1
|
Żamojć K, Milaș D, Grabowska O, Wyrzykowski D, Mańkowska M, Krzymiński K. Insight into the intercalation of N-substituted acridine-9-amines into DNA based on spectroscopic and calorimetric analysis. Biochim Biophys Acta Gen Subj 2025; 1869:130741. [PMID: 39694300 DOI: 10.1016/j.bbagen.2024.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/30/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
The study delves into the binding properties of acridine-9-amine and its selected, mainly N-substituted derivatives (A9As), with calf thymus deoxyribonucleic acid (CT-DNA). This investigation, conducted using UV-Vis spectrophotometry, steady-state fluorescence spectroscopy and isothermal titration calorimetry, provides insights into the relationship between their structure and activity. The absorption spectra of the A9As exhibited a slight red shift and significant hypochromic effects, while the fluorescence emission intensities decreased in the presence of CT-DNA. These results suggest that all fluorescent substrates intercalate into the double helix of native DNA to varying degrees. The binding constants for the A9As/CT-DNA complexes (log(KA) were determined using various techniques in the range from 2.59 to 5.50). The thermodynamic parameters of A9As binding to DNA were obtained from ITC measurements (ΔG from - 7.51 to - 6.75 kcal·mol-1, ΔH from - 11.58 to - 3.83 kcal·mol-1, and TΔS from - 4.83 to 3.68 kcal·mol-1) and indicated that the formation of all the investigated A9As-DNA complexes is an enthalpy-driven process. The study also discusses the influence of the emitters' structure and electronic properties of substituents on intercalation efficiency. This knowledge serves as a guide for further research and offers directions for functionalising new acridines as potential reagents. It also provides the latest information on the ability of intercalation to DNA, which can be instrumental in studies on the mechanism of binding small aromatic molecules to DNA and can potentially contribute to new anticancer drug designs.
Collapse
Affiliation(s)
- Krzysztof Żamojć
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Dan Milaș
- Faculty of Chemistry, Biology, Geography, West University of Timișoara, Strada Johann Heinrich Pestalozzi 16, Timișoara, Romania
| | - Ola Grabowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Magdalena Mańkowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Karol Krzymiński
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
de Sousa VM, Duarte SS, Ferreira RC, de Sousa NF, Scotti MT, Scotti L, da Silva MS, Tavares JF, de Moura RO, Gonçalves JCR, Sobral MV. AMTAC-19, a Spiro-Acridine Compound, Induces In Vitro Antitumor Effect via the ROS-ERK/JNK Signaling Pathway. Molecules 2024; 29:5344. [PMID: 39598733 PMCID: PMC11596224 DOI: 10.3390/molecules29225344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Colorectal cancer remains a significant cause of mortality worldwide. A spiro-acridine derivative, (E)-1'-((4-bromobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-19), showed significant cytotoxicity in HCT-116 colorectal carcinoma cells (half maximal inhibitory concentration, IC50 = 10.35 ± 1.66 µM) and antioxidant effects after 48 h of treatment. In this study, Molegro Virtual Docker v.6.0.1 software was used to investigate the interactions between AMTAC-19 and the Extracellular Signal-Regulated Kinase 1 (ERK1), c-Jun N-terminal Kinase 1 (JNK1), and p38 Mitogen-Activated Protein Kinase α (p38α MAPK). In vitro assays were conducted in HCT-116 cells to evaluate the effect of AMTAC-19 on the modulation of these proteins' activities using flow cytometry. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence or absence of ERK1/2, JNK, and p38 MAPK inhibitors was used to evaluate the involvement of these enzymes in AMTAC-19 cytotoxicity. ROS production was assessed using the 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) assay at various incubation times (30 min, 1 h, 6 h, 12 h, and 24 h), and the MTT assay using N-acetyl-L-cysteine (NAC) was performed. In silico results indicated that AMTAC-19 interacts with ERK1, JNK1, and p38α MAPK. Additionally, AMTAC-19 activated ERK1/2 and JNK1 in HCT-116 cells, and its cytotoxicity was significantly reduced in the presence of ERK1/2 and JNK inhibitors. AMTAC-19 also induced a significant increase in ROS production (30 min and 1 h), while NAC pretreatment reduced its cytotoxicity. These findings support AMTAC-19's in vitro antitumor effect through ROS-dependent activation of ERK and JNK pathways.
