1
|
Frazzini S, Turin L, Vanosi G, Rossi L, Hejna M. Seaweed-derived mixed extracts exhibit immunomodulatory properties on porcine alveolar macrophages. Vet J 2025; 312:106358. [PMID: 40246016 DOI: 10.1016/j.tvjl.2025.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
Antimicrobial resistance is a growing global concern, prompting for antibiotic alternatives in animal production. Seaweed, abundant in bioactive compounds with anti-inflammatory properties, offers a natural substitute to synthetic compounds. Considering this, the objective of the present study was to evaluate the anti-inflammatory bioactivity of three seaweeds 1:1 combination of Ascophyllum nodosum, Palmaria palmata, and Ulva lactuca. Initially, polyphenol, flavonoid, and total phlorotannin content of the three seaweed species were assessed through colorimetric assays. Subsequently, the anti-inflammatory bioactivity was first evaluated through an inhibition protein precipitation assay and then confirmed in vitro through gene expression assays in LPS-stimulated porcine alveolar macrophages (PAMs). The evaluation of the bioactive molecules revealed a high content of TPC (1487.67 ± 40.39 and 1763.57 ± 69.01 mg TAE/100 mg of sample, respectively), as well as of TFC (95.68 ± 3.62 and 126.09 ± 7.34 mg CE/100 mg of sample) and TPhC (0.167 ± 0.02 and 0.23 ± 0.01 mg PGE/100 mg) for AN and UL, respectively. The assay for inhibiting protein precipitation disclosed that the extracts combining two algae species (ANUL, ANPP, PPUL) were more effective than the effect exhibited by each single extract. The assessment of anti-inflammatory bioactivity revealed a significant down-regulation of IL-1β and TNF-α in the algae combination extracts. In contrast, TGF-β showed an increasing trend. These findings, along with confirmation of the high content of bioactive molecules, highlight the algae's anti-inflammatory potential, making them suitable as natural alternatives to antibiotics for disease prevention in the livestock sector. Therefore, future research should explore the specific bioactive compounds and validate their efficacy in vivo to confirm their potential use in animal production.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy
| | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy
| | - Graziella Vanosi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy.
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, Jastrzębiec 05-552, Poland
| |
Collapse
|
2
|
Panchalingam S, Kasivelu G. Harnessing marine bioactive compounds: In silico insights into therapeutics for rheumatoid arthritis and major depressive disorder. Comput Biol Chem 2025; 118:108452. [PMID: 40222053 DOI: 10.1016/j.compbiolchem.2025.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
The quest for the discovery of novel therapeutic agents' increases day by day owing to the increased incidence of drug-resistant infections, chronic diseases, and a need for discovering novel treatments. Conventionally, the sources for molecules of drugs have remained from terrestrial plants and microorganisms, yet the chemical adaptability of marine organisms presents something very unique in chemical terms and remains an uncharted frontier. Marine bioactive compounds-chemicals produced by marine organisms that have positive health impacts on humans-attract particular interest due to their pharmaceutical potential. Marine organisms range from macroalgae (seaweeds), microalgae, and sponges to molluscs, echinoderms, and fish. Each of these categories generates a variety of bioactive compounds that have unique biochemical properties. Many marine-derived compounds have exhibited strong antimicrobial activity, anticancer activity and neuroprotective effects. Despite the enormous potential of marine bioactive compounds in drug discovery, several challenges like Accessibility and Sustainability, Complexity of Marine Compounds, and Regulation and Approval act as bottlenecks in taking them from the lab to the clinic. It is an imperative task to tackle these challenges for a complete development of marine pharmacopoeia. This review emphasizes on the possible application of chemicals emanating from marine sources as lead molecules for the prevention of major depressive disorder and rheumatoid arthritis.
