1
|
Yu Y, Zhu B, Huo J, You L, Hileuskaya K, Cheung PCK. Degradation of Sargassum fusiforme polysaccharides by dielectric barrier discharge plasma and their physicochemical and immunomodulatory properties. Int J Biol Macromol 2025; 310:143079. [PMID: 40222516 DOI: 10.1016/j.ijbiomac.2025.143079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/23/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
In this study, the effects of dielectric barrier discharge (DBD) plasma on the physicochemical properties and immunomodulatory activities of Sargassum fusiforme polysaccharides (SFP) were investigated. Results showed that the average molecular weight of SFP was reduced from 238 to 20 kDa within 90 min using DBD plasma. The contents of total sugar, reducing sugar and sulfate in the degraded polysaccharides after DBD plasma treatment for 90 min increased by 15.41 %, 150.35 % and 146.33 %, respectively, in comparison to the original SFP. Their protein and uronic acid contents decreased by 70.06 % and 18.75 %, respectively. DBD plasma treatment did not change the monosaccharide type of SFP, but it changed their monosaccharide composition, type of functional group and surface morphology. Furthermore, the treatment significantly improved the immunomodulatory activities of degraded polysaccharides. The polysaccharides with the best activity were obtained after treatment for 60 min (named DSFP-T60). Both SFP and DSFP-T60 significantly promoted the pinocytic capacity of RAW264.7 cells and inhibited the expression and production of nitric oxide, interleukin-6, tumor necrosis factor-α and interleukin-10. Moreover, the degraded polysaccharides showed stronger immunomodulatory activity than SFP. This study will lay a theoretical foundation for exploring a novel and efficient way to degrade polysaccharide with enhanced immunomodulatory activity.
Collapse
Affiliation(s)
- Yongyi Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Guangdong Institute of Food Inspection, Guangzhou, Guangdong 510435, China
| | - Biyang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Junhui Huo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, China.
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36F. Skaryna str., Minsk 220141, Belarus
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
2
|
Araiza-Alvarado A, Álvarez SA, Gallegos-Infante JA, Sánchez-Burgos JA, Rocha-Guzmán NE, González-Herrera SM, Moreno-Jiménez MR, González-Laredo RF, Cervantes-Cardoza V. Sweetening with Agavins: Its Impact on Sensory Acceptability, Physicochemical Properties, Phenolic Composition and Nutraceutical Potential of Oak Iced Tea. Foods 2025; 14:833. [PMID: 40077536 PMCID: PMC11898482 DOI: 10.3390/foods14050833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Oak infusions enriched with agavins may offer nutraceutical benefits in the development of iced teas. This study evaluated infusions of Quercus sideroxyla and Quercus eduardii leaves formulated with different concentrations of agavins (0, 2, 6, and 10%), analyzing their physicochemical and sensory properties, chemical stability, and antioxidant capacity. The incorporation of agavins resulted in substantial modifications to physicochemical parameters, including pH, titratable acidity, and soluble solids, thereby enhancing product stability and consistency. Notable distinctions were observed between the two species with respect to their acidogenic response and soluble solid concentration. Interactions between agavins and phenolic compounds, as discerned by UPLC-PDA-ESI-MS/MS and FT-IR, exerted a significant influence on bioactivity of the phenolic constituents, thereby affecting the nutraceutical potential of the infusions. These interactions, facilitated by hydrogen bonds, led to reduction in phenolic acids, such as quinic acid (↓ 43%), and alteration in antioxidant capacity at high concentrations of agavins. The findings underscore the significance of meticulously designing balanced formulations that optimize chemical stability, functionality, and sensory acceptance, thereby ensuring the quality of the final product.
Collapse
Affiliation(s)
- Aylín Araiza-Alvarado
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Saúl Alberto Álvarez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - José Alberto Gallegos-Infante
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Jorge Alberto Sánchez-Burgos
- Food Research Laboratory, Technological Institute of Tepic, National Technological Institute of Mexico, Instituto Tecnológico Avenue No 2595, Lagos del Country, Tepic 63175, Mexico;
| | - Nuria Elizabeth Rocha-Guzmán
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Silvia Marina González-Herrera
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Martha Rocío Moreno-Jiménez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Rubén Francisco González-Laredo
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| | - Verónica Cervantes-Cardoza
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio Tecnológico Nacional de México, TecNM-I.T. de Durango, Felipe Pescador 1830, Durango 34080, Mexico; (A.A.-A.); (S.A.Á.); (J.A.G.-I.); (S.M.G.-H.); (M.R.M.-J.); (R.F.G.-L.); (V.C.-C.)
| |
Collapse
|
3
|
Singh M, Rani H, Chopra HK. Extraction, optimization, purification and characterization of inulin from chicory roots using conventional and greener extraction techniques. Int J Biol Macromol 2025; 306:141385. [PMID: 39988165 DOI: 10.1016/j.ijbiomac.2025.141385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Inulin is a natural polysaccharide that has abundant applications in the chemical, food, and pharmaceutical industries. In the present studies, extraction of inulin was attained using conventional techniques (Soxhlet) and green techniques (ultrasonication) from chicory roots. The extraction parameters were optimized using Box-Behnken design and response surface methodology (RSM). The parameters selected were ultrasonication temperature (40-80 °C), time duration (30-120 min), and solid-to-solvent ratio (1:10-1:40 g/mL). Distilled water was used as solvent. The optimal conditions for extracting inulin using the UAE method were solid-to-solvent ratio of 1:40 g/mL, 120 min, extraction temperature of 60 °C, to get maximum yield (64.79 %). For the Soxhlet apparatus method, these conditions were 1:40 g/mL, 6 h, 90 °C, and (59.1 %), respectively. LC-MS showed maximum purity (98 %) of inulin in the UAE method. FT-IR, 1H NMR, and 13C NMR confirmed the inulin extraction. XRD analysis showed that inulin was mostly amorphous, while SEM showed rough surfaces with inulin aggregates of various sizes. The maximum DPPH radical scavenging activities were 68.89 %, 53.80 %, and 45.17 % for Stdin, Chuw, and Chsw, respectively. Overall, the UAE outperformed the conventional Soxhlet method in terms of efficiency and extraction time.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106, India
| | - Himanshu Rani
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106, India.