Collapse
Affiliation(s)
- Valgrícia Matias de Sousa
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Sâmia Sousa Duarte
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Rafael Carlos Ferreira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Natália Ferreira de Sousa
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Ricardo Olímpio de Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa 58070-450, PB, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
3
|
Pordel M, Gheibi H, Sharif A. Recent Advances in the Synthesis and Optical Applications of Acridine-based Hybrid Fluorescent Dyes. J Fluoresc 2024:10.1007/s10895-024-04001-3. [PMID: 39417934 DOI: 10.1007/s10895-024-04001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Acridine-based hybrid fluorescent dyes represent a category of dyes that integrate the acridine chromophore with other functional groups or materials to enhance their fluorescence properties. These dyes have garnered substantial attention across various domains, encompassing bioimaging, sensing, and optoelectronics. In recent years, researchers have directed their efforts toward fabricating acridine-based hybrid fluorescent dyes with improved water solubility, biocompatibility, and targeting capabilities. These advancements have facilitated their utilization in biological imaging applications, such as monitoring cellular processes, investigating protein-protein interactions, and detecting specific biomolecules. This review delineates the recent progress in synthesizing acridine-based hybrid fluorescent dyes and their applications in optical properties over the past decade. This review is anticipated to catalyze the development of innovative fluorescent materials featuring heightened properties and functionalities.
Collapse
Affiliation(s)
- Mehdi Pordel
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hanieh Gheibi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ayda Sharif
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
4
|
Fonte M, Rôla C, Santana S, Prudêncio M, Almeida J, Ferraz R, Prudêncio C, Teixeira C, Gomes P. Repurposing antiplasmodial leads for cancer: Exploring the antiproliferative effects of N-cinnamoyl-aminoacridines. Bioorg Med Chem Lett 2024; 111:129894. [PMID: 39043264 DOI: 10.1016/j.bmcl.2024.129894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Drug repurposing and rescuing have been widely explored as cost-effective approaches to expand the portfolio of chemotherapeutic agents. Based on the reported antitumor properties of both trans-cinnamic acids and quinacrine, an antimalarial aminoacridine, we explored the antiproliferative properties of two series of N-cinnamoyl-aminoacridines recently identified as multi-stage antiplasmodial leads. The compounds were evaluated in vitro against three cancer cell lines (MKN-28, Huh-7, and HepG2), and human primary dermal fibroblasts. One of the series displayed highly selective antiproliferative activity in the micromolar range against the three cancer cell lines tested, without any toxicity to non-carcinogenic cells.
Collapse
Affiliation(s)
- Mélanie Fonte
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Catarina Rôla
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Sofia Santana
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joana Almeida
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, Portugal
| | - Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal; Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, Portugal
| | - Cristina Prudêncio
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal; Gyros Protein Technologies Inc., Tucson, AZ, USA
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal.
| |
Collapse
|
5
|
Ben-Zvi B, Lian C, Brusco MF, Diao T. Tunable and Photoactivatable Mimics of Calicheamicin γ 1 for DNA Cleavage. J Am Chem Soc 2024; 146:25416-25421. [PMID: 39248674 PMCID: PMC11421022 DOI: 10.1021/jacs.4c07754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Calicheamicin γ1 and related natural products are renowned for their potency in DNA cleavage, serving as the warheads in commercial ADCs used for treating leukemia. Their mechanism of action involves the formation of aryl radicals, which abstract hydrogen atoms from nucleic acids. However, the complex strained enediyne structure of calicheamicin γ1 presents significant challenges in synthesis, resulting in high production costs and limited structural and activity modularity for tuning the therapeutic window. This report describes the development of simple molecular mimics based on diazonium salts, synthesized in fewer than 3 steps, capable of generating aryl radicals upon green or red light irradiation. SAR studies conducted on over 30 analogues reveal a wide range of potencies in DNA cleavage, with EC50 values ranging from low nanomolar to micromolar. Forming benzenoid diradicals does not appear to be necessary for potent DNA cleavage; instead, DNA cleavage can be achieved with radicals distributed among different arenes when connected with proper linkages. The potency is influenced by electronic effects, stereochemistry, orbital orientations, the distance between multiradicals, and the number of diazonium motifs within the molecule. In addition to providing a more cost-effective, efficient, and modular alternative to calicheamicin γ1, this technology offers the potential for enhanced specificity through spatiotemporal control.
