1
|
Elsayad KA, Elmasry GF, Mahmoud ST, Awadallah FM, Giovannuzzi S, Supuran CT. Development of novel amino-benzenesulfonamide derivatives and their analogues as carbonic anhydrase inhibitors: Design, synthesis, anticancer activity assessment, and pharmacokinetic studies using UPLC-MS/MS. Bioorg Chem 2025; 159:108335. [PMID: 40086186 DOI: 10.1016/j.bioorg.2025.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
The present study outlines the design and synthesis of dual-tail analogues of SLC-0111 as carbonic anhydrase inhibitors (CAIs) targeting tumor isoforms IX and XII 4a-h and 5a-h, along with pharmacokinetic studies. The synthesized compounds were evaluated for their inhibitory activity against four carbonic anhydrase isoforms (hCA I, II, IX, and XII), revealing potent activity, particularly against hCA IX and XII. Notably, compounds 4b, 5a, and 5b demonstrated strong inhibition of hCA IX with Ki values of 20.4, 12.9, and 18.2 nM, respectively, compared to acetazolamide (AAZ), which has a Ki of 25 nM. Additionally, compounds 5a, 5b, 5c, and 5d showed selective inhibition of hCA XII, with Ki values of 26.6, 8.7, 17.2, and 10.9 nM, respectively, relative to AAZ (Ki = 5.7 nM). Moreover, both series were tested for their anti-proliferative activity following the US-NCI protocol against a panel of more than fifty cancer cell lines. Compound 5h met the activity criteria and was automatically scheduled for further evaluation at five concentrations with 10-fold dilutions, revealing high toxicity toward leukemia and lower toxicity against melanoma. In addition, the MTT cytotoxicity assay was performed on 5f, 5d and acetazolamide using WI-38 cells. Furthermore, an in vivo pharmacokinetic study was conducted using UPLC-MS/MS on the most potent derivative, 5d, demonstrating a comparable pharmacokinetic profile compared to the reference drug acetazolamide. Furthermore, molecular docking prediction studies were conducted for the most active compounds, 5d and 5h, to elucidate their interactions with the active site hot spots of the CA isoform.
Collapse
Affiliation(s)
- Khaled A Elsayad
- Pharmacy Department, Cairo University Hospitals, Cairo University, Cairo 11662, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, New Giza University, New Giza, km 22 Cairo- Alexandria Desert Road, Cairo, Egypt.
| | - Fadi M Awadallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Simone Giovannuzzi
- Department NEUROFARBA - Pharmaceutical and Nutraceutical section, University of Firenze, Università Degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and Nutraceutical section, University of Firenze, Università Degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Hashem H, Abdelfattah S, Hassan HM, Al-Emam A, Alqarni M, Alotaibi G, Radwan IT, Kaur K, Rao DP, Bräse S, Alkhammash A. Discovery of a novel 4-pyridyl SLC-0111 analog targeting tumor-associated carbonic anhydrase isoform IX through tail-based design approach with potent anticancer activity. Front Chem 2025; 13:1571646. [PMID: 40255643 PMCID: PMC12006758 DOI: 10.3389/fchem.2025.1571646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction: Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme involved in cancer progression and survival. Targeting CA IX with selective inhibitors like SLC-0111 has shown therapeutic potential. This study aimed to develop a novel 4-pyridyl analog (Pyr) of SLC-0111 with enhanced anticancer activity. Methods: Pyr was synthesized using a tail-based design and characterized by NMR. Its cytotoxicity was tested against cancer and normal cell lines. CA inhibition, cell cycle effects, apoptosis induction, and protein expression changes were evaluated. Molecular docking and ADMET predictions assessed binding and drug-like properties. Results and Discussion: Pyr showed selective cytotoxicity toward cancer cells and potent CA IX inhibition. It induced G0/G1 arrest, apoptosis, and modulated p53, Bax, and Bcl-2 levels. Docking confirmed strong CA IX binding, and ADMET analysis indicated good oral bioavailability. These results support Pyr as a promising anticancer candidate.