| | - Harish Kumar Chopra
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106, India
| |
Collapse
|
4
|
Habib H, Kumar A, Amin T, Bhat TA, Aziz N, Rasane P, Ercisli S, Singh J. Process optimization, growth kinetics, and antioxidant activity of germinated buckwheat and amaranth-based yogurt mimic. Food Chem 2024; 457:140138. [PMID: 38901337 DOI: 10.1016/j.foodchem.2024.140138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
This study aimed to investigate the integration of cereal and germinated pseudocereals into set-type yogurt mimic, resulting in a novel and nutritious product. Four groups of yogurts mimic, namely CPY-1, CPY-2, CPY-3, and CPY-4, were prepared using different probiotic cultures, including L. acidophilus 21, L. plantarum 14, and L. rhamnosus 296 along with starter cultures. Notably, CPY-2 cultured with L. plantarum and L. rhamnosus and incubated for 12 h exhibited the most desirable attributes. The resulting yogurt demonstrated an acidity of 0.65%, pH of 4.37 and a probiotic count of 6.38 log CFU/mL. The logistic growth model fit revealed maximum growth rates (k, 1/h) and maximum bacterial counts (Nm log CFU/mL) for each CPY variant. The results revealed that CPY-2 significantly improved protein, dietary fiber, phenols and antioxidant capacities compared to the control. Scanning electron microscopy showed more structured and compact casein network in CPY-2, highlighting its superior textural characteristics. Overall, this study demonstrates the incorporation of cereal and germinated pseudocereals into set-type yogurt mimic offers health benefits through increased dietary fiber and β-glucan.
Collapse
Affiliation(s)
- Huraiya Habib
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ashwani Kumar
- Institute of Food Technology, Bundelkhand University Jhansi, 284128, India
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, 190025, India
| | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, 190025, India
| | - Nargis Aziz
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Jyoti Singh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
5
|
Chen D, Kang Z, Chen H, Fu P. Polysaccharide from Areca catechu L. inflorescence enhances the intestinal mucosal immunity to maintain immune homeostasis. Int J Biol Macromol 2024; 278:134900. [PMID: 39168192 DOI: 10.1016/j.ijbiomac.2024.134900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Being the first line of defense, intestinal mucosal immunity serves as in maintaining immune homeostasis among organisms. This study investigated the impact of the areca inflorescence polysaccharide (AFP) on intestinal mucosal immunity and elucidated the mechanisms responsible for the immunomodulatory effects of AFP. The immunosuppression mouse model was established using the cyclophosphamide. The intestinal mucosal status was evaluated based on the intestinal integrity, chemical and mucosal immune barriers, and intestinal flora. According to the findings, AFP enhances intestinal integrity by up-regulating the expression of tight junction proteins and reinforcing the chemical barrier through increased mucin-2, β-defensins, and SIgA expression and secretion. Furthermore, AFP restores the mucosal immune barrier by regulating immune cells within Peyer's patches and lamina propria. AFP also reverses the intestinal flora balance and regulates its metabolism. Additionally, AFP effectively modulates the immune response in the spleen and peripheral blood. Together, these results indicated that AFP repairs mucosal damage and restores mucosal immunity, thereby preserving the immune homeostasis of organisms.
Collapse
Affiliation(s)
- Di Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Science and Engineering, Hainan University, Haikou, PR China; Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zonghua Kang
- Hunan Kouweiwang Group Co., Ltd, Changsha 413499, China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Science and Engineering, Hainan University, Haikou, PR China; Huachuang Institute of Areca Research-Hainan, Haikou 570228, China.
| | - Pengcheng Fu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Science and Engineering, Hainan University, Haikou, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Ma Y, Zhang L, Ma X, Bai K, Tian Z, Wang Z, Muratkhan M, Wang X, Lü X, Liu M. Saccharide mapping as an extraordinary method on characterization and identification of plant and fungi polysaccharides: A review. Int J Biol Macromol 2024; 275:133350. [PMID: 38960255 DOI: 10.1016/j.ijbiomac.2024.133350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/26/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Saccharide mapping was a promising scheme to unveil the mystery of polysaccharide structure by analysis of the fragments generated from polysaccharide decomposition process. However, saccharide mapping was not widely applied in the polysaccharide analysis for lacking of systematic introduction. In this review, a detailed description of the establishment process of saccharide mapping, the pros and cons of downstream technologies, an overview of the application of saccharide mapping, and practical strategies were summarized. With the updating of the available downstream technologies, saccharide mapping had been expanding its scope of application to various kinds of polysaccharides. The process of saccharide mapping analysis included polysaccharides degradation and hydrolysates analysis, and the degradation process was no longer limited to acid hydrolysis. Some downstream technologies were convenient for rapid qualitative analysis, while others could achieve quantitative analysis. For the more detailed structure information could be provided by saccharide mapping, it was possible to improve the quality control of polysaccharides during preparation and application. This review filled the blank of basic information about saccharide mapping and was helpful for the establishment of a professional workflow for the saccharide mapping application to promote the deep study of polysaccharide structure.
