 2024. Results: GA has demonstrated significant neuroprotective effects through the modulation of key pathways, including HMGB1/TLR4/NF-κB and Keap1/Nrf2, thereby reducing neuroinflammation, oxidative stress, and apoptosis. Additionally, GA promotes autophagy and modulates immune responses, suggesting it could serve as an adjunct therapy to enhance the efficacy and safety of existing treatments, such as thrombolysis. Conclusions: Current findings underscore GA's potential as a multi-targeted neuroprotective agent in ischemic stroke, highlighting its anti-inflammatory, antioxidant, and anti-apoptotic properties. However, while preclinical data are promising, further clinical trials are necessary to validate GA's therapeutic potential in humans. This review provides a comprehensive overview of GA's mechanisms of action, proposing directions for future research to explore its role in ischemic stroke management.
Collapse
Affiliation(s)
- Yanwen Li
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Juan Wu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Fang Du
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Tao Tang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
| | - Thilakavathy Karuppiah
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Jiaxin Liu
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (J.W.); (F.D.); (T.T.)
| | - Zhong Sun
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
| |
Collapse
|
10
|
Batta I, Patial R, Sobti RC, Agrawal DK. Computational Biology in the Discovery of Biomarkers in the Diagnosis, Treatment and Management of Cardiovascular Diseases. CARDIOLOGY AND CARDIOVASCULAR MEDICINE 2024; 8:405-414. [PMID: 39328401 PMCID: PMC11426419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide, with a disproportionately high burden in low- and middle-income countries. Biomarkers play a crucial role in the early detection, diagnosis, and treatment of cardiovascular diseases by providing valuable insights into the normal and abnormal conditions of the heart and vascular system. The biomarkers derived from the cells and tissues can be identified and quantified in the blood and other body fluids and in tissues. Changes in their expression level under a pathological condition provide clinical information on the underlying pathophysiology that could have predictive, diagnostic, and prognostic value in the treatment of a disease process, and therefore incorporated in clinical guidelines. This enhances the effectiveness of biomarkers in risk stratification and therapeutic decisions in personalized medicine and improvement in patient outcomes. Biomarkers could be protein, carbohydrate, or genome-based and may also be derived from lipids and nucleic acids. Computational biology has emerged as a powerful discipline in biomarker discovery, leveraging computational techniques to identify and validate biological markers for disease diagnosis, prognosis, and drug response prediction. The convergence of advanced technologies, such as artificial intelligence, multi-omics profiling, liquid biopsies, and imaging, has led to a significant shift in the discovery and development of biomarkers, enabling the integration of data from multiple biological scales and providing a more comprehensive understanding of the complex signaling and transcriptional networks underlying disease pathogenesis. In this article, we reviewed the role of computational biology integrated with genomics, proteomics, and metabolomics, together with machine learning techniques and predictive modeling and data integration in the discovery of biomarkers in cardiovascular diseases. We discussed specific biomarkers, including epigenetic, metabolic, and emerging biomarkers, such as extracellular vesicles, miRNAs, and circular RNAs, and their role in the pathophysiology of the heart and vascular diseases.
Collapse
Affiliation(s)
- Irene Batta
- Bothell High School, Bothell, Washington, USA
| | - Ritika Patial
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Ranbir C Sobti
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
11
|
Connolly DM, Madden LA, Edwards VC, Lee VM. Brain and Lung Biomarker Responses to Hyperoxic Hypobaric Decompression. Aerosp Med Hum Perform 2024; 95:667-674. [PMID: 39169490 DOI: 10.3357/amhp.6391.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
INTRODUCTION: Biomarker responses to intensive decompression indicate systemic proinflammatory responses and possible neurological stress. To further investigate responses, 12 additional brain and lung biomarkers were assayed.METHODS: A total of 15 healthy men (20 to 50 yr) undertook consecutive same-day ascents to 25,000 ft (7620 m), following denitrogenation, breathing 100% oxygen. Venous blood was sampled at baseline (T0), after the second ascent (T8), and next morning (T24). Soluble protein markers of brain and lung insult were analyzed by enzyme-linked immunosorbent assay with plasma microparticles quantified using flow cytometry.RESULTS: Levels of monocyte chemoattractant protein-1 and high mobility group box protein 1 were elevated at T8, by 36% and 16%, respectively, before returning to baseline. Levels of soluble receptor for advanced glycation end products fell by 8%, recovering by T24. Brain-derived neurotrophic factor rose by 80% over baseline at T24. Monocyte microparticle levels rose by factors of 3.7 at T8 and 2.7 at T24 due to early and late responses in different subjects. Other biomarkers were unaffected or not detected consistently.DISCUSSION: The elevated biomarkers at T8 suggest a neuroinflammatory response, with later elevation of brain-derived neurotrophic factor at T24 indicating an ongoing neurotrophic response and incomplete recovery. A substantial increase at T8 in the ratio of high mobility group box protein 1 to soluble receptor for advanced glycation end products suggests this axis may mediate the systemic inflammatory response to decompression. The mechanism of neuroinflammation is unclear but elevation of monocyte microparticles and monocyte chemoattractant protein-1 imply a key role for activated monocytes and/or macrophages.Connolly DM, Madden LA, Edwards VC, Lee VM. Brain and lung biomarker responses to hyperoxic hypobaric decompression. Aerosp Med Hum Perform. 2024; 95(9):667-674.
