1
|
Zhu Y, Ali A, Mulinari Dos Santos G, Franciscon JPS, de Molon RS, Goh C, Erovolino E, Theodoro LH, Shrestha A. A Chitosan-based Hydrogel to Modulate Immune Cells and Promote Periodontitis Healing in the High-Fat Diet-induced Periodontitis Rat Model. Acta Biomater 2025:S1742-7061(25)00358-7. [PMID: 40379118 DOI: 10.1016/j.actbio.2025.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Periodontitis is a multifactorial inflammatory disease driven by prolonged, dysregulated inflammation between dysbiotic microbiota and the host immune system. Risk factors such as metabolic syndrome exacerbate periodontitis progression through systemic inflammation. Current treatments primarily focus on removing pathogenic dental plaque, but subsequent healing relies mainly on the host immune response. Modulating the local immune environment, particularly dendritic cells (DCs) and T-cells, in periodontitis complicated by metabolic syndrome could enhance the healing process. The objective of this study is to develop a biomaterial-based adjuvant therapy to immunomodulate DCs and T-cells and promote healing in periodontitis complicated by metabolic syndrome. We developed and characterized a chitosan-based thermosensitive injectable self-assembled hydrogel (TISH), which exhibited an interconnected porous structure conducive to cell migration and adhesion. TISH was loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF) and resveratrol (TISH(GR)), enabling sustained release over time. Mechanistically, TISH(GR) suppressed inflammatory signalling pathways (MAPKs and NF-κB) downstream of Toll-like receptor-4 in DCs. In a high-fat diet-induced periodontitis rat model, TISH(GR) administered as an adjuvant to SRP significantly alleviated periodontal inflammation and tissue destruction compared to SRP alone. TISH(GR) treatment was associated with decreased TH17 cell infiltration and elevated expression of the Tregs-associated cytokine IL-10 in the periodontium. In conclusion, TISH(GR) was developed and optimized as an injectable immunomodulatory hydrogel targeting DCs and T-cells. It demonstrated promising potential to attenuate inflammation and enhance periodontal healing, particularly in immunocompromised patients with metabolic syndrome. STATEMENT OF SIGNIFICANCE: Current treatments for periodontitis primarily focus on dental plaque removal, with healing heavily dependent on the host immune system. However, metabolic diseases can dysregulate the local immune response, exacerbating periodontal inflammation and impairing post-treatment healing. In this study, we developed a chitosan-based hydrogel designed to immunomodulate dendritic cells and T-cells, polarizing them toward an anti-inflammatory phenotype that promotes tissue repair. When administered as an adjuvant to scaling and root planing, this combination therapy significantly enhanced periodontal healing and reduced tissue damage in a high-fat diet complicated periodontitis model. These findings highlight the clinical potential of this hydrogel formulation to improve treatment outcomes, particularly in challenging clinical cases involving metabolic comorbidities.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Aiman Ali
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Gabriel Mulinari Dos Santos
- Department of Diagnostic and Surgery, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - João Paulo Soares Franciscon
- Department of Diagnostic and Surgery, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rafael Scaf de Molon
- Department of Diagnostic and Surgery, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, 80 George Street, Toronto, ON, M5S 3H6, Canada; Department of Materials Science and Engineering, University of Toronto, 84 College Street, Suite 140. Toronto, Ontario M5S 3E4 Canada
| | - Edilson Erovolino
- Department of Basic Science, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Leticia Helena Theodoro
- Department of Diagnostic and Surgery, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025; 313:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Dokki 12622, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria 21531, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
3
|
Cao J, Ma Q, Shi J, Wang X, Ye D, Liang J, Zou J. Cariogenic Microbiota and Emerging Antibacterial Materials to Combat Dental Caries: A Literature Review. Pathogens 2025; 14:111. [PMID: 40005488 PMCID: PMC11858515 DOI: 10.3390/pathogens14020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Dental caries is the most common oral disease in the world and a chronic infectious disease. The cariogenic microbiome plays an important role in the process of caries. The ecological imbalance of microbiota leads to low pH, which causes caries. Therefore, antibacterial materials have always been a hot topic. Traditional antibacterial materials such as cationic antibacterial agents, metal ion antibacterial agents, and some natural extract antibacterial agents have good antibacterial effects. However, they can cause bacterial resistance and have poor biological safety when used for long-term purposes. Intelligent antibacterial materials, such as pH-responsive materials, nanozymes, photoresponsive materials, piezoelectric materials, and living materials are emerging antibacterial nano-strategies that can respond to the caries microenvironment or other specific stimuli to exert antibacterial effects. Compared with traditional antibacterial materials, these materials are less prone to bacterial resistanceand have good biological safety. This review summarizes the characteristics of cariogenic microbiota and some traditional or emerging antibacterial materials. These emerging antibacterial materials can accurately act on the caries microenvironment, showing intelligent antibacterial effects and providing new ideas for caries management.