Collapse
Affiliation(s)
- Yuntian Ma
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lichen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuoer Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhangyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Marat Muratkhan
- Department of Food Technology and Processing Products, Technical Faculty, Saken Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China; Northwest A&F University Shen Zhen Research Institute, Shenzhen, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Shaanxi, China; Northwest A&F University Shen Zhen Research Institute, Shenzhen, China.
| | - Manshun Liu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Cheng X, Liu X, Jordan KW, Yu J, Whitworth RJ, Park Y, Chen MS. Frequent Acquisition of Glycoside Hydrolase Family 32 (GH32) Genes from Bacteria via Horizontal Gene Transfer Drives Adaptation of Invertebrates to Diverse Sources of Food and Living Habitats. Int J Mol Sci 2024; 25:8296. [PMID: 39125866 PMCID: PMC11311677 DOI: 10.3390/ijms25158296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Glycoside hydrolases (GHs, also called glycosidases) catalyze the hydrolysis of glycosidic bonds in polysaccharides. Numerous GH genes have been identified from various organisms and are classified into 188 families, abbreviated GH1 to GH188. Enzymes in the GH32 family hydrolyze fructans, which are present in approximately 15% of flowering plants and are widespread across microorganisms. GH32 genes are rarely found in animals, as fructans are not a typical carbohydrate source utilized in animals. Here, we report the discovery of 242 GH32 genes identified in 84 animal species, ranging from nematodes to crabs. Genetic analyses of these genes indicated that the GH32 genes in various animals were derived from different bacteria via multiple, independent horizontal gene transfer events. The GH32 genes in animals appear functional based on the highly conserved catalytic blades and triads in the active center despite the overall low (35-60%) sequence similarities among the predicted proteins. The acquisition of GH32 genes by animals may have a profound impact on sugar metabolism for the recipient organisms. Our results together with previous reports suggest that the acquired GH32 enzymes may not only serve as digestive enzymes, but also may serve as effectors for manipulating host plants, and as metabolic enzymes in the non-digestive tissues of certain animals. Our results provide a foundation for future studies on the significance of horizontally transferred GH32 genes in animals. The information reported here enriches our knowledge of horizontal gene transfer, GH32 functions, and animal-plant interactions, which may result in practical applications. For example, developing crops via targeted engineering that inhibits GH32 enzymes could aid in the plant's resistance to animal pests.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (X.C.); (X.L.); (R.J.W.); (Y.P.)
| | - Xuming Liu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (X.C.); (X.L.); (R.J.W.); (Y.P.)
- Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, US Department of Agriculture, Agricultural Research Services, 4008 Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA;
| | - Katherine W. Jordan
- Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, US Department of Agriculture, Agricultural Research Services, 4008 Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA;
| | - Jingcheng Yu
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA;
| | - Robert J. Whitworth
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (X.C.); (X.L.); (R.J.W.); (Y.P.)
| | - Yoonseong Park
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (X.C.); (X.L.); (R.J.W.); (Y.P.)
| | - Ming-Shun Chen
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; (X.C.); (X.L.); (R.J.W.); (Y.P.)
- Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research, US Department of Agriculture, Agricultural Research Services, 4008 Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
8
|
Cheong KL, Liu K, Chen W, Zhong S, Tan K. Recent progress in Porphyra haitanensis polysaccharides: Extraction, purification, structural insights, and their impact on gastrointestinal health and oxidative stress management. Food Chem X 2024; 22:101414. [PMID: 38711774 PMCID: PMC11070828 DOI: 10.1016/j.fochx.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Porphyra haitanensis, a red seaweed species, represents a bountiful and sustainable marine resource. P. haitanensis polysaccharide (PHP), has garnered considerable attention for its numerous health benefits. However, the comprehensive utilization of PHP on an industrial scale has been limited by the lack of comprehensive information. In this review, we endeavor to discuss and summarize recent advancements in PHP extraction, purification, and characterization. We emphasize the multifaceted mechanisms through which PHP promotes gastrointestinal health. Furthermore, we present a summary of compelling evidence supporting PHP's protective role against oxidative stress. This includes its demonstrated potent antioxidant properties, its ability to neutralize free radicals, and its capacity to enhance the activity of antioxidant enzymes. The information presented here also lays the theoretical groundwork for future research into the structural and functional aspects of PHP, as well as its potential applications in functional foods.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Keying Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenting Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
9
|
Chen YJ, Sui X, Wang Y, Zhao ZH, Han TH, Liu YJ, Zhang JN, Zhou P, Yang K, Ye ZH. Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chem X 2024; 22:101289. [PMID: 38544933 PMCID: PMC10966145 DOI: 10.1016/j.fochx.2024.101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.