Collapse
|
12
|
Higashida H, Oshima Y, Yamamoto Y. Oxytocin transported from the blood across the blood-brain barrier by receptor for advanced glycation end-products (RAGE) affects brain function related to social behavior. Peptides 2024; 178:171230. [PMID: 38677620 DOI: 10.1016/j.peptides.2024.171230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Oxytocin (OT) is a neuropeptide that primarily functions as a hormone controlling female reproductive processes. Since numerous recent studies have shown that single and repetitive administrations of OT increase trust, social interaction, and maternal behaviors in humans and animals, OT is considered a key molecule that regulates social memory and behavior. Furthermore, OT binds to receptors for advanced glycation end-products (RAGE), and it has been demonstrated that loss of RAGE in the brain vascular endothelial cells of mice fails to increase brain OT concentrations following peripheral OT administration. This leads to the hypothesis that RAGE is involved in the direct transport of OT, allowing it access to the brain by transporting it across the blood-brain barrier; however, this hypothesis is only based on limited evidence. Herein, we review the recent results related to this hypothesis, such as the mode of transport of OT in the blood circulation to the brain via different forms of RAGE, including membrane-bound full-length RAGE and soluble RAGE. We further review the modulation of brain function and social behavior, which seem to be mediated by RAGE-dependent OT. Overall, this review mostly confirms that RAGE enables the recruitment of circulating OT to the brain, thereby influencing social behavior. The requirement for further studies considering the physiological aspects of RAGE is also discussed.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| |
Collapse
|
13
|
Abd Elmaaboud MA, Kabel AM, Borg HM, Magdy AA, Kabel SM, Arafa ESA, Alsufyani SE, Arab HH. Omarigliptin/rosinidin combination ameliorates cyclophosphamide-induced lung toxicity in rats: The interaction between glucagon-like peptide-1, TXNIP/NLRP3 inflammasome signaling, and PI3K/Akt/FoxO1 axis. Biomed Pharmacother 2024; 177:117026. [PMID: 38936197 DOI: 10.1016/j.biopha.2024.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
Cyclophosphamide is an anti-neoplastic drug that has shown competence in the management of a broad range of malignant tumors. In addition, it represents a keystone agent for management of immunological conditions. Despite these unique properties, induction of lung toxicity may limit its clinical use. Omarigliptin is one of the dipeptidyl peptidase-4 inhibitors that has proven efficacy in management of diabetes mellitus. Rosinidin is an anthocyanidin flavonoid that exhibited promising results in management of diseases characterized by oxidative stress, inflammation, and apoptosis. The present work investigated the possible effects of omarigliptin with or without rosinidin on cyclophosphamide-induced lung toxicity with an exploration of the molecular mechanisms that contribute to these effects. In a rodent model of cyclophosphamide elicited lung toxicity, the potential efficacy of omarigliptin with or without rosinidin was investigated at both the biochemical and the histopathological levels. Both omarigliptin and rosinidin exhibited a synergistic ability to augment the tissue antioxidant defenses, mitigate the inflammatory pathways, restore glucagon-like peptide-1 levels, modulate high mobility group box 1 (HMGB1)/receptors of advanced glycation end products (RAGE)/nuclear factor kappa B (NF-κB) axis, downregulate the fibrogenic mediators, and create a balance between the pathways involved in apoptosis and the autophagy signals in the pulmonary tissues. In conclusion, omarigliptin/rosinidin combination may be introduced as a novel therapeutic modality that attenuates the different forms of lung toxicities induced by cyclophosphamide.