Collapse
Affiliation(s)
- Hamada Hashem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Shadwa Abdelfattah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag, Egypt
| | - Hesham M. Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Mohammed Alqarni
- Department of Pharmaceutical chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Kirandeep Kaur
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Devendra Pratap Rao
- Coordination Chemistry Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Kanpur, Uttar Pradesh, India
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
3
|
Giovannuzzi S, De Luca V, Capasso C, Supuran CT. Exploring the Inhibition of Toxoplasma gondii α-Carbonic Anhydrase by Sulfonamides: Insights into Potential Drug Targeting. Int J Mol Sci 2024; 26:116. [PMID: 39795973 PMCID: PMC11719606 DOI: 10.3390/ijms26010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is a protozoan parasite capable of infecting a wide range of hosts, posing significant health risks, particularly to immunocompromised individuals and congenital transmission. Current therapeutic options primarily target the active tachyzoite stage but are limited by issues such as toxicity and incomplete efficacy. As a result, there is an urgent need for alternative therapies that can selectively target parasite-specific mechanisms critical for metabolic processes and host-parasite interactions. In this context, α-carbonic anhydrase (Tg_CA), an enzyme essential for T. gondii survival has emerged as a promising drug target. Tg_CA was successfully expressed and purified to evaluate its susceptibility to sulfonamide-based inhibitors, represented by compounds 1-24 and the AAZ-HCT series. These inhibitors demonstrated a broad spectrum of activity, with KI values ranging from 17.8 to 8450 nM. Several compounds exhibited moderate to high potency against Tg_CA; however, concerns regarding selectivity arose because of the inhibition of human isoforms, particularly CA I and CA II. Thus, although some inhibitors showed strong activity against Tg_CA, optimizing selectivity remains crucial for minimizing off-target effects and improving therapeutic efficacy. Further structural modifications may enhance selectivity and advance the development of effective treatments for toxoplasmosis.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.G.); (C.T.S.)
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy;
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy;
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.G.); (C.T.S.)
| |
Collapse
|
4
|
Karaküçük-İyidoğan A, Başaran E, Tatar-Yılmaz G, Oruç-Emre EE. Development of new chiral 1,2,4-triazole-3-thiones and 1,3,4-thiadiazoles with promising in vivo anticonvulsant activity targeting GABAergic system and voltage-gated sodium channels (VGSCs). Bioorg Chem 2024; 151:107662. [PMID: 39079390 DOI: 10.1016/j.bioorg.2024.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 08/30/2024]
Abstract
Antiepileptic drugs (AEDs) are used in the treatment of epilepsy, a neurodegenerative disease characterized by recurrent and untriggered seizures that aim to prevent seizures as a symptomatic treatment. However, they still have significant side effects as well as drug resistance. In recent years, especially 1,3,4-thiadiazoles and 1,2,4-triazoles have attracted attention in preclinical and clinical studies as important drug candidates owing to their anticonvulsant properties. Therefore, in this study, which was conducted to discover AED candidate molecules with reduced side effects at low doses, a series of chiral 2,5-disubstituted-1,3,4-thiadiazoles (4a-d) and 4,5-disubstituted-1,2,4-triazole-3 thiones (5a-d) were designed and synthesized starting from l-phenylalanine ethyl ester hydrochloride. The anticonvulsant activities of the new chiral compounds were assessed in several animal seizure models in mice and rats for initial (phase I) screening after their chemical structures including the