Collapse
Affiliation(s)
- Benjamin Ben-Zvi
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Christina Lian
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Maureen F. Brusco
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
6
|
Blount GS, Seymour A, Williams D, Douglas D, Miller J, Sejoro S, Peace K, Kocerha RJ, Aiken KS. Structure-Activity Relationship Investigations Probing the Cytotoxicity of 9-Aminoacridines Derivatives with PC3 and A549. J Heterocycl Chem 2024; 61:1439-1445. [PMID: 39524371 PMCID: PMC11548829 DOI: 10.1002/jhet.4869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/28/2024] [Indexed: 11/16/2024]
Abstract
9-Aminoacridine structures hold much potential for accessing small molecule therapeutics. This core is present in a range of pharmaceuticals for the treatment of ailments such as malaria, inflammation, viral and bacterial infections, and cancer. For the latter, there remains a need to develop and/or improve chemotherapeutics to counteract issues of uptake, drug resistance, and selectivity for cancer cells over healthy cells. In the design of molecules to address these issues, identifying structural units that present as promising leads for drug developments is key. In this study, four 9-aminoacridine derivatives under consideration as precursors for a drug design project are assessed for their cytotoxicity with representative cell lines PC3 and A549, and for their leadlikeness with SwissADME. Together, the cytotoxicity and in silico investigations coalesce around the same derivative as the most promising lead.
Collapse
Affiliation(s)
- Grace S Blount
- Biochemistry, Chemistry and Physics Department, Georgia Southern University, PO Box 8064, Statesboro, GA 30460
| | - Austin Seymour
- Biochemistry, Chemistry and Physics Department, Georgia Southern University, PO Box 8064, Statesboro, GA 30460
| | - Dylan Williams
- Biochemistry, Chemistry and Physics Department, Georgia Southern University, PO Box 8064, Statesboro, GA 30460
| | - Daylon Douglas
- Biochemistry, Chemistry and Physics Department, Georgia Southern University, PO Box 8064, Statesboro, GA 30460
| | - Joshua Miller
- Biochemistry, Chemistry and Physics Department, Georgia Southern University, PO Box 8064, Statesboro, GA 30460
| | - Sarah Sejoro
- Department of Biostatistics, Epidemiology, & Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460
| | - Karl Peace
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Sr. Research Scientist, Professor of Biostatistics, Georgia Cancer Coalition Cancer Professor, FASA, Statesboro, GA 30460
| | - R Jannet Kocerha
- Biochemistry, Chemistry and Physics Department, Georgia Southern University, PO Box 8064, Statesboro, GA 30460
| | - Karelle S Aiken
- Biochemistry, Chemistry and Physics Department, Georgia Southern University, PO Box 8064, Statesboro, GA 30460
| |
Collapse
|
7
|
Garberová M, Kudličková Z, Michalková R, Tvrdoňová M, Sabolová D, Bekešová S, Gramblička M, Mojžiš J, Vilková M. Design, Synthesis, and Characterization of Novel Thiazolidine-2,4-Dione-Acridine Hybrids as Antitumor Agents. Molecules 2024; 29:3387. [PMID: 39064964 PMCID: PMC11280325 DOI: 10.3390/molecules29143387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
This study focuses on the synthesis and structural characterization of new compounds that integrate thiazolidine-2,4-dione, acridine moiety, and an acetamide linker, aiming to leverage the synergistic effects of these pharmacophores for enhanced therapeutic potential. The newly designed molecules were efficiently synthesized through a multi-step process and subsequently transformed into their hydrochloride salts. Comprehensive spectroscopic techniques, including nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), infrared (IR) spectroscopy, and elemental analysis, were employed to determine the molecular structures of the synthesized compounds. Biological evaluations were conducted to assess the therapeutic potential of the new compounds. The influence of these derivatives on the metabolic activity of various cancer cell lines was assessed, with IC50 values determined via MTT assays. An in-depth analysis of the structure-activity relationship (SAR) revealed intriguing insights into their cytotoxic profiles. Compounds with electron-withdrawing groups generally exhibited lower IC50 values, indicating higher potency. The presence of the methoxy group at the linking phenyl ring modulated both the potency and selectivity of the compounds. The variation in the acridine core at the nitrogen atom of the thiazolidine-2,4-dione core significantly affects the activity against cancer cell lines, with the acridin-9-yl substituent enhancing the compounds' antiproliferative activity. Furthermore, compounds in their hydrochloride salt forms demonstrated better activity against cancer cell lines compared to their free base forms. Compounds 12c·2HCl (IC50 = 5.4 ± 2.4 μM), 13d (IC50 = 4.9 ± 2.9 μM), and 12f·2HCl (IC50 = 4.98 ± 2.9 μM) demonstrated excellent activity against the HCT116 cancer cell line, and compound 7d·2HCl (IC50 = 4.55 ± 0.35 μM) demonstrated excellent activity against the HeLa cancer cell line. Notably, only a few tested compounds, including 7e·2HCl (IC50 = 11.00 ± 2.2 μM), 7f (IC50 = 11.54 ± 2.06 μM), and 7f·2HCl (IC50 = 9.82 ± 1.92 μM), showed activity against pancreatic PATU cells. This type of cancer has a very high mortality due to asymptomatic early stages, the occurrence of metastases, and frequent resistance to chemotherapy. Four derivatives, namely, 7e·2HCl, 12d·2HCl, 13c·HCl, and 13d, were tested for their interaction properties with BSA using fluorescence spectroscopic studies. The values for the quenching constant (Ksv) ranged from 9.59 × 104 to 10.74 × 104 M-1, indicating a good affinity to the BSA protein.