Collapse
Affiliation(s)
- Santhiya Panchalingam
- Centre for Ocean Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu 600119, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu 600119, India.
| |
Collapse
|
3
|
Lee SJ, Im J, Marasinghe SD, Jo E, Bandara MS, Lee Y, Lee J, Park GH, Oh C. Antioxidant and Anti-Inflammatory Activities of Cutlassfish Head Peptone in RAW 264.7 Macrophages. Antioxidants (Basel) 2025; 14:286. [PMID: 40227241 PMCID: PMC11939652 DOI: 10.3390/antiox14030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
The rapid growth of the fisheries industry has resulted in numerous by-products, usually called waste, causing environmental and economic challenges. Recent advances in valorization techniques have highlighted the potential of these by-products as sources of bioactive compounds. This study aimed to investigate the antioxidant and anti-inflammatory activities of cutlassfish (Trichiurus lepturus) head peptone (CP) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. CP exhibited significant antioxidant activity, reducing ABTS and DPPH radical scavenging activity by up to 79.66% and 64.69%, respectively, with a maximum ferric-reducing antioxidant power (FRAP) value of 224.54 μM. CP enhanced macrophage proliferation (33.3%) and significantly mitigated LPS-induced oxidative and inflammatory responses, reducing nitric oxide (NO) production (60%) and reactive oxygen species levels (49.14%). CP suppressed the expression of inflammatory mediators, including inducible nitric oxide synthase (iNOS) and cyclooxygen-ase-2, and selectively inhibited the pro-inflammatory cytokines interleukin (IL)-1β and IL-6. Western blot analysis revealed that CP inhibited the phosphorylation of mitogen-activated protein kinases, including ERK, JNK, and p38, highlighting its role in modulating upstream inflammatory signaling pathways. CP exhibited significant antioxidant effects, particularly in scavenging ABTS and DPPH radicals, as well as reducing oxidative stress markers and inflammatory responses in LPS-stimulated macrophages. These findings suggest its potential not only as a therapeutic agent for conditions related to chronic inflammation, such as cardiovascular diseases and arthritis, but also as a functional ingredient in foods and nutraceuticals aimed at alleviating inflammation-related disorders.
Collapse
Affiliation(s)
- Su-Jin Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Jeonghyeon Im
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Svini Dileepa Marasinghe
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Eunyoung Jo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Minthari Sakethanika Bandara
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Youngdeuk Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Jaewon Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Gun-Hoo Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chulhong Oh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Jia C, Chai J, Zhang S, Sun Y, He L, Sang Z, Chen D, Zheng X. The Advancements of Marine Natural Products in the Treatment of Alzheimer's Disease: A Study Based on Cell and Animal Experiments. Mar Drugs 2025; 23:91. [PMID: 40137277 PMCID: PMC11943648 DOI: 10.3390/md23030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
As life expectancy rises and the aging population grows, Alzheimer's disease (AD) has become a significant global health concern. AD is a complex neurodegenerative disorder with an unclear etiology. Current hypotheses primarily focus on β-amyloid (Aβ) aggregation, tau protein hyperphosphorylation, and neuroinflammation as key pathological processes. Given the limited efficacy of existing therapeutic strategies, there is an urgent need to explore novel treatment options. Marine natural products have garnered significant attention due to their unique chemical structures and diverse bioactivities, demonstrating potential for multi-target interventions in AD. This review systematically summarizes the roles of marine-derived compounds, including polysaccharides, carotenoids, and polyphenols, in modulating Aβ aggregation, mitigating tau protein pathology, and regulating gut-brain axis dysfunction. Furthermore, the challenges of current research are discussed, with an emphasis on improving blood-brain barrier permeability and optimizing drug delivery systems to facilitate clinical translation.
Collapse
Affiliation(s)
- Chunbo Jia
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Chai
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Shenyun Zhang
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yining Sun
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Liheng He
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Zhipei Sang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Dapeng Chen
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xu Zheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
5
|
Carrasqueira J, Bernardino S, Bernardino R, Afonso C. Marine-Derived Polysaccharides and Their Potential Health Benefits in Nutraceutical Applications. Mar Drugs 2025; 23:60. [PMID: 39997184 PMCID: PMC11857343 DOI: 10.3390/md23020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Marine-derived polysaccharides have sparked immense interest in the nutraceutical industry as they possess a wide range of bioactivities which are highlighted in this review. These include antioxidants, anti-inflammatory, anti-cancer, gut microbiota regulator, anti-diabetic, and anti-obesity. Algae, marine invertebrates, vertebrates, and microorganisms are the main sources of marine polysaccharides, such as alginate, fucoidan, laminarin, carrageenan, chitosan, glycosaminoglycans, and exopolysaccharides. The structure and functional groups of these compounds influence their bioactive properties. Moreover, the functional properties of polysaccharides, such as gelling, thickening, and stabilising capabilities, are also crucial in product development, where they can serve as gluten substitutes in bakery goods and stabilisers in icings, sauces, and yoghurts. The potential of commercial products under development, such as marine polysaccharide supplements, is discussed, along with already commercialised products in the nutraceutical market. This review emphasises the enormous potential of marine-derived polysaccharides as bioactive compounds with health benefits and commercial value.