Collapse
Affiliation(s)
- Maaly A Abd Elmaaboud
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Hany M Borg
- Physiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt
| | - Amr A Magdy
- Anesthesia and ICU Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Shaimaa M Kabel
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Shuruq E Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
14
|
Scaravilli V, Turconi G, Colombo SM, Guzzardella A, Bosone M, Zanella A, Bos L, Grasselli G. Early serum biomarkers to characterise different phenotypes of primary graft dysfunction after lung transplantation: a systematic scoping review. ERJ Open Res 2024; 10:00121-2024. [PMID: 39104958 PMCID: PMC11298996 DOI: 10.1183/23120541.00121-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/12/2024] [Indexed: 08/07/2024] Open
Abstract
Background Lung transplantation (LUTX) is often complicated by primary graft dysfunction (PGD). Plasma biomarkers hold potential for PGD phenotyping and targeted therapy. This scoping review aims to collect the available literature in search of serum biomarkers for PGD phenotyping. Methods Following JBI and PRISMA guidelines, we conducted a systematic review searching MEDLINE, Web of Science, EMBASE and The Cochrane Library for papers reporting the association between serum biomarkers measured within 72 h of reperfusion and PGD, following International Society for Heart and Lung Transplantation (ISHLT) guidelines. We extracted study details, patient demographics, PGD definition and timing, biomarker concentration, and their performance in identifying PGD cases. Results Among the 1050 papers screened, 25 prospective observational studies were included, with only nine conducted in the last decade. These papers included 1793 unique adult patients (1195 double LUTX, median study size 100 (IQR 44-119)). Most (n=21) compared PGD grade 3 to less severe PGD, but only four adhered to 2016 PGD definitions. Enzyme-linked immunosorbent assays and the multiplex bead array technique were utilised in 23 and two papers, respectively. In total, 26 candidate biomarkers were identified, comprising 13 inflammatory, three endothelial activation, three epithelial injury, three cellular damage and two coagulation dysregulation markers. Only five biomarkers (sRAGE, ICAM-1, PAI-1, SP-D, FSTL-1) underwent area under the receiver operating characteristic curve analysis, yielding a median value of 0.58 (0.51-0.78) in 406 patients (276 double LUTX). Conclusions Several biomarkers exhibit promise for future studies aimed at PGD phenotyping after LUTX. To uncover the significant existing knowledge gaps, further international prospective studies incorporating updated diagnostic criteria, modern platforms and advanced statistical approaches are essential.
Collapse
Affiliation(s)
- Vittorio Scaravilli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gloria Turconi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sebastiano Maria Colombo
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, Milan, Italy
| | - Amedeo Guzzardella
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Bosone
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alberto Zanella
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lieuwe Bos
- Department of Intensive Care, University of Amsterdam, Amsterdam, Netherlands
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
15
|
He J, Qin W, Jiang S, Lin Y, Lin Y, Yang R, Xu M, Liu Q. Oxymatrine attenuates sepsis-induced inflammation and organ injury via inhibition of HMGB1/RAGE/NF-κB signaling pathway. Drug Dev Res 2024; 85:e22219. [PMID: 38845211 DOI: 10.1002/ddr.22219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/21/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junbing He
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Wanbing Qin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Shusong Jiang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Yao Lin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Yingying Lin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Ruoxuan Yang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Mingwei Xu
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Qinghua Liu
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
16
|
Deepu V, Rai V, Agrawal DK. Quantitative Assessment of Intracellular Effectors and Cellular Response in RAGE Activation. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:80-103. [PMID: 38784044 PMCID: PMC11113086 DOI: 10.26502/aimr.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The review delves into the methods for the quantitative assessment of intracellular effectors and cellular response of Receptor for Advanced Glycation End products (RAGE), a vital transmembrane receptor involved in a range of physiological and pathological processes. RAGE bind to Advanced Glycation End products (AGEs) and other ligands, which in turn activate diverse downstream signaling pathways that impact cellular responses such as inflammation, oxidative stress, and immune reactions. The review article discusses the intracellular signaling pathways activated by RAGE followed by differential activation of RAGE signaling across various diseases. This will ultimately guide researchers in developing targeted and effective interventions for diseases associated with RAGE activation. Further, we have discussed how PCR, western blotting, and microscopic examination of various molecules involved in downstream signaling can be leveraged to monitor, diagnose, and explore diseases involving proteins with unique post-translational modifications. This review article underscores the pressing need for advancements in molecular approaches for disease detection and management involving RAGE.