Collapse
Affiliation(s)
- Monika Garberová
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (Z.K.); (M.T.); (D.S.)
| | - Zuzana Kudličková
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (Z.K.); (M.T.); (D.S.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 01 Košice, Slovakia; (R.M.); (J.M.)
| | - Monika Tvrdoňová
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (Z.K.); (M.T.); (D.S.)
| | - Danica Sabolová
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (Z.K.); (M.T.); (D.S.)
| | - Slávka Bekešová
- Thermo Fisher Scientific, Mlynské Nivy 5, 821 09 Bratislava, Slovakia; (S.B.); (M.G.)
| | - Michal Gramblička
- Thermo Fisher Scientific, Mlynské Nivy 5, 821 09 Bratislava, Slovakia; (S.B.); (M.G.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 01 Košice, Slovakia; (R.M.); (J.M.)
| | - Mária Vilková
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (Z.K.); (M.T.); (D.S.)
| |
Collapse
|
8
|
Abouelenein MG, Mohamed MBI, Elsenety MM, El-Rashedy AA, Ghalib SH, Mohamed FAE, El-Ebiary NMA, Ageeli AA. Facile and Novel Synthetic Approach, Molecular Docking, Molecular Dynamics, and Drug-Likeness Evaluation of 9-Substituted Acridine Derivatives as Dual Anticancer and Antimicrobial Agents. Chem Biodivers 2024; 21:e202301986. [PMID: 38478727 DOI: 10.1002/cbdv.202301986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
In the present study, numerous acridine derivatives A1-A20 were synthesized via aromatic nucleophilic substitution (SNAr) reaction of 9-chloroacridine with carbonyl hydrazides, amines, or phenolic derivatives depending upon facile, novel, and eco-friendly approaches (Microwave and ultrasonication assisted synthesis). The structures of the new compounds were elucidated using spectroscopic methods. The title products were assessed for their antimicrobial, antioxidant, and antiproliferative activities using numerous assays. Promisingly, the investigated compounds mainstream revealed promising antibacterial and anticancer activities. Thereafter, the investigated compounds' expected mode of action was debated by using an array of in silico studies. Compounds A2 and A3 were the most promising antimicrobial agents, while compounds A2, A5, and A7 revealed the most cytotoxic activities. Accordingly, RMSD, RMSF, Rg, and SASA analyses of compounds A2 and A3 were performed, and MMPBSA was calculated. Lastly, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses of the novel acridine derivatives were investigated. The tested compounds' existing screening results afford an inspiring basis leading to developing new compelling antimicrobial and anticancer agents based on the acridine scaffold.
Collapse
Affiliation(s)
- Mohamed G Abouelenein
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Koam, Menofia, Egypt
| | | | - Mohamed M Elsenety
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt, P.O., 11884
| | - Ahmed A El-Rashedy
- Natural and Microbial Products Department, National Research Center (NRC), Egypt
| | - Samirah H Ghalib
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| | | | - Nora M A El-Ebiary
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| | - Abeer A Ageeli
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| |
Collapse
|
9
|
Said YA, Hammad SF, Halim MI, El-Moneim AA, Osman A. Assessment of the therapeutic potential of a novel phosphoramidate acyclic nucleoside on induced hepatocellular carcinoma in rat model. Life Sci 2024:122669. [PMID: 38677390 DOI: 10.1016/j.lfs.2024.122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
AIMS Hepatocellular Carcinoma (HCC) is renowned as a deadly primary cancer of hepatic origin. Sorafenib is the drug-of-choice for targeted treatment of unresectable end-stage HCC. Unfortunately, great proportion of HCC patients showed intolerance or unresponsiveness to treatment. This study assesses potency of novel ProTide; SH-PAN-19 against N-Nitrosodiethylamine (DEN)-induced HCC in male Wistar rats, compared to Sorafenib. MAIN METHODS Structural entity of the synthesized compound was substantiated via FT-IR, UV-Vis, 1H NMR and 13C NMR spectroscopic analysis. In vitro, SH-PAN-19 cytotoxicity was tested against 3 human cell lines; hepatocellular