1
|
Athar M, Fatima S, Zahra A, Shah MA, Bashir S, Seleiman MF, Ali N. Optimizing wheat growth and zinc uptake with compost and rice husk in alkaline conditions. BMC PLANT BIOLOGY 2025; 25:502. [PMID: 40259213 DOI: 10.1186/s12870-025-06537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/10/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Alkaline soils present significant challenges for sustainable agriculture, especially in regions where zinc deficiency limits both crop productivity and human nutrition. In this context, managing organic matter and micronutrient deficient soils is becoming a hot burning issue for the scientific community for ensuring both soil health and the food web. This study aims to investigate the potential impact of compost (CP), rice husk (RH), and zinc (Zn) amendments on zinc fortification in wheat (Triticum aestivum L.) cultivated in calcareous soils. The goal is to enhance the availability and uptake of zinc, thereby improving the nutritional quality of wheat grains. The experiment was conducted at the Ghazi University experimental farm, with eight treatments and three replicates. Each studied pot comprising 5 kg of sandy clay loam textured soil with "Akbar" variety of wheat as the test plant. RESULTS The results of the study revealed highly significant improvements in all measured traits. The combined application of compost, rice husk, and zinc led to substantial increases in plant height (19.9%), spike length (59%), number of spikelet's (36%), 1000-grain weight (24%), and grain zinc content (48.9%) compared to the control. Furthermore, significant enhancements in chlorophyll content, nitrogen, potassium, and zinc levels in the plant were estimated after Zn addition along with compost and rice husk. CONCLUSION The combination of RH with Zn exhibited the promising effects on wheat growth and yield. Moreover, the combined effect of RH and CP along with Zn expressed the highest performance in overall plant growth, increased soil organic matter, increased zinc concentrations in alkaline soil as well as in the grain of wheat. In addition, available phosphorus and potassium contents were also enhanced in zinc-deficient soil. This study provides the future directions to determine the effectual methods of Zn application for increasing the absorption and accumulation of Zn in wheat grains to address the human's demand.
Collapse
Affiliation(s)
- Muhammad Athar
- Department of Soil and Environmental Sciences, Ghazi University Dera Ghazi Khan, Punjab, Pakistan
| | - Shehnaz Fatima
- Department of Soil and Environmental Sciences, Ghazi University Dera Ghazi Khan, Punjab, Pakistan
| | - Anaam Zahra
- Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | | | - Saqib Bashir
- Department of Soil and Environmental Sciences, Ghazi University Dera Ghazi Khan, Punjab, Pakistan.
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Nawab Ali
- Department of Biosystems and Agricultural Engineering (BAE), College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Sajeevan D, Are RP, Hota P, Babu AR. Nanoparticles as Drug Delivery Carrier-synthesis, Functionalization and Application. Curr Pharm Des 2025; 31:244-260. [PMID: 38685791 DOI: 10.2174/0113816128304018240415095912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
In recent years, advancements in chemistry have allowed the tailoring of materials at the nanoscopic level as needed. There are mainly four main types of nanomaterials used as drug carriers:metal-based nanomaterials, organic nanomaterials, inorganic nanomaterials, and polymer nanomaterials. The nanomaterials as a drug carrier showed advantages for decreased side effects with a higher therapeutic index. The stability of the drug compounds are increased by encapsulation of the drug within the nano-drug carriers, leading to decreased systemic toxicity. Nano-drug carriers are also used for controlled drug release by tailoring system-made solubility characteristics of nanoparticles by surface coating with surfactants. The review focuses on the different types of nanoparticles used as drug carriers, the nanoparticle synthesis process, techniques of nanoparticle surface coating for drug carrier purposes, applications of nano-drug carriers, and prospects of nanomaterials as drug carriers for biomedical applications.