Collapse
Affiliation(s)
- Ya-jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Zhi-hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
10
|
Wanapat M, Prachumchai R, Dagaew G, Matra M, Phupaboon S, Sommai S, Suriyapha C. Potential use of seaweed as a dietary supplement to mitigate enteric methane emission in ruminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:173015. [PMID: 38710388 DOI: 10.1016/j.scitotenv.2024.173015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Seaweeds or marine algae exhibit diverse morphologies, sizes, colors, and chemical compositions, encompassing various species, including red, green, and brown seaweeds. Several seaweeds have received increased research attention and application in animal feeding investigations, particularly in ruminant livestock, due to their higher yield and convenient harvestability at present. Recent endeavors encompassing both in vitro and in vivo experiments have indicated that many seaweeds, particularly red seaweed (Asparagopsis taxiformis and Asparagopsis armata), contain plant secondary compounds, such as halogenated compounds and phlorotannins, with the potential to reduce enteric ruminal methane (CH4) emissions by up to 99 % when integrated into ruminant diets. This review provides an encompassing exploration of the existing body of knowledge concerning seaweeds and their impact on rumen fermentation, the toxicity of ruminal microbes, the health of animals, animal performance, and enteric ruminal CH4 emissions in both in vitro and in vivo settings among ruminants. By attaining a deeper comprehension of the implications of seaweed supplementation on rumen fermentation, animal productivity, and ruminal CH4 emissions, we could lay the groundwork for devising innovative strategies. These strategies aim to simultaneously achieve environmental benefits, reduce greenhouse gas emissions, enhance animal efficiency, and develop aquaculture and seaweed production systems, ensuring a high-quality and consistent supply chain. Nevertheless, future research is essential to elucidate the extent of the effect and gain insight into the mode of action.
Collapse
Affiliation(s)
- Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rittikeard Prachumchai
- Division of Animal Science, Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani 12130, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
11
|
Huang X, Nie S, Fu X, Nan S, Ren X, Li R. Exploring the prebiotic potential of hydrolyzed fucoidan fermented in vitro with human fecal inocula: Impact on microbiota and metabolome. Int J Biol Macromol 2024; 267:131202. [PMID: 38556225 DOI: 10.1016/j.ijbiomac.2024.131202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Fucoidan is widely applied in food and pharmaceutical industry for the promising bioactivities. Low-molecular weight hydrolyzed fucoidan has gained attention for its beneficial health effects. Here, the modulation on microbiome and metabolome features of fucoidan and its acidolyzed derivatives (HMAF, 1.5-20 kDa; LMAF, <1.5 kDa) were investigated through human fecal cultures. Fucose is the main monosaccharide component in fucoidan and LMAF, while HMAF contains abundant glucuronic acid. LMAF fermentation resulted in the highest production of short-chain fatty acids, with acetate and propionate reaching maximum levels of 13.46 mmol/L and 11.57 mmol/L, respectively. Conversely, HMAF exhibited a maximum butyrate production of 9.28 mmol/L. Both fucoidan and acidolyzed derivatives decreased the abundance of Escherichia-Shigella and Klebsiella in human fecal cultures. Fucoidan and HMAF prefer to improve the abundance of Bacteroides. However, LMAF showed positive influence on Bifidobacterium, Lactobacillus, and Megamonas. Untargeted metabolome indicated that fucoidan and its derivatives mainly altered the metabolic level of lipids, indole, and their derivatives, with fucoidan and HMAF promoting higher level of indole-3-propionic acid and indole-3-carboxaldehyde compared to LMAF. Considering the chemical structural differences, this study suggested that hydrolyzed fucoidan can provide potential therapeutic applications for targeted regulation of microbial communities.
Collapse
Affiliation(s)
- Xinru Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China.
| | - Shihao Nan
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang 330047, Jiangxi, People's Republic of China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China
| | - Rong Li
- Qingdao Women and Children's Hospital, Qingdao 266034, Shandong, People's Republic of China
| |
Collapse
|
12
|
Yoo S, Jung SC, Kwak K, Kim JS. The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health. Int J Mol Sci 2024; 25:4834. [PMID: 38732060 PMCID: PMC11084426 DOI: 10.3390/ijms25094834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The human gut microbiota, an intricate ecosystem within the gastrointestinal tract, plays a pivotal role in health and disease. Prebiotics, non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of beneficial microorganisms, have emerged as a key modulator of this complex microbial community. This review article explores the evolution of the prebiotic concept, delineates various types of prebiotics, including fructans, galactooligosaccharides, xylooligosaccharides, chitooligosaccharides, lactulose, resistant starch, and polyphenols, and elucidates their impact on the gut microbiota composition. We delve into the mechanisms through which prebiotics exert their effects, particularly focusing on producing short-chain fatty acids and modulating the gut microbiota towards a health-promoting composition. The implications of prebiotics on human health are extensively reviewed, focusing on conditions such as obesity, inflammatory bowel disease, immune function, and mental health. The review further discusses the emerging concept of synbiotics-combinations of prebiotics and probiotics that synergistically enhance gut health-and highlights the market potential of prebiotics in response to a growing demand for functional foods. By consolidating current knowledge and identifying areas for future research, this review aims to enhance understanding of prebiotics' role in health and disease, underscoring their importance in maintaining a healthy gut microbiome and overall well-being.
Collapse
Affiliation(s)
- Suyeon Yoo
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Suk-Chae Jung
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
13
|
López MG, Salomé-Abarca LF. The agavins (Agave carbohydrates) story. Carbohydr Polym 2024; 327:121671. [PMID: 38171684 DOI: 10.1016/j.carbpol.2023.121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Fructans, are carbohydrates defined as fructose-based polymers with countable degree of polymerization (DP) ranging so far from DP3 to DP60. There are different types of fructans depending on their molecular arrangement. They are categorized as linear inulins and levans, neoseries of inulin and levan, branched graminans, and highly branched neofructans, so called agavins (Agave carbohydrates). It is worth to note that agavins are the most recently described type of fructans and they are also the most complex ones. The complexity of these carbohydrates is correlated to their various isomers and degree of polymerization range, which is correlated to their multifunctional application in industry and human health. Here, we narrate the story of the agavins' discovery. This included their chemical characterization, their benefits, biotechnological applications, and drawbacks over human health. Finally, a perspective of the study of agavins and their interactions with other metabolites through metabolomics is proposed.