carcinoma; HepG-2, colorectal carcinoma; HCT-116 and normal fibroblasts; MRC-5. In vivo, therapeutic efficacy of SH-PAN-19 (300 mg/kg b.w./day) against HCC could be revealed and compared to that of Sorafenib (15 mg/kg b.w./day) by evaluating the morphometric, biochemical, histopathological, immunohistochemical and molecular key markers. KEY FINDINGS SH-PAN-19 was relatively safe toward MRC-5 cells (IC50 = 307.6 μg/mL), highly cytotoxic to HepG-2 cells (IC50 = 24.9 μg/mL) and prominently hepato-selective (TSI = 12.35). Oral LD50 of SH-PAN-19 was >3000 mg/kg b.w. DEN-injected rats suffered hepatomegaly, oxidative stress, elevated liver enzymes, hypoalbuminemia, bilirubinemia and skyrocketed AFP plasma titre. SH-PAN-19 alleviated the DEN-induced alterations in apoptotic, angiogenic and inflammatory markers. SH-PAN-19 produced a 2.5-folds increase in Caspase-9 and downregulated VEGFR-2, IL-6, TNF-α, TGFβ-1, MMP-9 and CcnD-1 to levels comparable to that elicited by Sorafenib. SH-PAN-19 resulted in near-complete pathological response versus partial response achieved by Sorafenib. SIGNIFICANCE This research illustrated that SH-PAN-19 is a promising chemotherapeutic agent capable of restoring cellular plasticity and could stop HCC progression.
Collapse
Affiliation(s)
- Youssef A Said
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt.
| | - Sherif F Hammad
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Mariam I Halim
- Pathology Department, Faculty of Medicine, Ain Shams University, 11566 Cairo, Egypt
| | - Ahmed Abd El-Moneim
- Graphene Center of Excellence, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Physical Chemistry Department, National Research Centre (NRC), 12622 Cairo, Egypt
| | - Ahmed Osman
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| |
Collapse
|
10
|
Epishkina A, Pakina V, Kutorkina E, Bogoslovskaya E, Tumutolova O, Tolstov M, Igrunkova A, Fedoseikin I, Blinova E, Semeleva E, Blinov D. A novel dihydroacridine derivative targets epidermal growth factor receptor-expressing cancer cells in vitro and in vivo. J Adv Pharm Technol Res 2024; 15:104-110. [PMID: 38903549 PMCID: PMC11186549 DOI: 10.4103/japtr.japtr_392_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 06/22/2024] Open
Abstract
Small molecules are considered a source of novel medicines targeting carcinogenic intracellular pathways including epidermal growth factor receptor (EGFR) signaling. The main goal of the study is to assess whether LHT-17-19 could be considered an effective target molecule against EGFR-expressing tumor cells in silico, in vitro, and in vivo. This was an in vivo, ex vivo, and in vivo experimental study. LHT-17-19 affinity to EGFR's kinase domain was assessed by the ligand's molecular docking. EGFR-expressing Hs746T human gastric cancer cell culture and patient-derived organoid (PDO) model of EGFR-positive breast cancer (BC) were used for in vitro assessment of the molecule anticancer property. IC50 and GI50 indexes were estimated using MTT- and MTS-based tests, respectively. Anticancer activity of LHT-17-19 against EGFR-expressing mutant lung carcinoma was studied on patient-derived xenograft (PDX) model established in 10 humanized BALB/c male mice. Continuous variables were presented as a mean ± standard deviation. Intergroup differences were assessed by two-way t-test. Kaplan-Meier's curves were used for survival analysis. High affinity of LHT-17-19 for the EGFR kinase domain with dG score -7.9 kcal/mol, EDoc-5.45 kcal/mol, and Ki 101.24 uM was due to intermolecular π-σ bonds formation and the ligand intramolecular transformation. LHT-17-19 induced anti-EGFR-expressing gastric cancer cells cytotoxicity with IC50 0.32 µM (95% confidence interval [CI] 0.11-0.54 µM). The derivative inhibited growth of EGFR-expressing BC PDO with GI50 16.25 µM (95% CI 4.44-28.04 µM). 2 mg/kg LHT-17-19 intravenously daily during 7 days inhibited PDX tumor growth and metastatic activity, prolonged animals' survival, and eliminated EGFR-mutant lung cancer cells from residual tumor's node. LHT-17-19 may be considered a molecular platform for further search of promising molecules, EGFR-expressing cancer cell inhibitors.