Collapse
Affiliation(s)
- Drishya Sajeevan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Ramakrishna Prasad Are
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Prabhudutta Hota
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Anju R Babu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
3
|
Ahmed SAA, Ibrahim RE, Younis EM, Abdelwarith AA, Faroh KY, El Gamal SA, Badr S, Khamis T, Mansour AT, Davies SJ, ElHady M. Antagonistic Effect of Zinc Oxide Nanoparticles Dietary Supplementation Against Chronic Copper Waterborne Exposure on Growth, Behavioral, Biochemical, and Gene Expression Alterations of African Catfish, Clarias gariepinus (Burchell, 1822). Biol Trace Elem Res 2024; 202:5697-5713. [PMID: 38416342 DOI: 10.1007/s12011-024-04115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The harmful impact of waterborne copper (Cu) as a common abiotic stressor in aquatic environments has gained much more interest. The present study aimed to investigate the utilization of zinc oxide nanoparticles (ZnONPs) dietary supplementation to mitigate the chronic toxicity of Cu in African catfish (Clarias gariepinus). Two hundred and forty fish (92.94 ± 0.13 g) were assigned into six groups for 60 days. Control (C), ZnONPs20, and ZnONPs30 groups were fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs without Cu exposure. Cu, Cu + ZnONPs20, and Cu + ZnONPs30 groups were exposed to Cu at a dose of 10 mg L-1 and fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs, respectively. The results revealed that the Cu-exposed fish experienced abnormal clinical signs and behavioral changes. The growth indices and acetylcholine esterase activity were significantly decreased (P < 0.05) in the Cu group. Meanwhile, hepatorenal and serum stress indices (P < 0.05) were significantly elevated with chronic Cu exposure. In addition, a higher expression of stress (P < 0.05) (heat shock protein 60 and hypoxia-inducible factor-1 alpha) and apoptotic-related genes (C/EBP homologous protein, caspase-3, and Bcl-2 Associated X-protein) with down-regulation (P < 0.05) of the anti-apoptotic-related genes (B-cell lymphoma 2 and proliferating cell nuclear antigen) was noticed in the Cu-exposed fish. Histopathological alterations in the gills, liver, kidney, and spleen were markedly reported in the Cu-exposed group. The dietary supplementation with ZnONPs significantly alleviated the negative impacts of chronic waterborne-Cu exposure on growth performance, physiological changes, gene expression, and tissue architecture, especially at 30 mg kg-1 diet level. In particular, the inclusion of ZnONPs at the 30 mg kg-1 diet level produced better outcomes than the 20 mg kg-1 diet. Overall, ZnONPs could be added as a feed supplement in the C. gariepinus diet to boost the fish's health and productivity and alleviate the stress condition brought on by Cu exposure.
Collapse
Affiliation(s)
- Shaimaa A A Ahmed
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Khaled Yehia Faroh
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center (ARC), P.O. Box 12619, Giza, Egypt
| | - Samar A El Gamal
- Department of Fish Diseases, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Shereen Badr
- Department of Clinical Pathology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Abdallah Tageldein Mansour
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, H91V8Y1, Ireland
| | - Mohamed ElHady
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
4
|
Hosseintabar-Ghasemabad B, Kvan OV, Sheida EV, Bykov AV, Zigo F, Seidavi A, Elghandour MMMY, Cipriano-Salazar M, Lackner M, Salem AZM. Nano selenium in broiler feeding: physiological roles and nutritional effects. AMB Express 2024; 14:117. [PMID: 39495406 PMCID: PMC11535084 DOI: 10.1186/s13568-024-01777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Using nanotechnology, while improving the health of broiler chickens, it is possible to control and reduce the conflict of minerals in the intestines, and toxicity of and pollution by these elements. It could be shown that the antioxidant and immune modulation effects of nano selenium are significantly superior compared to other sources of selenium. In addition, improving the quality of meat products with the use of nano selenium has promising results in the future perspective of quality improvement and food safety. Nutrition of permitted and optimal levels is very important in the consumption of nano selenium form and as it can have significant beneficial functional and health effects, in case of errors in the selected levels and doses, irreparable side effects and adverse results can occur. In this review report, an attempt has been made to introduce the position and importance of selenium and the approach of smart consumption of its nano form in the nutrition of broiler chickens. The novelty of using nanotechnology in feeding broiler chickens can be a unique opportunity to improve the bioavailability of important and rare elements such as selenium.