configuration of the chiral center were elucidated using spectroscopic methods and elemental analysis. First, all chiral compounds were pre-screened using acute seizure tests induced electrically (maximal electroshock test, 6 Hz psychomotor seizure model) and induced chemically (subcutaneous metrazol seizure model) in mice and also their neurotoxicity (TOX) was determined in the rotorad assay. Two of the tested compounds were used for quantitative testing, and (S)-(+)5-[1-(4-fluorobenzamido)-2-phenylethyl]-4-(4-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5b) and (S)-(+)-(5-[1-(4-fluorobenzamido)-2-phenylethyl]-4-(4-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5c) emerged as the most promising anticonvulsant drug candidates and also showed low neurotoxicity. The antiepileptogenic potential of these compounds was determined using a chronic seizure induced electrically corneal kindled mouse model. Furthermore, all chiral compounds were tested for their neuroprotective effect against excitotoxic kainic acid (KA) and N-methyl-d-aspartate (NMDA) induced in vitro neuroprotection assay using an organotypic hippocampal slice culture. The KA-induced neuroprotection assay results revealed that compounds 5b and 5c, which are the leading compounds for anticonvulsant activity, also had the strongest neuroprotective effects with IC50 values of 103.30 ± 1.14 and 113.40 ± 1.20 μM respectively. Molecular docking studies conducted to investigate the molecular binding mechanism of the tested compounds on the GABAA receptor showed that compound 5b exhibits a strong affinity to the benzodiazepine (BZD) binding site on GABA. It also revealed that the NaV1.3 binding interactions were consistent with the experimental data and the reported binding mode of the ICA121431 inhibitor. This suggests that compound 5b has a high affinity for these specific binding sites, indicating its potential as a ligand for modulating GABAA and NaV1.3 receptor activity. Furthermore, the ADME properties displayed that all the physicochemical and pharmacological parameters of the compounds stayed within the specified limits and revealed a high bioavailability profile.
Collapse
Affiliation(s)
| | - Eyüp Başaran
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310 Gaziantep, Turkey; Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Batman University, 72060 Batman, Turkey
| | - Gizem Tatar-Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey; Department of Bioinformatics, Institue of Health Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Emine Elçin Oruç-Emre
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310 Gaziantep, Turkey
| |
Collapse
|
5
|
Gege C, Kleymann G. Helicase-primase inhibitors for the treatment of herpes simplex virus infections - patent evaluation of WO2023/225162 from Gilead Sciences Inc. Expert Opin Ther Pat 2024; 34:863-872. [PMID: 39262042 DOI: 10.1080/13543776.2024.2403618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Helicase-primase is an interesting target for small-molecule therapy of herpes simplex virus (HSV) infections. With amenamevir already approved for varicella-zoster virus and herpes simplex in Japan and with pritelivir's granted breakthrough therapy designation for the treatment of acyclovir-resistant HSV infections in immunocompromised patients, the target has sparked interest in helicase-primase inhibitors (HPIs). Here, we analyze the first patent application from Gilead in this field, which pursued a me-too approach combining elements from an old Bayer together with a recent Medshine HPI application (which covers the Phaeno Therapeutics drug candidate HN0037). The asset was contributed to Assembly Biosciences, where it is under development as ABI-1179 at the investigational new drug (IND) enabling stage for high-recurrence genital herpes. A structure proposal for indolinoyl derivative ABI-1179 is presented, showing its potential opportunities and limitations compared to other HPIs.