Collapse
Affiliation(s)
- Anna Epishkina
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
- Medical Department, Unim LLC Mephi, Russia
| | - Viktoria Pakina
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Ekaterina Kutorkina
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Evgeniia Bogoslovskaya
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Oksana Tumutolova
- Department of Pharmacology and Pharmaceutics, Ogarev National Research Mordovia State University, Saransk, Russia
| | - Matvey Tolstov
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Aleksandra Igrunkova
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Ilya Fedoseikin
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Ekaterina Blinova
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
- Department of Fundamental Medicine, National Research Nuclear University Mephi, Russia
| | - Elena Semeleva
- Department of Pharmacology and Pharmaceutics, Ogarev National Research Mordovia State University, Saransk, Russia
| | - Dmitrii Blinov
- Department of Molecular and Clinical Pharmacology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
11
|
Galenko EE, Novikov MS, Bunev AS, Khlebnikov AF. Acridine-Isoxazole and Acridine-Azirine Hybrids: Synthesis, Photochemical Transformations in the UV/Visible Radiation Boundary Region, and Anticancer Activity. Molecules 2024; 29:1538. [PMID: 38611817 PMCID: PMC11013717 DOI: 10.3390/molecules29071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Easy-to-handle N-hydroxyacridinecarbimidoyl chloride hydrochlorides were synthesized as convenient nitrile oxide precursors in the preparation of 3-(acridin-9/2-yl)isoxazole derivatives via 1,3-dipolar cycloaddition with terminal alkynes, 1,1-dichloroethene, and acrylonitrile. Azirines with an acridin-9/2-yl substituent attached directly or via the 1,2,3-triazole linker to the azirine C2 were also synthesized. The three-membered rings of the acridine-azirine hybrids were found to be resistant to irradiation in the UV/visible boundary region, despite their long-wave absorption at 320-420 nm, indicating that the acridine moiety cannot be used as an antenna to transfer light energy to generate nitrile ylides from azirines for photoclick cycloaddition. The acridine-isoxazole hybrids linked at the C9-C3 or C2-C3 atoms under blue light irradiation underwent the addition of such hydrogen donor solvents, such as, toluene, o-xylene, mesitylene, 4-chlorotoluene, THF, 1,4-dioxane, or methyl tert-butyl ether (MTBE), to the acridine system to give the corresponding 9-substituted acridanes in good yields. The synthesized acridine-azirine, acridine-isoxazole, and acridane-isoxazole hybrids exhibited cytotoxicity toward both all tested cancer cell lines (HCT 116, MCF7, and A704) and normal cells (WI-26 VA4).
Collapse
Affiliation(s)
- Ekaterina E. Galenko
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| | - Mikhail S. Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| | - Alexander S. Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti 445020, Russia;
| | - Alexander F. Khlebnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| |
Collapse
|
12
|
Shirisha T, Majhi S, Balasubramanian S, Kashinath D. Metal-free C(sp 3)-H functionalization (C-C and C-N bond formation) of 1,2,3,4-tetrahydroacridines using deep eutectic solvents as catalyst and reaction medium. Org Biomol Chem 2024; 22:1434-1440. [PMID: 38265125 DOI: 10.1039/d3ob01752d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Herein, we report a metal-free and efficient method for the C(sp3)-H functionalization of 1,2,3,4-tetrahydroacridines at the C4-position by the addition of azodicarboxylates (C-N bond) and maleimides (C-C bond) using deep eutectic solvents (DESs) at 80 °C. The C4-functionalized 1,2,3,4-tetrahydroacridines were achieved with high atom efficiency, precise regioselectivity, and yields ranging from 70-96%. The practicality of the developed method has been demonstrated through gram-scale synthesis. Also the green-metrics were calculated for the developed method and it was found that the metrics are near to the ideal values.