Collapse
Affiliation(s)
| | - Olga Vilorievna Kvan
- Institute of Bioelementology, FSBEI HE "Orenburg State University", Povedy Avenue, 13, Orenburg, 460018, Russia
- Federal Scientific Center for Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 29 9th January Str., Orenburg, 460000, Russia
| | - Elena Vladimirovna Sheida
- Institute of Bioelementology, FSBEI HE "Orenburg State University", Povedy Avenue, 13, Orenburg, 460018, Russia
- Federal Scientific Center for Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 29 9th January Str., Orenburg, 460000, Russia
| | - Artem Vladimirovich Bykov
- Department of Food Biotechnology, FSBEI HE "Orenburg State University", Pobedy Avenue, 13, Orenburg, Russia
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia
| | - Alireza Seidavi
- Department of Animal Science, Islamic Azad University, Rasht Branch, Rasht, Iran
| | | | - Moises Cipriano-Salazar
- Facultad de Medicina Veterinaria y Zootecnia No. 1, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, Vienna, 1200, Austria.
| | | |
Collapse
|
5
|
Patra A, Biswas P, Behera SK, Barpanda NK, Sethy PK, Nanthaamornphong A. Transformative insights: Image-based breast cancer detection and severity assessment through advanced AI techniques. JOURNAL OF INTELLIGENT SYSTEMS 2024; 33. [DOI: 10.1515/jisys-2024-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Abstract
In the realm of image-based breast cancer detection and severity assessment, this study delves into the revolutionary potential of sophisticated artificial intelligence (AI) techniques. By investigating image processing, machine learning (ML), and deep learning (DL), the research illuminates their combined impact on transforming breast cancer diagnosis. This integration offers insights into early identification and precise characterization of cancers. With a foundation in 125 research articles, this article presents a comprehensive overview of the current state of image-based breast cancer detection. Synthesizing the transformative role of AI, including image processing, ML, and DL, the review explores how these technologies collectively reshape the landscape of breast cancer diagnosis and severity assessment. An essential aspect highlighted is the synergy between advanced image processing methods and ML algorithms. This combination facilitates the automated examination of medical images, which is crucial for detecting minute anomalies indicative of breast cancer. The utilization of complex neural networks for feature extraction and pattern recognition in DL models further enhances diagnostic precision. Beyond diagnostic improvements, the abstract underscores the substantial influence of AI-driven methods on breast cancer treatment. The integration of AI not only increases diagnostic precision but also opens avenues for individualized treatment planning, marking a paradigm shift toward personalized medicine in breast cancer care. However, challenges persist, with issues related to data quality and interpretability requiring continued research efforts. Looking forward, the abstract envisions future directions for breast cancer identification and diagnosis, emphasizing the adoption of explainable AI techniques and global collaboration for data sharing. These initiatives promise to propel the field into a new era characterized by enhanced efficiency and precision in breast cancer care.
Collapse
Affiliation(s)
- Ankita Patra
- Department of Electronics, Sambalpur University , Burla , Odisha, 768019 , India
| | - Preesat Biswas
- Department of Electronics and Telecommunication Engineering, GEC Jagdalpur , C.G., 494001 , India
| | - Santi Kumari Behera
- Department of Computer Science and Engineering, VSSUT , Burla , Odisha, 768018 , India
| | | | - Prabira Kumar Sethy
- Department of Electronics, Sambalpur University , Burla , Odisha, 768019 , India
| | - Aziz Nanthaamornphong
- College of Computing, Prince of Songkla University, Phuket Campus , Phuket 83120 , Thailand
| |
Collapse
|
6
|
Liu L, Liu T, Wang H, Zhao Y, Xu X, Zeng M. Identification and validation of core microbes for the formation of the characteristic flavor of fermented oysters (Crassostrea gigas). Food Chem 2024; 449:138970. [PMID: 38653141 DOI: 10.1016/j.foodchem.2024.138970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 04/25/2024]
Abstract
Self-fermented oyster homogenates were prepared to investigate core microbes and their correlations with flavor formation mechanisms. Five bacterial and four fungal genera were identified. Correlation analysis showed that Saccharomyces cerevisiae, Kazachstania, and L. pentosus were core species for the flavor of fermented products. Four core microbes were selected for inoculation into homogenates. Twelve key aroma compounds with odor activity values >1 were identified by gas chromatography-mass spectrometry. L. plantarum and S. cerevisiae were beneficial for producing key aroma compounds such as 1-octen-3-ol, (E,Z)-2,6-nonadienal, and heptanal. Fermentation with four microbes resulted in significant increases in contents of Asp, Glu, Lys, inosine monophosphate, and guanosine monophosphate, which provided freshness and sweetness. Fermentation with four microbes resulted in high digestibility, antioxidant abilities, and zinc contents. This study has elucidated the mechanism of flavor formation by microbial action and provides a reference for targeted flavor control in fermented oyster products.