Collapse
Affiliation(s)
- Jingwei Cao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
| | - Xinyue Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dingwei Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Mesas FA, Mendieta JR, Torres Nicolini A, de Oliveira JL, Germano-Costa T, Bilesky-José N, De Lima R, Fernandes Fraceto L, Alvarez VA, Terrile MC. Deciphering physical and functional properties of chitosan-based particles for agriculture applications. Int J Biol Macromol 2024; 285:138153. [PMID: 39613074 DOI: 10.1016/j.ijbiomac.2024.138153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Traditional methods for controlling plant pathogens rely on toxic chemicals, posing environmental and health risks. Developing sustainable, eco-friendly alternatives is crucial. Chitosan (CS)-based materials offer promising solutions for sustainable agriculture. We aimed to synthesize and characterize CS-based microparticles with varying properties and assess their antimicrobial performance to establish correlations between variations in physicochemical characteristics and their impact on performance within biological systems. We adjusted the synthesis parameters, producing particles labeled P1, P2, and P3, which have sizes of 0.19 ± 0.07 μm, 0.45 ± 0.32 μm, and 1.22 ± 0.32 μm, and zeta potentials of +7.6 ± 4.25 mV, +22 ± 3.51 mV, and + 12.9 ± 4.54 mV, respectively. Extensive toxicological screenings showed that these CS-based microparticles were non-toxic across cell cultures, mouse red blood cells, soil microbiota, nitrogen-cycling bacteria, and plant toxicity assays. Encouraged by these results, we evaluated their antimicrobial potential against economically important crop pathogens. The CS-based microparticles exhibited antimicrobial effects against the bacterium Pseudomonas syringae pv. tomato DC3000 and the fungus Fusarium solani f. sp. eumartii. Higher zeta potentials correlated with greater antimicrobial efficacy, evidenced by lower IC50 and minimum inhibitory concentration (MIC) values. These findings indicate that all three microparticles analyzed displayed antimicrobial activity against two economically significant crop pathogens, with P2 showing solid performance attributed to its physicochemical characteristics. Therefore, CS-based microparticles represent a promising, nontoxic, and environmentally friendly alternative for modern agriculture, with their biological activities potentially predictable through careful selection of physicochemical properties before the synthesis process.