Collapse
Affiliation(s)
| | - Subir Majhi
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| | - Sridhar Balasubramanian
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad-500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| |
Collapse
|
13
|
Pawlędzio S, Ziemniak M, Trzybiński D, Arhangelskis M, Makal A, Woźniak K. Influence of N-protonation on electronic properties of acridine derivatives by quantum crystallography. RSC Adv 2024; 14:5340-5350. [PMID: 38348299 PMCID: PMC10859733 DOI: 10.1039/d3ra08081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Applications of 9-aminoacridine (9aa) and its derivatives span fields such as chemistry, biology, and medicine, including anticancer and antimicrobial activities. Protonation of such molecules can alter their bioavailability as weakly basic drugs like aminoacridines exhibit reduced solubility at high pH levels potentially limiting their effectiveness in patients with elevated gastric pH. In this study, we analyse the influence of protonation on the electronic characteristics of the molecular organic crystals of 9-aminoacridine. The application of quantum crystallography, including aspherical atom refinement, has enriched the depiction of electron density in the studied systems and non-covalent interactions, providing more details than previous studies. Our experimental results, combined with a topological analysis of the electron density and its Laplacian, provided detailed descriptions of how protonation changes the electron density distribution around the amine group and water molecule, concurrently decreasing the electron density at bond critical points of N/O-H bonds. Protonation also alters the molecular architecture of the systems under investigation. This is reflected in different proportions of the N⋯H and O⋯H intermolecular contacts for the neutral and protonated forms. Periodic DFT calculations of the cohesive energies of the crystal lattice, as well as computed interaction energies between molecules in the crystal, confirm that protonation stabilises the crystal structure due to a positive synergy between strong halogen and hydrogen bonds. Our findings highlight the potential of quantum crystallography in predicting crystal structure properties and point to its possible applications in developing new formulations for poorly soluble drugs.
Collapse
Affiliation(s)
- Sylwia Pawlędzio
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Marcin Ziemniak
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Damian Trzybiński
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Mihails Arhangelskis
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Anna Makal
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Krzysztof Woźniak
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| |
Collapse
|
14
|
Wei Y, Wang R, Wang M, Hu L, Zhang X, Xu Y, Liu Y, Lan F, Chen J. Research status and prospects of organic photocatalysts in algal inhibition and sterilization: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5013-5031. [PMID: 38147259 DOI: 10.1007/s11356-023-31665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
An increasing amount of sewage has been discharged into water bodies in the progression of industrialization and urbanization, causing serious water pollution. Meanwhile, the increase of nutrients in the water induces water eutrophication and rapid growth of algae. Photocatalysis is a common technique for algal inhibition and sterilization. To improve the utilization of visible light and the conversion efficiency of solar energy, more organic photocatalytic materials have been gradually developed. In addition to ultraviolet light, partial infrared light and visible light could also be used by organic photocatalysts compared with inorganic photocatalysts. Simultaneously, organic photocatalysts also exhibit favorable stability. Most organic photocatalysts can maintain a high degradation rate for algae and bacteria after several cycles. There are various organic semiconductors, mainly including small organic molecules, such as perylene diimide (PDI), porphyrin (TCPP), and new carbon materials (fullerene (C60), graphene (GO), and carbon nanotubes (CNT)), and large organic polymers, such as graphite phase carbon nitride (g-C3N4), polypyrrole (PPy), polythiophene (PTH), polyaniline (PANI), and polyimide (PI). In this review, the classification and synthesis methods of organic photocatalytic materials were elucidated. It was demonstrated that the full visible spectral response (400-750 nm) could be stimulated by modifying organic photocatalysts. Moreover, some problems were summarized based on the research status related to algae and bacteria, and corresponding suggestions were also provided for the development of organic photocatalytic materials.
Collapse
Affiliation(s)
- Yushan Wei
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Mengjiao Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Lijun Hu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xinyi Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yuling Xu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Feng Lan
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
15
|