Collapse
Affiliation(s)
- Vinitha Deepu
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
17
|
Singh H, Agrawal DK. Discovery of Potential RAGE inhibitors using Receptor-Based Pharmacophore Modeling, High Throughput Virtual Screening and Docking Studies. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2023; 6:501-513. [PMID: 38050632 PMCID: PMC10695404 DOI: 10.26502/jbb.2642-91280112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Receptor for Advanced Glycation End products (RAGE) is a transmembrane receptor that can bind to various endogenous and exogenous ligands and initiate the inflammatory downstream signaling pathways. So far RAGE has been involved in various disorders including cardiovascular and neurodegenerative diseases, cancer, and diabetes. Blocking the interactions between RAGE and its ligands is a therapeutic approach to treat these conditions. In this context, we effectively utilized the receptor-based-pharmacophore modeling to discover structurally diverse molecular compounds having potential to effectively bind with RAGE. Two pharmacophore models were developed on V-domain of RAGE using Phase application of Schrodinger suite. The developed pharmacophoric features were used for screening of 1.8 million drug-like molecules downloaded from ChEMBL database. The molecules were scrutinized according to their molecular weight as well as clogP values. Phase screening was performed to find out the molecules that matched the developed pharmacophoric features that were further selected to analyze their binding modes using high-throughput virtual screening, extra precision docking studies and MM-GBSA ΔG binding calculations. These analyses provided ten hit RAGE inhibitory molecules that can bind to two different shallow binding sites on the V-domain of RAGE. Among the obtained compounds two compounds ChEMBL501494 and ChEMBL4081874 were found with best binding free energies that proved their receptor-ligand complex stability within their respective binding cavity on RAGE. Therefore, these molecules could be utilized for further designing and optimizing the future class of potential RAGE inhibitors.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| | - Devendra K Agrawal
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| |
Collapse
|
18
|
Koide H, Kiyokawa C, Okishima A, Saito K, Yoshimatsu K, Fukuta T, Hoshino Y, Asai T, Nishimura Y, Miura Y, Oku N, Shea KJ. Design of an Anti-HMGB1 Synthetic Antibody for In Vivo Ischemic/Reperfusion Injury Therapy. J Am Chem Soc 2023; 145:23143-23151. [PMID: 37844138 PMCID: PMC10603801 DOI: 10.1021/jacs.3c06799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 10/18/2023]
Abstract
High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins' interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood-brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an "informed" selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Chiaki Kiyokawa
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Anna Okishima
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kaito Saito
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiichi Yoshimatsu
- Department
of Chemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| | - Tatsuya Fukuta
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yu Hoshino
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Tomohiro Asai
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuri Nishimura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Naoto Oku
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenneth J. Shea
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
19
|
Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano Spica V. The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. Int J Mol Sci 2023; 24:ijms24119605. [PMID: 37298554 DOI: 10.3390/ijms24119605] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
S100B is a calcium-binding protein mainly concentrated in astrocytes in the nervous system. Its levels in biological fluids are recognized as a reliable biomarker of active neural distress, and more recently, mounting evidence points to S100B as a Damage-Associated Molecular Pattern molecule, which, at high concentration, triggers tissue reactions to damage. S100B levels and/or distribution in the nervous tissue of patients and/or experimental models of different neural disorders, for which the protein is used as a biomarker, are directly related to the progress of the disease. In addition, in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic and vascular acute neural injury, epilepsy, and inflammatory bowel disease, alteration of S100B levels correlates with the occurrence of clinical and/or toxic parameters. In general, overexpression/administration of S100B worsens the clinical presentation, whereas deletion/inactivation of the protein contributes to the amelioration of the symptoms. Thus, the S100B protein may be proposed as a common pathogenic factor in different disorders, sharing different symptoms and etiologies but appearing to share some common pathogenic processes reasonably attributable to neuroinflammation.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | | | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|