Collapse
Affiliation(s)
- Mercedes G López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Guanajuato 36824, Mexico.
| | - Luis Francisco Salomé-Abarca
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Guanajuato 36824, Mexico
| |
Collapse
|
14
|
Cheong KL, Yu B, Teng B, Veeraperumal S, Xu B, Zhong S, Tan K. Post-COVID-19 syndrome management: Utilizing the potential of dietary polysaccharides. Biomed Pharmacother 2023; 166:115320. [PMID: 37595427 DOI: 10.1016/j.biopha.2023.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
The COVID-19 pandemic has caused significant global impact, resulting in long-term health effects for many individuals. As more patients recover, there is a growing need to identify effective management strategies for ongoing health concerns, such as post-COVID-19 syndrome, characterized by persistent symptoms or complications beyond several weeks or months from the onset of symptoms. In this review, we explore the potential of dietary polysaccharides as a promising approach to managing post-COVID-19 syndrome. We summarize the immunomodulatory, antioxidant, antiviral, and prebiotic activities of dietary polysaccharides for the management of post-COVID-19 syndrome. Furthermore, the review investigates the role of polysaccharides in enhancing immune response, regulating immune function, improving oxidative stress, inhibiting virus binding to ACE2, balancing gut microbiota, and increasing functional metabolites. These properties of dietary polysaccharides may help alleviate COVID-19 symptoms, providing a promising avenue for effective treatment strategies.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Biao Yu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Bo Teng
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Baojun Xu
- Programme of Food Science and Technology, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
15
|
Gao J, Zhang Z, Yan JY, Ge YX, Gao Y. Inflammation and coagulation abnormalities via the activation of the HMGB1‑RAGE/NF‑κB and F2/Rho pathways in lung injury induced by acute hypoxia. Int J Mol Med 2023; 52:67. [PMID: 37350396 PMCID: PMC10555482 DOI: 10.3892/ijmm.2023.5270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
High‑altitude acute hypoxia is commonly associated with respiratory cardiovascular diseases. The inability to adapt to acute hypoxia may lead to cardiovascular dysfunction, lung injury and even death. Therefore, understanding the molecular basis of the adaptation to high‑altitude acute hypoxia may reveal novel therapeutic approaches with which to counteract the detrimental consequences of hypoxia. In the present study, a high‑altitude environment was simulated in a rat model in order to investigate the role of the high mobility group protein‑1 (HMGB1)/receptor for advanced glycation end products (RAGE)/NF‑κB and F2/Rho signaling pathways in lung injury induced by acute hypoxia. It was found that acute hypoxia caused inflammation through the HMGB1/RAGE/NF‑κB pathway and coagulation dysfunction through the F2/Rho pathway, both of which may be key processes in acute hypoxia‑induced lung injury. The present study provides new insight into the molecular basis of lung injury induced by acute hypoxia. The simultaneous activation of the HMGB1/RAGE/NF‑κB and F2/Rho signaling pathways plays a critical role in hypoxia‑induced inflammatory responses and coagulation abnormalities, and provides a theoretical basis for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Jia-Yi Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yun-Xuan Ge
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
16
|
Cheong KL, Zhang Y, Li Z, Li T, Ou Y, Shen J, Zhong S, Tan K. Role of Polysaccharides from Marine Seaweed as Feed Additives for Methane Mitigation in Ruminants: A Critical Review. Polymers (Basel) 2023; 15:3153. [PMID: 37571046 PMCID: PMC10420924 DOI: 10.3390/polym15153153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Given the increasing concerns regarding greenhouse gas emissions associated with livestock production, the need to discover effective strategies to mitigate methane production in ruminants is clear. Marine algal polysaccharides have emerged as a promising research avenue because of their abundance and sustainability. Polysaccharides, such as alginate, laminaran, and fucoidan, which are extracted from marine seaweeds, have demonstrated the potential to reduce methane emissions by influencing the microbial populations in the rumen. This comprehensive review extensively examines the available literature and considers the effectiveness, challenges, and prospects of using marine seaweed polysaccharides as feed additives. The findings emphasise that marine algal polysaccharides can modulate rumen fermentation, promote the growth of beneficial microorganisms, and inhibit methanogenic archaea, ultimately leading to decreases in methane emissions. However, we must understand the long-term effects and address the obstacles to practical implementation. Further research is warranted to optimise dosage levels, evaluate potential effects on animal health, and assess economic feasibility. This critical review provides insights for researchers, policymakers, and industry stakeholders dedicated to advancing sustainable livestock production and methane mitigation.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Yiyu Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Zhuoting Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Tongtong Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Yiqing Ou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Jiayi Shen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (K.-L.C.)
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| |
Collapse
|
17
|
Das T, Chatterjee N, Capanoglu E, Lorenzo JM, Das AK, Dhar P. The synergistic ramification of insoluble dietary fiber and associated non-extractable polyphenols on gut microbial population escorting alleviation of lifestyle diseases. Food Chem X 2023; 18:100697. [PMID: 37206320 PMCID: PMC10189415 DOI: 10.1016/j.fochx.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Most of the pertinent research which aims at exploring the therapeutic effects of polyphenols usually misapprehends a large fraction of non-extractable polyphenols due to their poor aqueous-organic solvent extractability. These polymeric polyphenols (i.e., proanthocyanins, hydrolysable tannins and phenolic acids) possess a unique property to adhere to the food matrix polysaccharides and protein sowing to their structural complexity with high glycosylation, degree of polymerization, and plenty of hydroxyl groups. Surprisingly resistance to intestinal absorption does not hinder its bioactivity but accelerates its functionality manifolds due to the colonic microbial catabolism in the gastrointestinal tract, thereby protecting the body from local and systemic inflammatory diseases. This review highlights not only the chemistry, digestion, colonic metabolism of non-extractable polyphenols (NEPP) but also summarises the synergistic effect of matrix-bound NEPP exerting local as well as systemic health benefits.