Collapse
Affiliation(s)
- Joana Carrasqueira
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| | - Susana Bernardino
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| | - Raul Bernardino
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Clélia Afonso
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| |
Collapse
|
6
|
Siddique TA, Rafi KJ, Akter S, Bithy FY, Aktar R, Khan AN, Majid M, Sultana F, Saha S, Ahmed AMA, Rahman A. Nutritional, Antibacterial and Thrombolytic Prospects of Freshwater Paludomas conica Protein Hydrolysate and Its Anti-Inflammatory Potential in LPS-Induced RAW 264.7 Macrophage Cells. Food Sci Nutr 2025; 13:e4711. [PMID: 39803236 PMCID: PMC11717026 DOI: 10.1002/fsn3.4711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic inflammation and heme-iron overload can result from bacterial hemolysis. Along with the synthetic drugs, numerous traditional and functional food approaches are equally trialed to eradicate the problem. As a prospective new source of dietary protein hydrolysates, freshwater mollusks (Paludomas conica) have recently drawn huge interest from researchers. In this research, protein hydrolysate (PhPC) of Paludomas conica, prepared by the enzyme digestion method, was analyzed for proximate nutritional and minerals contents and deciphered its suppressive effects on inflammatory gene expression in LPS-stimulated RAW264.7 macrophage cells. The inhibitory action of protein denaturation is also unfolded with established in vitro and in vivo models. Anti-hemolytic, antibacterial, and thrombolytic effects of PhPC were respectively assessed by H2O2-induced hemolysis of RBCs, the disc diffusion method, and the clot lysis method. The proximate nutritional and mineral contents of PhPC revealed it to be an enriched source of nutrients, crude protein, carbohydrates, Calcium, and Magnesium. Heavy metals were found to be within the prescribed limit. The PhPC suppressed the expression of inflammatory genes, including COX-2, iNOS, IL-6, TNF-α, and IL-1, multifold in LPS-stimulated RAW264.7 macrophages. The inhibition concentrations (IC50) of PhPC in the bovine serum albumin denaturation inhibition test and membrane stabilization tests were 431.39 and 285.25 μg/mL, respectively. The PhPC was discerned to be active against Shigella flexneri, Pseudomonas aeruginosa, and Shigella dysenteriae; its maximum thrombolytic effect was displayed to be 23.72% ± 2.71%. The findings demonstrate that the nutritionally enriched PhPC could be affirmed as an exciting invertebrate anti-inflammatory agent Extending other biological functions needs to be further characterized with its pure protein or protein products.