Collapse
Affiliation(s)
- Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China
| | - Tianhong Liu
- Marine Science research Institute of Shandong Province, Qingdao, Shandong Province 266100, China
| | - Hongjiang Wang
- Foshan Haitian (Suqian) Flavoring Food Co., LTD, Suqian, Jiangsu Province 233800, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China.
| |
Collapse
|
7
|
Afshar Bakeshlo A, Ahmadipour B, Khajali F, Pirany N. Comparative effects of zinc hydroxy chloride, zinc sulfate, and zinc-methionine on egg quality and quantity traits in laying hens. Anim Sci J 2024; 95:e13996. [PMID: 39360690 DOI: 10.1111/asj.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/09/2024] [Accepted: 07/26/2024] [Indexed: 10/04/2024]
Abstract
The aim of this experiment was to evaluate the effect of different levels of zinc supplements on egg quality and quantity traits as well as egg enrichment with zinc in laying hens from 40 to 50 weeks of age. A total of 240 Hy-line laying hens were distributed among eight treatments and five replications (six birds per replication). The control group received no zinc diet, while the other treatments were supplemented with varying levels of zinc sulfate (80, 120, and 160 mg/kg) or zinc hydroxy chloride (50, 75, and 100 mg/kg). An additional group of zinc-methionine supplement at 124 mg/kg was also included. Results showed that different levels of zinc supplementation caused a significant improvement in eggshell resistance, eggshell percentage, feed conversion ratio, and Haugh unit compared to the control group. Adding organic and hydroxy sources of zinc significantly increased zinc contents in egg yolk, tibia bone, and blood. In addition, the treatments containing zinc supplements caused an increase in the antibody level against the Newcastle disease compared to the control (P < 0.05). Different levels and sources of zinc had no significant effect on eggshell thickness, specific gravity, and egg mass. Results showed that adding zinc in hydroxy chloride form at 100 mg/kg could improve performance indices, safety, and egg enrichment with zinc.
Collapse
Affiliation(s)
- Ali Afshar Bakeshlo
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behnam Ahmadipour
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Fariborz Khajali
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Nasrollah Pirany
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
8
|
Aljohani ASM. Heavy metal toxicity in poultry: a comprehensive review. Front Vet Sci 2023; 10:1161354. [PMID: 37456954 PMCID: PMC10340091 DOI: 10.3389/fvets.2023.1161354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
Arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg) have been recognized as most toxic heavy metals that are continuously released into the environment, both from natural sources and from anthropogenic production of fertilizers, industrial activities, and waste disposal. Therefore, As, Cd, Hg, and Pb are found in increasing concentrations in bodies of water, fodder, feed, and in the tissues of livestock, including poultry, in the surroundings of industrial areas, leading to metabolic, structural, and functional abnormalities in various organs in all animals. In poultry, bioaccumulation of As, Pb, Cd, and Hg occurs in many organs (mainly in the kidneys, liver, reproductive organs, and lungs) as a result of continuous exposure to heavy metals. Consumption of Cd lowers the efficiency of feed conversion, egg production, and growth in poultry. Chronic exposure to As, Pb, Cd, and Hg at low doses can change the microscopic structure of tissues (mainly in the brain, liver, kidneys, and reproductive organs) as a result of the increased content of these heavy metals in these tissues. Histopathological changes occurring in the kidneys, liver, and reproductive organs are reflected in their negative impact on enzyme activity and serum biochemical parameters. Metal toxicity is determined by route of exposure, length of exposure, and absorbed dosage, whether chronic and acute. This review presents a discussion of bioaccumulation of As, Cd, Pb, and Hg in poultry and the associated histopathological changes and toxic concentrations in different tissues.
Collapse
|