Collapse
Affiliation(s)
- Florencia Anabel Mesas
- Instituto de Investigaciones Biológicas, UE CONICET-Universidad Nacional de Mar del Plata (UNMdP), Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Argentina
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas, UE CONICET-Universidad Nacional de Mar del Plata (UNMdP), Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Argentina
| | - Andrés Torres Nicolini
- UNMdP, CONICET, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA, Grupo Materiales Compuestos Termoplásticos CoMP, UE CONICET-UNMdP, Mar del Plata, Argentina
| | - Jhones Luiz de Oliveira
- Departamento de Ingeniería Ambiental, Universidad Estatal de São Paulo, Sorocaba 18087-180, Brazil
| | - Tais Germano-Costa
- Departamento de Biotecnología, Universidad de Sorocaba, Sorocaba 18023-000, Brazil
| | - Natalia Bilesky-José
- Departamento de Biotecnología, Universidad de Sorocaba, Sorocaba 18023-000, Brazil
| | - Renata De Lima
- Departamento de Biotecnología, Universidad de Sorocaba, Sorocaba 18023-000, Brazil
| | | | - Vera Alejandra Alvarez
- UNMdP, CONICET, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA, Grupo Materiales Compuestos Termoplásticos CoMP, UE CONICET-UNMdP, Mar del Plata, Argentina
| | - Maria Cecilia Terrile
- Instituto de Investigaciones Biológicas, UE CONICET-Universidad Nacional de Mar del Plata (UNMdP), Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Argentina.
| |
Collapse
|
5
|
López-Maldonado EA, Mavaei M, Dan S, Banitaba SN, Gholamhosseinpour M, Hamedi S, Villarreal-Gómez LJ, Pérez-González GL, Mashkouri S, Khademolqorani S, Elgarahy AM. Diverse applications of versatile quaternized chitosan salts: A review. Int J Biol Macromol 2024; 281:136276. [PMID: 39383902 DOI: 10.1016/j.ijbiomac.2024.136276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
In the ever-evolving world of materials science, modifying natural polymers has garnered significant attention across diverse industries, driven by their inherent availability and cost-effectiveness. Among these, chitosan, a pseudo-natural cationic polymer, has emerged as a versatile player, finding applications in medical, pharmaceutical, filtration, and textile sectors, owing to its exceptional biodegradability, non-allergenicity, antimicrobial properties, and eco-friendly nature. However, the limitations of chitosan, such as low surface area, poor solubility at neutral to alkaline pH, and inadequate thermal-mechanical properties, have prompted researchers to explore innovative modification strategies, including graft copolymerization, quaternization, and cross-linking. This review delves into the remarkable potential of a specific chitosan derivative, N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan salts (N-HTCS), a quaternized form of chitosan. This review uniquely examines the properties and multifaceted applications of N-HTCS, spanning biomedical, textile, food packaging, and environmental domains. The outstanding features of N-HTCS, including antioxidant, anticancer, and antimicrobial bioactivity, as well as biocompatibility, biodegradability, hemostatic, piezoelectric, superparamagnetic, water solubility, and permeation-enhancing effects, offer novel solutions to the limitations of unmodified chitosan. Notably, while previous reviews have addressed the significance of chitosan, this work presents a groundbreaking focus on the N-HTCS derivative, providing a fresh perspective and paving the way for the design and engineering of cutting-edge N-HTCS-based devices and applications. The comprehensive coverage of this review aims to inspire researchers and industry professionals to explore the untapped potential of this remarkable chitosan derivative, unlocking new frontiers in material science and technology.
Collapse
Affiliation(s)
- Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424 Tijuana, Baja California, Mexico.
| | - Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Dan
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Iran
| | - Seyedeh Nooshin Banitaba
- Department of Textile Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran; Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran
| | - Maryam Gholamhosseinpour
- Molecular and Cellular Biosciences, Institute of Biology, Martin Luther University Halle-Wittenberg (MLU), Weinbergweg10, Halle (Saale) 06120, Germany
| | - Sepideh Hamedi
- Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México, and Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México, and Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico
| | - Sara Mashkouri
- Department of chemistry, Iran university of Science and Technology, Iran
| | - Sanaz Khademolqorani
- Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran; Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| |
Collapse
|
6
|
Avila V, Proctor G, Velandia-Romero M, Castellanos JE, Beltrán EO, Lynham S, Martignon S. Proteome of the 2-h in vivo Formed Acquired Enamel Pellicle of Adolescents with Erosive Tooth Wear, Caries, or Sound. Caries Res 2024; 59:46-57. [PMID: 39369699 DOI: 10.1159/000541026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION Acquired pellicle (AP) acts as a membrane preventing acids from coming into direct contact with the tooth. Possibly, individuals with different dental health status present changes in its composition that could disrupt this function. Thus, the aim of this study was to compare the protein composition of the AP in adolescents with erosive tooth wear (ETW), caries, or sound. METHODS Calibrated examiners in BEWE index and ICDAS-merged Epi criteria assessed ETW and caries in a sample of 454 systemically healthy adolescents aged 12-15 years old. Thirty subjects from that sample were selected for this study: ETW group (n = 10; total BEWE ≥9 and absence of dentinal caries lesions); caries group (n = 10; total BEWE <9 and with at least one dentinal caries lesion), and sound group (n = 10; total BEWE <9 and absence of dentinal caries lesions). Two-hour-formation AP samples were taken from buccal, occlusal/incisal, palatal/lingual tooth surfaces. Protein composition was analysed by liquid chromatography-tandem mass spectrometry. Using mean reporter ion values, relative abundances of proteins were compared among the three groups to calculate for fold changes. Twofold protein increases or decreases were reported (t test, p < 0.05). Gene Ontology (GO) of included proteins was assigned. RESULTS Mean age of participants was 13.1 ± 1.14 years and 56.6% were females. The prevalence of ETW was of 66.6% and of dentinal caries of 33.3%. The GO analyses showed that the majority of detected proteins were stress response related. The ETW group disclosed upregulated relative abundance of antileukoprotease (2.85-fold in ETW vs. sound and 2.34-fold in ETW group vs. caries group); histatin (2.42-fold in ETW group vs. sound group and 2.20-fold in ETW group vs. caries group), and prolactin-induced protein (2.30-fold in ETW group vs. sound group and 2.06-fold in ETW group vs. caries group) (p < 0.05). Hemoglobin subunits alpha (HBA) and beta (HBB) showed decreased relative abundances in the ETW and caries groups when compared to the sound group (HBA: 0.42-fold in ETW group and 0.40-fold in caries group; HBB: 0.45-fold in ETW group and 0.38-fold in caries group; p < 0.05). CONCLUSION AP from individuals with ETW showed differences when compared to other dental conditions, with relative abundance increasing of some stress response-associated proteins in ETW and a decrease in proteins related to salivary protection against acid challenges.
Collapse
Affiliation(s)
- Viviana Avila
- UNICA - Caries Research Unit, Research Department, Universidad El Bosque, Bogotá, Colombia
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - Myriam Velandia-Romero
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Jaime E Castellanos
- Grupo de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Edgar O Beltrán
- UNICA - Caries Research Unit, Research Department, Universidad El Bosque, Bogotá, Colombia
| | - Steven Lynham
- Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Stefania Martignon
- UNICA - Caries Research Unit, Research Department, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
7
|
Huang J, Zhang S, Liu D, Feng X, Wang Q, An S, Xu M, Chu L. Preparation and characterization of astaxanthin-loaded microcapsules stabilized by lecithin-chitosan-alginate interfaces with layer-by-layer assembly method. Int J Biol Macromol 2024; 268:131909. [PMID: 38679251 DOI: 10.1016/j.ijbiomac.2024.131909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Astaxanthin is a kind of keto-carotenes with various health benefits. However, its solubility and chemical stability are poor, which leads to low bio-availability. Microcapsules have been reported to improve the solubility, chemical stability, and bio-availability of lipophilic bioactives. Freeze-dried astaxanthin-loaded microcapsules were prepared by layer-by-layer assembly of tertiary emulsions with maltodextrin as the filling matrix. Tertiary emulsions were fabricated by performing chitosan and sodium alginate electrostatic deposition onto soybean lecithin stabilized emulsions. 0.9 wt% of chitosan solution, 0.3 wt% of sodium alginate solution and 20 wt% of maltodextrin were optimized as the suitable concentrations. The prepared microcapsules were powders with irregular blocky structures. The astaxanthin loading was 0.56 ± 0.05 % and the encapsulation efficiency was >90 %. A slow release of astaxanthin could be observed in microcapsules promoted by the modulating of chitosan, alginate and maltodextrin. In vitro simulated digestion displayed that the microcapsules increased the bio-accessibility of astaxanthin to 69 ± 1 %. Chitosan, alginate and maltodextrin can control the digestion of microcapsules. The coating of chitosan and sodium alginate, and the filling of maltodextrin in microcapsules improved the chemical stability of astaxanthin. The constructed microcapsules were valuable to enrich scientific knowledge about improving the application of functional ingredients.