Collapse
Affiliation(s)
- Tanvir Ahmed Siddique
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Khalid Juhani Rafi
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Sumaiya Akter
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Farhana Yesmin Bithy
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Rasheda Aktar
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Asif Nadim Khan
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Srabonti Saha
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - A. M. Abu Ahmed
- Department of Genetic Engineering and BiotechnologyUniversity of ChittagongChittagongBangladesh
| | - Atiar Rahman
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| |
Collapse
|
7
|
Bian Y, Qiao N, Han S, Gao J, Lv X, Yuan L, Zhang L, Wei Z. Anti-Neuroinflammatory Effect of Ombuin from Rhamnus erythroxylon Pall. Leaves in LPS-Induced BV-2 Microglia by Targeting Src and Suppressing the PI3K-AKT/NF-κB Signaling Pathway. Int J Mol Sci 2024; 25:8789. [PMID: 39201475 PMCID: PMC11354356 DOI: 10.3390/ijms25168789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
The leaves of Rhamnus erythroxylon Pall. are widely used as tea substitutes in northwest China for their fragrant aroma, anti-irritability, and digestion-enhancing properties. Ombuin, a main flavonoid compound found in the leaves, exhibited notable anti-inflammatory and antioxidant effects. However, its potential role in treating neuroinflammatory-related diseases remains unexplored. Thus, this study aims to evaluate the anti-neuroinflammatory effects of ombuin and to explore the underlying molecular mechanisms. According to our findings, ombuin dramatically reduced the release of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), IL-1β, nitric oxide (NO), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further analysis, including transcriptomics, network pharmacology, molecular docking, and cellular heat transfer assays, revealed that Src was a direct target of ombuin. Western blot analysis showed that ombuin effectively suppressed Src phosphorylation and inhibited the downstream expressions of p-PI3K p85, p-AKT1, p-IKKα/β, p-IκBα, and nuclear factor κB (NF-κB). Meanwhile, the repression of Src significantly reversed the anti-neuroinflammatory activity of ombuin. Our results identified Src as a direct target of ombuin and implied that ombuin exerted an anti-neuroinflammatory effect by inhibiting Src phosphorylation and suppressing the activation of the PI3K-AKT and NF-κB pathways, which might provide an alternative therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linjing Zhang
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China
| | - Zuofu Wei
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China
| |
Collapse
|
8
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
9
|
Fadil SA, Aljoud FA, Yonbawi AR, Almalki AJ, Hareeri RH, Ashi A, AlQriqri MA, Bawazir NS, Alshangiti HH, Shaala LA, Youssef DTA, Alkhilaiwi FA. Red Sea Sponge Callyspongia siphonella Extract Induced Growth Inhibition and Apoptosis in Breast MCF-7 and Hepatic HepG-2 Cancer Cell Lines in 2D and 3D Cell Cultures. Onco Targets Ther 2024; 17:521-536. [PMID: 38948385 PMCID: PMC11214578 DOI: 10.2147/ott.s467083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The increasing incidence of cancer diseases necessitates the urgent exploration of new bioactive compounds. One of the trends in drug discovery is marine sponges which is gaining significant support due to the abundant production of natural pharmaceutical compounds obtained from marine ecosystems. This study evaluates the anticancer properties of an organic extract from the Red Sea sponge Callyspongia siphonella (C. siphonella) on HepG-2 and MCF-7 cancer cell lines. Methods C. siphonella was collected, freeze-dried, and extracted using a methanol-dichloromethane mixture. The extract was analyzed via Liquid Chromatography-Mass Spectrometry. Cytotoxic effects were assessed through cell viability assays, apoptosis detection, cell cycle analysis, mitochondrial membrane potential assays, scratch-wound healing assays, and 3D cell culture assays. Results Fifteen compounds were identified in the C. siphonella extract. The extract showed moderate cytotoxicity against MCF-7 and HepG-2 cells, with IC50 values of 35.6 ± 6.9 μg/mL and 64.4 ± 8 μg/mL, respectively, after 48 hours of treatment. It induced cell cycle arrest at the G2/M phase in MCF-7 cells and the S phase in HepG-2 cells. Apoptosis increased significantly in both cell lines, accompanied by reduced mitochondrial membrane potential. The extract inhibited cell migration, with notable reductions after 24 and 48 hours. In 3D cell cultures, the extract had IC50 values of 5.1 ± 2 μg/mL for MCF-7 and 166.4 ± 27 μg/mL for HepG-2 after 7 days of treatment, showing greater potency in MCF-7 spheres compared to HepG-2 spheres. Discussion and Conclusion The anticancer activity is attributed to the bioactive compounds. The C. siphonella extract's ability to induce apoptosis, disrupt mitochondrial membrane potential, and arrest the cell cycle highlights its potential as a novel anticancer agent. Additional research is required to investigate the underlying mechanism by which this extract functions as a highly effective anticancer agent.