Collapse
Affiliation(s)
- Trina Das
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical & Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| |
Collapse
|
18
|
Cheong KL, Chen S, Teng B, Veeraperumal S, Zhong S, Tan K. Oligosaccharides as Potential Regulators of Gut Microbiota and Intestinal Health in Post-COVID-19 Management. Pharmaceuticals (Basel) 2023; 16:860. [PMID: 37375807 DOI: 10.3390/ph16060860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact worldwide, resulting in long-term health effects for many individuals. Recently, as more and more people recover from COVID-19, there is an increasing need to identify effective management strategies for post-COVID-19 syndrome, which may include diarrhea, fatigue, and chronic inflammation. Oligosaccharides derived from natural resources have been shown to have prebiotic effects, and emerging evidence suggests that they may also have immunomodulatory and anti-inflammatory effects, which could be particularly relevant in mitigating the long-term effects of COVID-19. In this review, we explore the potential of oligosaccharides as regulators of gut microbiota and intestinal health in post-COVID-19 management. We discuss the complex interactions between the gut microbiota, their functional metabolites, such as short-chain fatty acids, and the immune system, highlighting the potential of oligosaccharides to improve gut health and manage post-COVID-19 syndrome. Furthermore, we review evidence of gut microbiota with angiotensin-converting enzyme 2 expression for alleviating post-COVID-19 syndrome. Therefore, oligosaccharides offer a safe, natural, and effective approach to potentially improving gut microbiota, intestinal health, and overall health outcomes in post-COVID-19 management.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shutong Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Bo Teng
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| |
Collapse
|
19
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
20
|
Liu J, Wu Y, Cai Y, Tan Z, Deng N. Long-term consumption of different doses of Grifola frondosa affects immunity and metabolism: correlation with intestinal mucosal microbiota and blood lipids. 3 Biotech 2023; 13:189. [PMID: 37193332 PMCID: PMC10183060 DOI: 10.1007/s13205-023-03617-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Grifola frondosa (GF) is an edible mushroom with hypoglycemic and hypolipidemic effects. In this study, the specific pathogen-free male mice were randomized into the normal (NM), low-dose GF (LGF), medium-dose GF (MGF), and high-dose GF (HGF) groups. The LGF, MGF, and HGF groups were fed with 1.425 g/(kg d), 2.85 g/(kg d), and 5.735 g/(kg d) of GF solution for 8 weeks. After feeding with GF solution, compared with the NM group, the thymus index was significantly increased in the LGF group, and TC, TG, and LDL of mice were significantly increased in the HGF group, while HDL was significantly decreased. Compared with the NM group, the uncultured Bacteroidales bacterium, Ligilactobacillus increased in the LGF group, and Candidatus Arthromitus increased in the MGF group. The characteristic bacteria of the HGF group included Christensenellaceae R7, unclassified Clostridia UCG 014, unclassified Eubacteria coprostanoligenes, and Prevotellaceae Ga6A1. Among them, Ligilactobacillus showed a negative correlation with HDL. Unclassified Eubacterium coprostanoligenes group and Ligilactobacillus showed a positive correlation with TG. In summary, our experiments evidenced that GF improves lipid metabolism disorders by regulating the intestinal microbiota, providing a new pathway for hypolipidemic using GF dietary.
Collapse
Affiliation(s)
- Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| |
Collapse
|
21
|
Kang J, Zhao J, He LF, Li LX, Zhu ZK, Tian ML. Extraction, characterization and anti-oxidant activity of polysaccharide from red Panax ginseng and Ophiopogon japonicus waste. Front Nutr 2023; 10:1183096. [PMID: 37293670 PMCID: PMC10244596 DOI: 10.3389/fnut.2023.1183096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Red ginseng and Ophiopogon japonicus are both traditional Chinese medicines. They have also been used as food in China for thousands of years. These two herbs were frequently used in many traditional Chinese patent medicines. However, the carbohydrate compositions of these two herbs were not normally used during the production of said medicine, such as Shenmai injection, resulting in a large amount of waste composed of carbohydrates. In this study, the extraction conditions were optimized by response surface methodology. The Shenmai injection waste polysaccharide was extracted by using distilled water that was boiled under the optimized conditions. The Shenmai injection waste polysaccharide (SMP) was thereby obtained. SMP was further purified by anion exchange chromatography and gel filtration. With this method, a neutral polysaccharide fraction (SMP-NP) and an acidic polysaccharide fraction (SMP-AP) were obtained. The results of structure elucidation indicated that SMP-NP was a type of levan, and SMP-AP was a typical acidic polysaccharide. SMP-NP exhibited potential stimulation activity on the proliferation of five different Lactobacilli strains. Therefore, SMP-AP could promote the antioxidant defense of IPEC-J2 cells. These findings suggest that Shenmai injection waste could be used as a resource for prebiotics and antioxidants.