Collapse
Affiliation(s)
- Juan Huang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China; The East China Science and Technology Research Institute of Changshu Company Limited, Changshu 215500, China.
| | - Shuo Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dongchen Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xuan Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qingding Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Shennan An
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Mengting Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Lanling Chu
- Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Gutiérrez-Ruíz SC, Cortes H, González-Torres M, Almarhoon ZM, Gürer ES, Sharifi-Rad J, Leyva-Gómez G. Optimize the parameters for the synthesis by the ionic gelation technique, purification, and freeze-drying of chitosan-sodium tripolyphosphate nanoparticles for biomedical purposes. J Biol Eng 2024; 18:12. [PMID: 38273413 PMCID: PMC10811841 DOI: 10.1186/s13036-024-00403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Polymeric nanoparticles can be used for wound closure and therapeutic compound delivery, among other biomedical applications. Although there are several nanoparticle obtention methods, it is crucial to know the adequate parameters to achieve better results. Therefore, the objective of this study was to optimize the parameters for the synthesis, purification, and freeze-drying of chitosan nanoparticles. We evaluated the conditions of agitation speed, anion addition time, solution pH, and chitosan and sodium tripolyphosphate concentration. RESULTS Chitosan nanoparticles presented an average particle size of 172.8 ± 3.937 nm, PDI of 0.166 ± 0.008, and zeta potential of 25.00 ± 0.79 mV, at the concentration of 0.1% sodium tripolyphosphate and chitosan (pH 5.5), with a dripping time of 2 min at 500 rpm. The most representative factor during nanoparticle fabrication was the pH of the chitosan solution, generating significant changes in particle size and polydispersity index. The observed behavior is attributed to the possible excess of sodium tripolyphosphate during synthesis. We added the surfactants poloxamer 188 and polysorbate 80 to evaluate the stability improvement during purification (centrifugation or dialysis). These surfactants decreased coalescence between nanoparticles, especially during purification. The centrifugation increased the zeta potential to 40.8-56.2 mV values, while the dialyzed samples led to smaller particle sizes (152-184 nm). Finally, freeze-drying of the chitosan nanoparticles proceeded using two cryoprotectants, trehalose and sucrose. Both adequately protected the system during the process, and the sugar concentration depended on the purification process. CONCLUSIONS In Conclusion, we must consider each surfactant's benefits in formulations for selecting the most suitable. Also, it is necessary to do more studies with the molecule to load. At the same time, the use of sucrose and trehalose generates adequate protection against the freeze-drying process, even at a 5% w/v concentration. However, adjusting the percentage concentration by weight must be made to work with the CS-TPP NPs purified by dialysis.