Collapse
|
6
|
da Silva FC, Martinho ACC, Ferreira HSV, Siqueira RP, Arruda VM, Guerra JFDC, de Souza MLDR, Landin ES, Rezende Júnior CDO, de Araújo TG. A Novel Compound from the Phenylsulfonylpiperazine Class: Evaluation of In Vitro Activity on Luminal Breast Cancer Cells. Molecules 2024; 29:4471. [PMID: 39339466 PMCID: PMC11433764 DOI: 10.3390/molecules29184471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer (BC) is the most common cancer in women, and is characterized by its histological and molecular heterogeneity. Luminal BC is an estrogen receptor-positive subtype, with varied clinical courses. Although BC patients are eligible for hormone therapy, both early and late relapses still occur, and thus there is a demand for new cytotoxic and selective treatment strategies for these patients. In the present study, inspired by the structure of phenylsulfonylpiperazine, a series of 20 derivatives were tested in bioassays against MCF7, MDA-MB-231 and MDA-MB-453 BC cells to discover new hit compounds. After 48 h of treatment, 12 derivatives impaired cell viability and presented significant IC50 values against at least one of the tumor lineages. Overall, the luminal BC cell line MCF7 was more sensitive to treatments. Compound 3, (4-(1H-tetrazol-1-yl)phenyl)(4-((4-chlorophenyl)sulfonyl)piperazin-1-yl)methanone, was the most promising, with IC50 = 4.48 μM and selective index (SI) = 35.6 in MCF7 cells. Compound 3 also presented significant antimigratory and antiproliferative activities against luminal BC cells, possibly by affecting the expression of genes involved in the epithelial-mesenchymal transition mechanism, upregulating E-Cadherin transcripts (CDH1). Our findings suggest that phenylsulfonylpiperazine derivatives are potential candidates for the development of new therapies, especially those targeting luminal BC.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
| | - Ana Clara Cassiano Martinho
- Laboratory of Drug Candidate Synthesis, Institute of Chemistry, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
| | - Vinicius Marques Arruda
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
- Laboratory of Biochemistry, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
| | - Joyce Ferreira da Costa Guerra
- Laboratory of Biochemistry, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
| | - Maria Laura Dos Reis de Souza
- Laboratory of Drug Candidate Synthesis, Institute of Chemistry, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Emanuelly Silva Landin
- Laboratory of Drug Candidate Synthesis, Institute of Chemistry, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratory of Drug Candidate Synthesis, Institute of Chemistry, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Thaise Gonçalves de Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia 38405-302, MG, Brazil
| |
Collapse
|
7
|
Sharma V, Vats L, Giovannuzzi S, Mohan B, Supuran CT, Sharma PK. In-vitro and in-silico investigations of SLC-0111 hydrazinyl analogs as human carbonic anhydrase I, II, IX, and XII inhibitors. Arch Pharm (Weinheim) 2024; 357:e2400157. [PMID: 38713910 DOI: 10.1002/ardp.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Two novel series of hydrazinyl-based benzenesulfonamides 9a-j and 10a-j were designed and synthesized using SLC-0111 as the lead molecule. The newly synthesized compounds were evaluated for their inhibitory activity against four different human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. Both the series reported here were practically inactive against the off-target isozyme hCA I. Notably, derivative 10a exhibited superior potency (Ki of 10.2 nM) than acetazolamide (AAZ) against the cytosolic isoform hCA II. The hCA IX and XII isoforms implicated in tumor progression were effectively inhibited with Kis in the low nanomolar range of 20.5-176.6 nM and 6.0-127.5 nM, respectively. Compound 9g emerged as the most potent and selective hCA IX and XII inhibitor with Ki of 20.5 nM and SI of 200.1, and Ki of 6.0 nM and SI of 683.7, respectively, over hCA I. Furthermore, six compounds (9a, 9h, 10a, 10g, 10i, and 10j) exhibited significant inhibition toward hCA IX (Kis = 27.0, 41.1, 27.4, 25.9, 40.7, and 30.8 nM) relative to AAZ and SLC-0111 (Kis = 25.0 and 45.0 nM, respectively). These findings underscore the potential of these derivatives as potent and selective inhibitors of hCA IX and XII over the off-target hCA I and II.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Pt. Chiranji Lal Sharma Government College, Karnal, Haryana, India
| | - Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, Haryana, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Central University of Haryana, Mahendragarh, India
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
8
|
Ali Z, Rehman W, Rasheed L, Alzahrani AY, Ali N, Hussain R, Emwas AH, Jaremko M, Abdellattif MH. New 1,3,4-Thiadiazole Derivatives as α-Glucosidase Inhibitors: Design, Synthesis, DFT, ADME, and In Vitro Enzymatic Studies. ACS OMEGA 2024; 9:7480-7490. [PMID: 38405480 PMCID: PMC10882623 DOI: 10.1021/acsomega.3c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/27/2024]
Abstract
Diabetes is an emerging disorder in the world and is caused due to the imbalance of insulin production as well as serious effects on the body. In search of a better treatment for diabetes, we designed a novel class of 1,3,4-thiadiazole-bearing Schiff base analogues and assessed them for the α-glucosidase enzyme. In the series (1-12), compounds are synthesized and 3 analogues showed excellent inhibitory activity against α-glucosidase enzymes in the range of IC50 values of 18.10 ± 0.20 to 1.10 ± 0.10 μM. In this series, analogues 4, 8, and 9 show remarkable inhibition profile IC50 2.20 ± 0.10, 1.10 ± 0.10, and 1.30 ± 0.10 μM by using acarbose as a standard, whose IC50 is 11.50 ± 0.30 μM. The structure of the synthesized compounds was confirmed through various spectroscopic techniques, such as NMR and HREI-MS. Additionally, molecular docking, pharmacokinetics, cytotoxic evaluation, and density functional theory study were performed to investigate their behavior.