Collapse
Affiliation(s)
- Jia Kang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jue Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan-Fang He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Kai Zhu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Wang T, Song Y, Ai Z, Liu Y, Li H, Xu W, Chen L, Zhu G, Yang M, Su D. Pulsatilla chinensis saponins ameliorated murine depression by inhibiting intestinal inflammation mediated IDO1 overexpression and rebalancing tryptophan metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154852. [PMID: 37167824 DOI: 10.1016/j.phymed.2023.154852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Current antidepressant therapy remains unsatisfactory due to the complex pathogenesis. Emerging evidence suggested that depression is associated with inflammatory bowel disease (IBD), intestinal inflammation is an increasingly accepted factor that influences depression, but the mechanism is unclear. PURPOSE In the current study, we determined whether Pulsatilla chinensis saponins (PRS), a phytomedicine from Pulsatilla chinensis (Bunge) Regel with excellent anti-IBD effect, could improve the depression. Furthermore, we investigated the mechanisms to explore the relationship between IBD and depression and provide new source for the urgent development of antidepressants from phytomedicine. METHODS The antidepressant activity of PRS was accessed by behavioral test and multichannel technology in depression mice induced by Chronic Unpredictable Mild Stress (CUMS). 16S rDNA-based microbiota and RNA-seq in colon was used to explore potential intestinal metabolism affected by PRS. To illustrate the underlying mechanisms of anti-depression effect of PRS, targeted metabolomics, ELISA assay, immunofluorescence staining, Western Blot, and qPCR were carried out. RESULTS The results clarified that CUMS induced depression with tryptophan (Trp) metabolism and intestinal inflammation. PRS effectively suppressed the depression and acted as a regulator of Trp/kynurenine (Kyn) metabolic and intestinal inflammation confirmed by analysis of microflora and colon RNA. Meanwhile PRS reduced interferon gamma (IFN-γ), inhibited JAK1-STAT1 phosphorylation, decreased IDO1 levels to protect against the overactivity of Trp/kyn path, suggesting that IFN-γ activated IDO1 probably a significant target for PRS to exert anti-depression effects. To further confirm the mechanism, this research expressed that PRS improved IDO1 activity and depressive behavior in mice with IFN-γ-induced depression. Furthermore, the therapeutic effect of 1-methyl-tryptophan (1-MT) well known as an IDO1 inhibitor in depression and clinically used anti-UC drug Mesalazine (MS) was demonstrated to confirm the potential mechanism. CONCLUSION The study is the first to reveal the antidepressant effect of PRS and further demonstrate its potential therapeutic targets. In addition, it also clarifies that the Trp/kyn pathway is the crosstalk between IBD and depression and provides new choice for depression treatment. And it also provides an important basis for the follow-up development and exploration of anti-intestinal antidepressants.
Collapse
Affiliation(s)
- Tingting Wang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Yali Liu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Huizhen Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Weize Xu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Liling Chen
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Ming Yang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China.
| |
Collapse
|
23
|
Li C, Li X, Gu Q, Xie L, Cai Y, Liao L. Synthesis, characterization and potential applications for oxidized agarose. Int J Biol Macromol 2023; 242:124643. [PMID: 37119904 DOI: 10.1016/j.ijbiomac.2023.124643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
The knowledge of agarose (AG) oxidation using periodate as oxidizer has not been systematically explored. This paper synthesized oxidized agarose (OAG) using solid-sate and solution reaction methods; the reaction mechanism and the properties of OAG samples were systematically evaluated. Chemical structure analysis disclosed that the aldehyde group and carboxyl group contents in all OAG samples are extremely low. Meanwhile, crystallinity, dynamic viscosity and molecular weight of OAG samples is lower than that of the original AG. Reaction temperature, time and sodium periodate dosage are inversely proportional to the decline of the gelling temperature (Tg) and melting temperature (Tm); and the Tg and Tm for the OAG sample obtained are even 19 °C and 22 °C lower than that of the original AG. The as-synthesized OAG samples all possess excellent cytocompatibility and blood compatibility; and can promote the proliferation and migration of fibroblast cells. Last but not least, the gel strength, hardness, cohesiveness, springiness and chewiness of the OAG gel can be effectively regulated via oxidation reaction. In conclusions, both solid and solution oxidation can regulate the physical properties of OAG and enlarge its potential applications in wound dressing, tissue engineering and food areas.
Collapse
Affiliation(s)
- Chengpeng Li
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xianzhu Li
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Qixiang Gu
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Lici Xie
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Cai
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lusheng Liao
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; Guangdong Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.