Collapse
Affiliation(s)
| | - Hernán Cortes
- Departamento de Genómica, Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, 14389, Mexico
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Zhang Y, Chen Y, Liu Z, Peng X, Lu J, Wang K, Zhang L. Encapsulation of a novel peptide derived from histatin-1 in liposomes against initial enamel caries in vitro and in vivo. Clin Oral Investig 2023; 28:35. [PMID: 38147166 DOI: 10.1007/s00784-023-05465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES Biomimetic mineralization mediated by proteins and peptides is a promising strategy for enamel repair, and its specific application model needs more research. In this work, we exploited a liposomal delivery system for a novel peptide (DK5) derived from histatin-1 (DK5-Lips) as a new biomimetic mineralization strategy against initial enamel caries. MATERIALS AND METHODS The DK5-Lips was prepared using calcium acetate gradient method and then the in vitro release, salivary stability, and cytotoxicity were studied. Initial enamel caries was created in bovine enamel blocks and subjected to pH-cycling model treated with DK5-Lips. Surface microhardness testing, polarized light microscopy (PLM), and transverse microradiography (TMR) were analyzed. Then the biocompatibility of DK5-Lips was evaluated in the caries model of Sprague-Dawley rats, and the anti-caries effect was assessed using Micro-CT analysis, Keyes scores, and PLM in vivo. RESULTS DK5-Lips provided a mean particle size of (97.63 ± 4.94)nm and encapsulation efficiency of (61.46 ± 1.44)%, exhibiting a sustained release profile, excellent stability in saliva, and no significant toxicity on human gingival fibroblasts (HGFs). The DK5-Lips group had higher surface microhardness recovery, shallower caries depth, and less mineral loss in bovine enamel. Animal experiments showed higher volume and density values of residual molar enamel, lower Keyes score, and shallower lesion depth of the DK5-Lips group with good biocompatibility. CONCLUSION As a safe and effective application model, DK5-Lips could significantly promote the remineralization of initial enamel caries both in vitro and in vivo. CLINICAL RELEVANCE The potential of liposome utilization as vehicle for oral delivery of functional peptides may provide a new way for enamel restoration.
Collapse
Grants
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 81970931 the National Natural Science Foundation of China
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- 2022YFS0287 the Sichuan Provincial Department of Science and Technology Program
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
- grant RD-02-202010 the Research and Development Program, West China Hospital of Stomatology, Sichuan University
Collapse
Affiliation(s)
- Yinmo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Yue Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
- Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Xiu Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China.
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3 of Renmin Road South, Chengdu, 610041, China.
| |
Collapse
|
10
|
Browne D, Briggs F, Asuri P. Role of Polymer Concentration on the Release Rates of Proteins from Single- and Double-Network Hydrogels. Int J Mol Sci 2023; 24:16970. [PMID: 38069293 PMCID: PMC10707672 DOI: 10.3390/ijms242316970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Controlled delivery of proteins has immense potential for the treatment of various human diseases, but effective strategies for their delivery are required before this potential can be fully realized. Recent research has identified hydrogels as a promising option for the controlled delivery of therapeutic proteins, owing to their ability to respond to diverse chemical and biological stimuli, as well as their customizable properties that allow for desired delivery rates. This study utilized alginate and chitosan as model polymers to investigate the effects of hydrogel properties on protein release rates. The results demonstrated that polymer properties, concentration, and crosslinking density, as well as their responses to pH, can be tailored to regulate protein release rates. The study also revealed that hydrogels may be combined to create double-network hydrogels to provide an additional metric to control protein release rates. Furthermore, the hydrogel scaffolds were also found to preserve the long-term function and structure of encapsulated proteins before their release from the hydrogels. In conclusion, this research demonstrates the significance of integrating porosity and response to stimuli as orthogonal control parameters when designing hydrogel-based scaffolds for therapeutic protein release.