20
|
Reddy VP, Aryal P, Soni P. RAGE Inhibitors in Neurodegenerative Diseases. Biomedicines 2023; 11:biomedicines11041131. [PMID: 37189749 DOI: 10.3390/biomedicines11041131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Nonenzymatic reactions of reducing sugars with primary amino groups of amino acids, proteins, and nucleic acids, followed by oxidative degradations would lead to the formation of advanced glycation endproducts (AGEs). The AGEs exert multifactorial effects on cell damage leading to the onset of neurological disorders. The interaction of AGEs with the receptors for advanced glycation endproducts (RAGE) contribute to the activation of intracellular signaling and the expression of the pro-inflammatory transcription factors and various inflammatory cytokines. This inflammatory signaling cascade is associated with various neurological diseases, including Alzheimer's disease (AD), secondary effects of traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and diabetic neuropathy, and other AGE-related diseases, including diabetes and atherosclerosis. Furthermore, the imbalance of gut microbiota and intestinal inflammation are also associated with endothelial dysfunction, disrupted blood-brain barrier (BBB) and thereby the onset and progression of AD and other neurological diseases. AGEs and RAGE play an important role in altering the gut microbiota composition and thereby increase the gut permeability and affect the modulation of the immune-related cytokines. The inhibition of the AGE-RAGE interactions, through small molecule-based therapeutics, prevents the inflammatory cascade of events associated with AGE-RAGE interactions, and thereby attenuates the disease progression. Some of the RAGE antagonists, such as Azeliragon, are currently in clinical development for treating neurological diseases, including AD, although currently there have been no FDA-approved therapeutics based on the RAGE antagonists. This review outlines the AGE-RAGE interactions as a leading cause of the onset of neurological diseases and the current efforts on developing therapeutics for neurological diseases based on the RAGE antagonists.
Collapse
Affiliation(s)
- V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Puspa Aryal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Pallavi Soni
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
21
|
Chimenz R, Chirico V, Cuppari C, Sallemi A, Cardile D, Baldari S, Ascenti G, Monardo P, Lacquaniti A. Febrile Urinary Tract Infections in Children: The Role of High Mobility Group Box-1. CHILDREN (BASEL, SWITZERLAND) 2022; 10:47. [PMID: 36670598 PMCID: PMC9856601 DOI: 10.3390/children10010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Differentiating between febrile lower urinary tract infection (LUTI) and acute pyelonephritis (APN) is crucial for prompt clinical management. We investigated whether the high mobility group box-1 (HMGB1) could be a useful biomarker in differentiating between LUTI or APN. METHODS We enrolled seventy-four pediatric patients with suspected LUTI/APN, according to the positive or negative renal scintigraphy (DMSA) scan. If the first DMSA findings were abnormal, a second DMSA was performed after six months. Voiding cystourethrography ruled out vesicoureteral reflux (VUR). RESULTS Higher serum (s) HMGB1 levels characterized the APN group when compared to LUTI patients (13.3 (11.8-14.3) versus 5.9 (5.2-6.8) ng/mL, p: 0.02), whereas there were no differences according to urine (u) HMGB1 values. sHMGB1 correlated with C-reactive protein (CRP) levels (β = 0.47; p: 0.02). Receiver operating characteristic curves identified the best diagnostic profile for detecting APN. sHMGB1 area under the curve was different from CRP (p: 0.01) and white blood cells (p: 0.003). After multivariate analyses, VUR (HR:4.81) and sHMGB1 (HR 1.16; p: 0.006) were independently associated with the risk of renal scarring development. CONCLUSIONS sHMGB1 could represent a marker to differentiate APN from LUTI. Measurement of sHMGB1 could select children for early intervention or long-term follow-up.
Collapse
Affiliation(s)
- Roberto Chimenz
- Pediatric Nephrology and Dialysis Unit, University Hospital “G. Martino”, 98124 Messina, Italy
| | - Valeria Chirico
- Pediatric Nephrology and Dialysis Unit, University Hospital “G. Martino”, 98124 Messina, Italy
| | - Caterina Cuppari
- Pediatric Nephrology and Dialysis Unit, University Hospital “G. Martino”, 98124 Messina, Italy
| | - Alessia Sallemi
- Pediatric Nephrology and Dialysis Unit, University Hospital “G. Martino”, 98124 Messina, Italy
| | - Davide Cardile
- Nuclear Medicine Unit, University Hospital “G. Martino”, 98124 Messina, Italy
| | - Sergio Baldari
- Nuclear Medicine Unit, University Hospital “G. Martino”, 98124 Messina, Italy
| | - Giorgio Ascenti
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital “G. Martino”, 98124 Messina, Italy
| | - Paolo Monardo
- Nephrology and Dialysis Unit, Papardo Hospital, 98158 Messina, Italy
| | | |
Collapse
|