Collapse
Affiliation(s)
- Sana A Fadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fadwa A Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Scientific Research Center, Dar Al-Hekma University, Jeddah, 22246, Saudi Arabia
| | - Ahmed R Yonbawi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rawan H Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abrar Ashi
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mehal Atallah AlQriqri
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nada S Bawazir
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadeel H Alshangiti
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Lamiaa A Shaala
- Suez Canal University Hospital, Suez Canal University, Ismailia, 41522, Egypt
- Natural Products Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Diaa T A Youssef
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Natural Products Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41523, Egypt
| | - Faris A Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
10
|
Sun Y, Xin J, Xu Y, Wang X, Zhao F, Niu C, Liu S. Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae. Molecules 2024; 29:1648. [PMID: 38611927 PMCID: PMC11013193 DOI: 10.3390/molecules29071648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Artabotrys, a pivotal genus within the Annonaceae family, is renowned for its extensive biological significance and medicinal potential. The genus's sesquiterpene compounds have attracted considerable interest from the scientific community due to their structural complexity and diverse biological activities. These compounds exhibit a range of biological activities, including antimalarial, antibacterial, anti-inflammatory analgesic, and anti-tumor properties, positioning them as promising candidates for medical applications. This review aims to summarize the current knowledge on the variety, species, and structural characteristics of sesquiterpene compounds isolated from Artabotrys plants. Furthermore, it delves into their pharmacological activities and underlying mechanisms, offering a comprehensive foundation for future research.
Collapse
Affiliation(s)
- Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| |
Collapse
|
11
|
Banerjee C, Barman R, Darshani P, Pillai M, Ahuja S, Mondal R, Pragadheesh VS, Chakraborty J, Kumar D. α-Viniferin, a dietary phytochemical, inhibits Monoamine oxidase and alleviates Parkinson's disease associated behavioral deficits in a mice model. Neurochem Int 2024; 174:105698. [PMID: 38364939 DOI: 10.1016/j.neuint.2024.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Parkinson's disease (PD) is one of the most prevalent age-related neurodegenerative disorders. Behavioral complexities worsen over time due to progressive dopaminergic (DArgic) neuronal loss at substantia nigra region of brain. Available treatments typically aim to increase dopamine (DA) levels at striatum. DA is degraded by Monoamine oxidase (MAO), thus dietary phytochemicals with MAO inhibitory properties can contribute to elevate DA levels and reduce the ailment. Characterization of naturally occurring dietary MAO inhibitors is inadequate. Based on available knowledge, we selected different classes of molecules and conducted a screening process to assess their potential as MAO inhibitors. The compounds mostly derived from food sources, broadly belonging to triterpenoids (ursane, oleanane and hopane), alkaloid, polyphenolics, monoterpenoids, alkylbenzene, phenylpropanoid and aromatic alcohol classes. Among all the molecules, highest level of MAO inhibition is offered by α-viniferin, a resveratrol trimer. Cell viability, mitochondrial morphology and reactive oxygen species (ROS) generation remained unaltered by 50 μM α-viniferin treatment in-vitro. Toxicity studies in Drosophila showed unchanged gross neuronal morphology, ROS level, motor activity or long-term survival. α-Viniferin inhibited MAO in mice brain and elevated striatal DA levels. PD-related akinesia and cataleptic behavior were attenuated by α-viniferin due to increase in striatal DA. Our study implies that α-viniferin can be used as an adjunct phytotherapeutic agent for mitigating PD-related behavioral deterioration.
Collapse
Affiliation(s)
- Chayan Banerjee
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Raju Barman
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Priya Darshani
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Meghana Pillai
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Sanchi Ahuja
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Rupsha Mondal
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - V S Pragadheesh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru- 560065, India
| | - Joy Chakraborty
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Deepak Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India; Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata- 700032, India.
| |
Collapse
|
12
|
Santos TCD, Obando JMC, Leite PEC, Pereira MR, Leitão MDF, Abujadi C, Pimenta LDFL, Martins RCC, Cavalcanti DN. Approaches of marine compounds and relevant immune mediators in Autism Spectrum Disorder: Opportunities and challenges. Eur J Med Chem 2024; 266:116153. [PMID: 38277916 DOI: 10.1016/j.ejmech.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects social skills, language, communication, and behavioral skills, significantly impacting the individual's quality of life. Recently, numerous works have centered on the connections between the immune and central nervous systems and the influence of neuroinflammation on autism symptomatology. Marine natural products are considered as important alternative sources of different types of compounds, including polysaccharides, polyphenols, sterols, carotenoids, terpenoids and, alkaloids. These compounds present anti-inflammatory, neuroprotective and immunomodulatory activities, exhibiting a potential for the treatment of many diseases. Although many studies address the marine compounds in the modulation of inflammatory mediators, there is a gap regarding their use in the regulation of the immune system in ASD. Thus, this review aims to provide a better understanding regarding cytokines, chemokines, growth factors and immune responses in ASD, as well as the potential of bioactive marine compounds in the immune regulation in ASD. We expect that this review would contribute to the development of therapeutic alternatives for controlling immune mediators and inflammation in ASD.