Collapse
Affiliation(s)
| | | | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (D.B.); (F.B.)
| |
Collapse
|
11
|
Pratiwi RD, El Muttaqien S, Gustini N, Difa NS, Syahputra G, Rosyidah A. Eco-friendly synthesis of chitosan and its medical application: from chitin extraction to nanoparticle preparation. ADMET AND DMPK 2023; 11:435-455. [PMID: 37937250 PMCID: PMC10626508 DOI: 10.5599/admet.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Indexed: 11/09/2023] Open
Abstract
Background and Purpose Chitosan, a chitin deacetylation product, has been applied in nanoparticle or nano-chitosan for medical applications. However, the chitin extraction from crustacean shells and other natural resources, chitin deacetylation, and crosslinking of the chitosan forming the nano-chitosan mostly involve hazardous chemical and physical processes. The risks of these processes to human health and the environment attract the attention of scientists to develop safer and greener techniques. This review aims to describe the progress of harmless chitosan synthesis. Experimental Approach All strongly related publications to each section, which were found on scientific search engines (Google Scholar, Scopus, and Pubmed), were studied, selected, and then used as references in writing this review. No limitation for the publication year was applied. The publications were searched from April 2022 - June 2023. Key Results Nano-chitosan could be synthesized in harmless techniques, including the preparation of the chitosan raw materials and crosslinking the chitosan polymer. Enzymatic processes in shell deproteination in the chitin extraction and deacetylation are preferable to reduce the negative effects of conventional chemical-physical processes. Mild alkalines and deep eutectic solvents also provide similar benefits. In the nano-chitosan synthesis, naturally derived compounds (carrageenan, genipin, and valinin) show potency as safer crosslinkers, besides tripolyphosphate, the most common safe crosslinker. Conclusion A list of eco-friendly and safer processes in the synthesis of nano-chitosan has been reported in recent years. These findings are suggested for the nano-chitosan synthesis on an industrial scale in the near future.
Collapse
Affiliation(s)
- Riyona Desvy Pratiwi
- Research Center for Vaccine and Drug, Organization Research of Health, The National Research and Innovation Agency, Jalan Raya Bogor Km 46 Cibinong, Bogor 16911, West Java, Indonesia
| | | | | | | | | | | |
Collapse
|
12
|
Son B, Kim M, Won H, Jung A, Kim J, Koo Y, Lee NK, Baek SH, Han U, Park CG, Shin H, Gweon B, Joo J, Park HH. Secured delivery of basic fibroblast growth factor using human serum albumin-based protein nanoparticles for enhanced wound healing and regeneration. J Nanobiotechnology 2023; 21:310. [PMID: 37658367 PMCID: PMC10474766 DOI: 10.1186/s12951-023-02053-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Basic fibroblast growth factor (bFGF) is one of the critical components accelerating angiogenesis and tissue regeneration by promoting the migration of dermal fibroblasts and endothelial cells associated with matrix formation and remodeling in wound healing process. However, clinical applications of bFGF are substantially limited by its unstable nature due to rapid decomposition under physiological microenvironment. RESULTS In this study, we present the bFGF-loaded human serum albumin nanoparticles (HSA-bFGF NPs) as a means of enhanced stability and sustained release platform during tissue regeneration. Spherical shape of the HSA-bFGF NPs with uniform size distribution (polydispersity index < 0.2) is obtained via a simple desolvation and crosslinking process. The HSA-bFGF NPs securely load and release the intact soluble bFGF proteins, thereby significantly enhancing the proliferation and migration activity of human dermal fibroblasts. Myofibroblast-related genes and proteins were also significantly down-regulated, indicating decrease in risk of scar formation. Furthermore, wound healing is accelerated while achieving a highly organized extracellular matrix and enhanced angiogenesis in vivo. CONCLUSION Consequently, the HSA-bFGF NPs are suggested not only as a delivery vehicle but also as a protein stabilizer for effective wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Minju Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyosub Won
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Ara Jung
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun Kim
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Yonghoe Koo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Na Kyeong Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seung-Ho Baek
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Korea
| | - Uiyoung Han
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Bomi Gweon
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- Materials Research Science and Engineering Center, University of California, San Diego, La Jolla, United States.