Collapse
Affiliation(s)
- Zahid Ali
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Liaqat Rasheed
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Abdullah Y. Alzahrani
- Department
of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir 61421, Saudi Arabia
| | - Nawab Ali
- Shanghai
Key Laboratory of Functional Materials Chemistry, School of Chemistry
and Molecular Engineering, East China University
of Science and Technology, Meilong Road130, Shanghai 200237, PR China
| | - Rafaqat Hussain
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Biological
and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magda H. Abdellattif
- Department
of Chemistry, Sciences College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
9
|
Öztürk C, Kalay E, Gerni S, Balci N, Tokali FS, Aslan ON, Polat E. Sulfonamide derivatives with benzothiazole scaffold: Synthesis and carbonic anhydrase I-II inhibition properties. Biotechnol Appl Biochem 2024; 71:223-231. [PMID: 37964505 DOI: 10.1002/bab.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
The secondary sulfonamide derivatives containing benzothiazole scaffold (1-10) were synthesized to determine their inhibition properties on two physiologically essential human carbonic anhydrases isoforms (hCAs, EC, 4.2.1.1), hCA I, and hCA II. The inhibitory effects of the compounds on hCA I and hCA II isoenzymes were investigated by comparing their IC50 and Ki values. The Ki values of compounds (1-10) against hCA I and hCA II are in the range of 0.052 ± 0.022-0.971 ± 0.280 and 0.025 ± 0.010-0.682 ± 0.335, respectively. Some of these inhibited the enzyme more effectively than the standard drug, acetazolamide. In particular, compounds 5 and 4 were found to be most effective on hCA I and hCA II.
Collapse
Affiliation(s)
- Cansu Öztürk
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Neslihan Balci
- Siran Dursun Keles Vocational School of Health Services, Gümüshane University, Gümüshane, Turkey
| | - Feyzi Sinan Tokali
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Osman Nuri Aslan
- East Anatolian High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Emrah Polat
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
10
|
Wang P, Li S, Wen H, Lei Y, Huang S, Wang Z, Su J, Guan W, Lei J. Thiosuccinimide enabled S-N bond formation to access N-sulfenylated sulfonamide derivatives with synthetic diversity. Org Biomol Chem 2024; 22:990-997. [PMID: 38180390 DOI: 10.1039/d3ob01848b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A thiosuccinimide enabled S-N cross-coupling strategy has been established for the intermolecular N-sulfenylation of clinically approved sulfa drugs under additive-free conditions. This approach features simple operation, high chemoselectivity for sulfenylating the phenylamino group of sulfonamides, wide substrate scope, and easy scale production, affording N-sulfenylated products in moderate to excellent yields (up to 90%). In addition, we also found that this transformation can be realized in a one-pot manner by employing readily available thiols as starting materials, and the obtained sulfonamide derivatives are capable of various late-stage functionalizations, including oxidation, arylation, benzylation, and methylation.
Collapse
Affiliation(s)
- Peifeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Huiling Wen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yin Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Shujuan Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Jialong Su
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Wenxiang Guan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Jian Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|