Woźniczka M, Sutradhar M, Chmiela M, Gonciarz W, Pająk M. Equilibria in the aqueous system of cobalt(II) based on 2-picolinehydroxamic acid and N-(2-hydroxybenzyl)phenylalanine and its ability to inhibit the propagation of cancer cells. J Inorg Biochem 2023; 249:112389. [PMID: 37806005 DOI: 10.1016/j.jinorgbio.2023.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Mixed-ligand complexes of cobalt(II) with two bioligands, viz. 2-picolinehydroxamic acid and the reduced Schiff base N-(2-hydroxybenzyl)phenylalanine, were studied in aqueous solution by potentiometry and UV-Vis spectroscopic analysis. The coordination mode of the complexes and their stability were determined and compared to their parent species. Stacking interactions between the rings present in the ligands influence the stability of the complexes. Also, UV-Vis spectroscopy revealed that the stacking interactions affected the intercalation of DNA and mixed-ligand complexes. The in vitro anticancer activity of the free ligand 2-picolinehydroxamic acid and the complexes was tested against cervical and gastric human adenocarcinoma epithelial cell lines. At concentrations of 0.06 and 0.11 mM, the mixed-ligand structures showed the ability to reduce gastric cancer cells with no inhibitory effect on mouse fibroblasts. The cytotoxic effect was accompanied by damage to the cell nuclei, which may confirm that the complexes demonstrate effective binding to DNA. No determination of minimal inhibitory and bactericidal/fungicidal concentrations against the test organisms was possible at higher complex concentrations due to precipitation.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Manas Sutradhar
- Faculdade de Engenharia, Universidade Lusófona - Centro Universitário de Lisboa, Campo Grande 376, Lisboa 1749-024, Portugal; Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
16
|
Lee YC, Chiou JT, Wang LJ, Chen YJ, Chang LS. Amsacrine downregulates BCL2L1 expression and triggers apoptosis in human chronic myeloid leukemia cells through the SIDT2/NOX4/ERK/HuR pathway. Toxicol Appl Pharmacol 2023; 474:116625. [PMID: 37451322 DOI: 10.1016/j.taap.2023.116625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Accumulating evidence indicates that the anticancer activity of acridine derivatives is mediated through the regulation of anti-apoptotic and pro-apoptotic BCL2 protein expression. Therefore, we investigated whether the cytotoxicity of amsacrine with an acridine structural scaffold in human chronic myeloid leukemia (CML) K562 cells was mediated by BCL2 family proteins. Amsacrine induced apoptosis, mitochondrial depolarization, and BCL2L1 (also known as BCL-XL) downregulation in K562 cells. BCL2L1 overexpression inhibited amsacrine-induced cell death and mitochondrial depolarization. Amsacrine treatment triggered SIDT2-mediated miR-25 downregulation, leading to increased NOX4-mediated ROS production. ROS-mediated inactivation of ERK triggered miR-22 expression, leading to increased HuR mRNA decay. As HuR is involved in stabilizing BCL2L1 mRNA, downregulation of BCL2L1 was noted in K562 cells after amsacrine treatment. In contrast, amsacrine-induced BCL2L1 downregulation was alleviated by restoring ERK phosphorylation and HuR expression. Altogether, the results of this study suggest that amsacrine triggers apoptosis in K562 cells by inhibiting BCL2L1 expression through the SIDT2/NOX4/ERK-mediated downregulation of HuR. Furthermore, a similar pathway also explains the cytotoxicity of amsacrine in CML MEG-01 and KU812 cells.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
17
|
Ranković M, Jevremović A, Janošević Ležaić A, Arsenijević A, Rupar J, Dobričić V, Nedić Vasiljević B, Gavrilov N, Bajuk-Bogdanović D, Milojević-Rakić M. Can Zeolite-Supporting Acridines Boost Their Anticancer Performance? J Funct Biomater 2023; 14:jfb14030173. [PMID: 36976097 PMCID: PMC10056282 DOI: 10.3390/jfb14030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Acridine and its derivatives (9-chloroacridine and 9-aminoacridine) are investigated here, supported on FAU type zeolite Y, as a delivery system of anticancer agents. FTIR/Raman spectroscopy and electron microscopy revealed successful drug loading on the zeolite surface, while spectrofluorimetry was employed for drug quantification. The effects of the tested compounds on cell viability were evaluated using in vitro methylthiazol-tetrazolium (MTT) colorimetric technique against human colorectal carcinoma (cell line HCT-116) and MRC-5 fibroblasts. Zeolite structure remained unchanged during homogeneous drug impregnation with achieved drug loadings in the 18-21 mg/g range. The highest drug release, in the µM concentration range, with favourable kinetics was established for zeolite-supported 9-aminoacridine. The acridine delivery via zeolite carrier is viewed in terms of solvation energy and zeolite adsorption sites. The cytotoxic effect of supported acridines on HCT-116 cells reveals that the zeolite carrier improves toxicity, while the highest efficiency is displayed by zeolite-impregnated 9-aminoacridine. The 9-aminoacridine delivery via zeolite carrier favours healthy tissue preservation while accompanying increased toxicity toward cancer cells. Cytotoxicity results are well correlated with theoretical modelling and release study, providing promising results for applicative purposes.
Collapse
Affiliation(s)
- Maja Ranković
- University of Belgrade-Faculty of Physical Chemistry, 11000 Belgrade, Serbia
| | - Anka Jevremović
- University of Belgrade-Faculty of Physical Chemistry, 11000 Belgrade, Serbia
| | - Aleksandra Janošević Ležaić
- Department of Physical Chemistry and Instrumental Methods, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Aleksandar Arsenijević
- Department of Pharmacy and Center for Molecular Medicine and Stem Cells Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Rupar
- Department of Physical Chemistry and Instrumental Methods, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Vladimir Dobričić
- Department of Physical Chemistry and Instrumental Methods, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia
| | | | - Nemanja Gavrilov
- University of Belgrade-Faculty of Physical Chemistry, 11000 Belgrade, Serbia
| | | | | |
Collapse
|