| |
Collapse
|
24
|
Malairaj S, Veeraperumal S, Yao W, Subramanian M, Tan K, Zhong S, Cheong KL. Porphyran from Porphyra haitanensis Enhances Intestinal Barrier Function and Regulates Gut Microbiota Composition. Mar Drugs 2023; 21:md21050265. [PMID: 37233459 DOI: 10.3390/md21050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
In this study, the effects of a homogenous porphyran from Porphyra haitanensis (PHP) on the intestinal barrier and gut microbiota were investigated. The results showed that oral administration of PHP resulted in a higher luminal moisture content and a lower pH environment for the growth of beneficial bacteria in the colon of mice. PHP significantly increased the production of total short-chain fatty acids during the fermentation process. PHP made the intestinal epithelial cells of mice arrange more tidily and tightly with a significant increase in mucosal thickness. PHP also increased the amount of mucin-producing goblet cells and the expression of mucin in the colon, which maintained the structure and function of the intestinal mucosal barrier. Moreover, PHP up-regulated the expression of tight junctions including ZO-1 and occludin, improving the intestinal physical barrier function. The results of 16S rRNA sequencing showed that PHP regulated the composition of gut microbiota in mice, increasing the richness and diversity of gut microbiota and the ratio of Firmicutes to Bacteroidetes. This study revealed that the intake of PHP is beneficial for the gastrointestinal tract and PHP could be a potential source of prebiotics in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sathuvan Malairaj
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Suresh Veeraperumal
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wanzi Yao
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mugesh Subramanian
- Research and Development Center, Genexia Bioserv, Chennai 600045, Tamilnadu, India
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | - Saiyi Zhong
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kit-Leong Cheong
- Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|
25
|
Pitirollo O, Grimaldi M, Corradini C, Pironi S, Cavazza A. HPAEC-PAD Analytical Evaluation of Carbohydrates Pattern for the Study of Technological Parameters Effects in Low-FODMAP Food Production. Molecules 2023; 28:molecules28083564. [PMID: 37110798 PMCID: PMC10143781 DOI: 10.3390/molecules28083564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND "FODMAPs" (fermentable-oligo-, di-, monosaccharides, and polyols) are a group of fermentable carbohydrates and polyols largely diffused in food products. Despite their beneficial effects as prebiotics, people affected by irritable bowel syndrome manifest symptoms when eating these carbohydrates. A low-FODMAP diet seems to be the only possible therapy proposed for symptom management. Bakery products are a common source of FODMAPs, whose pattern and total amount can be affected by their processing. This work aims at studying some of the technological parameters that can influence the FODMAPs pattern in bakery products during the production process. METHODS high-performance anion exchange chromatography coupled to a pulsed amperometric detector (HPAEC-PAD) was used as a highly selective system for carbohydrates evaluation analyses on flours, doughs, and crackers. These analyses were performed using two different columns, the CarboPac PA200 and CarboPac PA1, which are selective for oligosaccharide and simple sugar separation, respectively. RESULTS emmer and hemp flours were selected to prepare doughs as they contained low oligosaccharide content. Two different mixes of ferments were used at different times of fermentation to evaluate the best conditions to achieve low-FODMAP crackers. CONCLUSION the proposed approach allows carbohydrate evaluation during crackers processing and permits the selection of opportune conditions to obtain low-FODMAP products.
Collapse
Affiliation(s)
- Olimpia Pitirollo
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Maria Grimaldi
- Dipartimento di Ingegneria e Architettura, Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Claudio Corradini
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Serena Pironi
- BRU.PI srl, Via Berlino, 91, 47822 Santarcangelo di Romagna, Italy
| | - Antonella Cavazza
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
26
|
Antioxidative and Protective Effect of Morchella esculenta against Dextran Sulfate Sodium-Induced Alterations in Liver. Foods 2023; 12:foods12051115. [PMID: 36900632 PMCID: PMC10000998 DOI: 10.3390/foods12051115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Morchella esculenta is an edible mushroom with special flavor and high nutritional value for humans, primarily owing to its polysaccharide constituents. M. esculenta polysaccharides (MEPs) possess remarkable pharmaceutical properties, including antioxidant, anti-inflammatory, immunomodulatory, and anti-atherogenic activities. The aim of this study was to evaluate the in vitro and in vivo antioxidant potential of MEPs. In vitro activity was determined using free radical scavenging assays, whereas in vivo activity was evaluated through dextran sodium sulfate (DSS)-induced liver injury in mice with acute colitis. MEPs effectively scavenged 1,1-diphenyl-2-picrylhydrazyl and 2,2-azinobis-6-(3-ethylbenzothiazoline sulfonic acid) free radicals in a dose-dependent manner. Additionally, DSS-induced mice showed severe liver damage, cellular infiltration, tissue necrosis, and decreased antioxidant capacity. In contrast, intragastric administration of MEPs showed hepatoprotective effects against DSS-induced liver injury. MEPs remarkably elevated the expression levels of superoxide dismutase, glutathione peroxidase, and catalase. Additionally, it decreased malondialdehyde and myeloperoxidase levels in the liver. These results indicate that the protective effects of MEP against DSS-induced hepatic injury could rely on its ability to reduce oxidative stress, suppress inflammatory responses, and improve antioxidant enzyme activity in the liver. Therefore, MEPs could be explored as potential natural antioxidant agents in medicine or as functional foods to prevent liver injury.
Collapse
|
27
|
Wang M, Veeraperumal S, Zhong S, Cheong KL. Fucoidan-Derived Functional Oligosaccharides: Recent Developments, Preparation, and Potential Applications. Foods 2023; 12:foods12040878. [PMID: 36832953 PMCID: PMC9956988 DOI: 10.3390/foods12040878] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Oligosaccharides derived from natural resources are attracting increasing attention as both food and nutraceutical products because of their beneficial health effects and lack of toxicity. During the past few decades, many studies have focused on the potential health benefits of fucoidan. Recently, new interest has emerged in fucoidan, partially hydrolysed into fuco-oligosaccharides (FOSs) or low-molecular weight fucoidan, owing to their superior solubility and biological activities compared with fucoidan. There is considerable interest in their development for use in the functional food, cosmetic, and pharmaceutical industries. Therefore, this review summarises and discusses the preparation of FOSs from fucoidan using mild acid hydrolysis, enzymatic depolymerisation, and radical degradation methods, and discusses the advantages and disadvantages of hydrolysis methods. Several purification steps performed to obtain FOSs (according to the latest reports) are also reviewed. Moreover, the biological activities of FOS that are beneficial to human health are summarised based on evidence from in vitro and in vivo studies, and the possible mechanisms for the prevention or treatment of various diseases are discussed.
Collapse
Affiliation(s)
- Min Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Postgraduate College, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (S.Z.); (K.-L.C.)
| | - Kit-Leong Cheong
- Department of Biology, Shantou University, Shantou 515063, China
- Correspondence: (S.Z.); (K.-L.C.)
| |
Collapse
|