Collapse
Affiliation(s)
- Thalisia Cunha Dos Santos
- Programa de Pós-graduação em Química de Produtos Naturais, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Johana Marcela Concha Obando
- Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paulo Emílio Corrêa Leite
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Instituto LisMAPS, Niterói, RJ, Brazil
| | - Mariana Rodrigues Pereira
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Instituto LisMAPS, Niterói, RJ, Brazil; Programa de Pós-graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Mônica de Freitas Leitão
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Camp), Campinas, SP, Brazil
| | - Caio Abujadi
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Roberto Carlos Campos Martins
- Programa de Pós-graduação em Química de Produtos Naturais, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diana Negrão Cavalcanti
- Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
13
|
Shabana S, Hamouda HI, Hamadou AH, Ahmed B, Chi Z, Liu C. Marine phospholipid nanoliposomes: A promising therapeutic approach for inflammatory bowel disease: Preparation, safety, and efficacy evaluation. Colloids Surf B Biointerfaces 2024; 234:113702. [PMID: 38113752 DOI: 10.1016/j.colsurfb.2023.113702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Promising findings have been emerged from studies utilizing n3 polyunsaturated fatty acids (PUFA) supplementation in animal models of inflammatory bowel disease (IBD). Introduction of marine phospholipids which combine n3 PUFA with phosphatidylcholine in a nanoliposome formulation offers enhanced pharmacological efficacy due to physical stability, improved bioavailability, and specific targeting to inflamed colitis tissues. In the present study, a marine phospholipid-based nanoliposome formulation was developed and optimized, resulting in nanovesicles of approximately 107.7 ± 1.3 nm in size, 0.18 ± 0.01 PDI, and - 32.03 ± 3.16 mV ZP. The nanoliposomes exhibited spherical vesicles with stable properties upon incubation at SGF as shown by the TEM, DLS, and turbidity measurements over 3 h. MPL nanoliposomes were cytocompatible until the concentration of 500 µg/mL as per MTT assay and taken by macrophages through macropinocytosis and caveolae pathways, and demonstrated significant inhibitory activity against reactive oxygen species (ROS) in LPS-stimulated macrophages. They were also shown to be blood-compatible and safe for administration in healthy mice. In a colitis mouse model, the nanoliposomes displayed preferential distribution in the inflamed gut, delaying the onset of colitis when administered prophylactically. These findings highlight the potential of marine phospholipid nanoliposomes as a promising therapeutic approach for managing inflammatory bowel disease.
Collapse
Affiliation(s)
- Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Egyptian Ministry of Health and Population, Cairo 11516, Egypt
| | - Hamed I Hamouda
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian 116023, PR China; Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | | | - Busati Ahmed
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhe Chi
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
14
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Barzkar N, Sukhikh S, Babich O. Study of marine microorganism metabolites: new resources for bioactive natural products. Front Microbiol 2024; 14:1285902. [PMID: 38260902 PMCID: PMC10800913 DOI: 10.3389/fmicb.2023.1285902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
The marine environment has remained a source of novel biological molecules with diversified applications. The ecological and biological diversity, along with a unique physical environment, have provided the evolutionary advantage to the plant, animals and microbial species thriving in the marine ecosystem. In light of the fact that marine microorganisms frequently interact symbiotically or mutualistically with higher species including corals, fish, sponges, and algae, this paper intends to examine the potential of marine microorganisms as a niche for marine bacteria. This review aims to analyze and summarize modern literature data on the biotechnological potential of marine fungi and bacteria as producers of a wide range of practically valuable products (surfactants, glyco-and lipopeptides, exopolysaccharides, enzymes, and metabolites with different biological activities: antimicrobial, antitumor, and cytotoxic). Hence, the study on bioactive secondary metabolites from marine microorganisms is the need of the hour. The scientific novelty of the study lies in the fact that for the first time, the data on new resources for obtaining biologically active natural products - metabolites of marine bacteria and fungi - were generalized. The review investigates the various kinds of natural products derived from marine microorganisms, specifically focusing on marine bacteria and fungi as a valuable source for new natural products. It provides a summary of the data regarding the antibacterial, antimalarial, anticarcinogenic, antibiofilm, and anti-inflammatory effects demonstrated by marine microorganisms. There is currently a great need for scientific and applied research on bioactive secondary metabolites of marine microorganisms from the standpoint of human and animal health.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Agro-Industrial Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Stanislav Sukhikh
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Babich
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
16
|
Sousa S, Maia ML, Guimarães L, Domingues VF. Editorial: Seafood: nutrition savior or safety hazard? Front Nutr 2023; 10:1256358. [PMID: 37565034 PMCID: PMC10411179 DOI: 10.3389/fnut.2023.1256358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Sara Sousa
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Polytechnic of Porto, Porto, Portugal
- Center for Research in Health Technologies and Information Systems, Porto, Portugal
| | - Maria Luz Maia
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Polytechnic of Porto, Porto, Portugal
| | - Laura Guimarães
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Valentina F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
17
|
Pereira L, Cotas J. Therapeutic Potential of Polyphenols and Other Micronutrients of Marine Origin. Mar Drugs 2023; 21:323. [PMID: 37367648 DOI: 10.3390/md21060323] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique chemical structures and exhibit diverse biological properties, including anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This review focuses on the therapeutic potential of marine polyphenols and their applications in human health, and also, in marine phenolic classes, the extraction methods, purification techniques and future applications of marine phenolic compounds.
Collapse
Affiliation(s)
- Leonel Pereira
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - João Cotas
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
18
|
Dvoretsky AG, Bichkaeva FA, Vlasova OS, Andronov SV, Dvoretsky VG. Fatty Acid Composition of Northern Pike from an Arctic River (Northeastern Siberia, Russia). Foods 2023; 12:foods12040764. [PMID: 36832837 PMCID: PMC9955493 DOI: 10.3390/foods12040764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
We assayed the fatty acid composition of muscles of the northern pike Esox lucius Linnaeus, 1758 inhabiting the Gyda River, Siberia, Russia using gas-liquid chromatography. Of 43 fatty acids identified in the pike samples, 23 fatty acids accounted for 99.3% of the total content. The most abundant saturated fatty acids (SFA, 31.6%) were palmitic (C16:0, 20.0%) and stearic (C18:0, 7.3%) acids. Among monounsaturated fatty acids (MUFA, 15.1%), oleic acid (C18:1n9, 10.2%) and palmitoleic acid (C16:1, 4.1%) demonstrated the highest levels. The most represented polyunsaturated fatty acids (PUFA, 53.3%) were arachidonic acid (C20:4n-6, 7.6%), eicosapentaenoic acid (EPA, C20:5n-3, 7.3%), and docosahexaenoic acid (DHA, C22:6n-3, 26.3%). The fatty acid profile of specimens from the Gyda River was different in comparison to profiles found in other pike populations, most likely due to different diets. Pike flesh has good nutrition quality in terms of a low n-6/n-3 ratio (0.36), low atherogenic (0.39), and thrombogenic (0.22) indices, and a high ratio of hypocholesterolemic to hypercholesterolemic fatty acids (2.83), and this species can be recommended as a replacement or alternative to other fish sources in traditional diets.
Collapse
Affiliation(s)
- Alexander G. Dvoretsky
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 183010 Murmansk, Russia
| | - Fatima A. Bichkaeva
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences (FECIAR UrB RAS), 163000 Arkhangelsk, Russia
| | - Olga S. Vlasova
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences (FECIAR UrB RAS), 163000 Arkhangelsk, Russia
| | - Sergei V. Andronov
- National Medical Research Center for Rehabilitation of Balneology, 121099 Moscow, Russia
| | - Vladimir G. Dvoretsky
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 183010 Murmansk, Russia
- Correspondence:
| |
Collapse
|