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Herdiana Y, Husni P, Nurhasanah S, Shamsuddin S, Wathoni N. Chitosan-Based Nano Systems for Natural Antioxidants in Breast Cancer Therapy. Polymers (Basel) 2023; 15:2953. [PMID: 37447598 DOI: 10.3390/polym15132953] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a major cause of death globally, accounting for around 13% of all deaths. Chemotherapy, the common treatment for cancer, can have side effects that lead to the production of reactive oxygen species (ROS) and an increase in oxidative stress in the body. Antioxidants are important for maintaining the health of cells and helping the immune system function properly. They play a crucial role in balancing the body's internal environment. Using natural antioxidants is an alternative to mitigate the harmful effects of oxidative stress. However, around 80% of natural antioxidants have limited effectiveness when taken orally because they do not dissolve well in water or other solvents. This poor solubility affects their ability to be absorbed by the body and limits their bioavailability. One strategy that has been considered is to increase their water solubility to increase their oral bioavailability. Chitosan-based nanoparticle (CSNP) systems have been extensively explored due to their reliability and simpler synthesis routes. This review focuses on the various methods of chitosan-based nanoformulation for developing effective oral dosage forms for natural antioxidants based on the pharmacokinetics and pharmacodynamics properties. Chitosan (CS) could be a model, because of its wide use in polymeric NPs research, thus providing a better understanding of the role of vehicles that carry natural antioxidants in maintaining the stability and enhancing the performance of cancer drugs.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Patihul Husni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Siti Nurhasanah
- Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
14
|
He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries-A Focussed and Critical Review. Pharmaceutics 2023; 15:1837. [PMID: 37514024 PMCID: PMC10385394 DOI: 10.3390/pharmaceutics15071837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Dental caries is a common and costly multifactorial biofilm disease caused by cariogenic bacteria that ferment carbohydrates to lactic acid, demineralizing the inorganic component of teeth. Therefore, low pH (pH 4.5) is a characteristic signal of the localised carious environment, compared to a healthy oral pH range (6.8 to 7.4). The development of pH-responsive delivery systems that release antibacterial agents in response to low pH has gained attention as a targeted therapy for dental caries. Release is triggered by high levels of acidogenic species and their reduction may select for the establishment of health-associated biofilm communities. Moreover, drug efficacy can be amplified by the modification of the delivery system to target adhesion to the plaque biofilm to extend the retention time of antimicrobial agents in the oral cavity. In this review, recent developments of different pH-responsive nanocarriers and their biofilm targeting mechanisms are discussed. This review critically discusses the current state of the art and innovations in the development and use of smart delivery materials for dental caries treatment. The authors' views for the future of the field are also presented.
Collapse
Affiliation(s)
- Yanping He
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
15
|
Yu K, Zhang Q, Dai Z, Zhu M, Xiao L, Zhao Z, Bai Y, Zhang K. Smart Dental Materials Intelligently Responding to Oral pH to Combat Caries: A Literature Review. Polymers (Basel) 2023; 15:2611. [PMID: 37376255 DOI: 10.3390/polym15122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Smart dental materials are designed to intelligently respond to physiological changes and local environmental stimuli to protect the teeth and promote oral health. Dental plaque, or biofilms, can substantially reduce the local pH, causing demineralization that can then progress to tooth caries. Progress has been made recently in developing smart dental materials that possess antibacterial and remineralizing capabilities in response to local oral pH in order to suppress caries, promote mineralization, and protect tooth structures. This article reviews cutting-edge research on smart dental materials, their novel microstructural and chemical designs, physical and biological properties, antibiofilm and remineralizing capabilities, and mechanisms of being smart to respond to pH. In addition, this article discusses exciting and new developments, methods to further improve the smart materials, and potential clinical applications.
Collapse
Affiliation(s)
- Kan Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qinrou Zhang
- School of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Zixiang Dai
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Minjia Zhu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Le Xiao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zeqing Zhao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| |
Collapse
|
16
|
Zhu Y, Tao C, Goh C, Shrestha A. Innovative biomaterials for the treatment of periodontal disease. FRONTIERS IN DENTAL MEDICINE 2023; 4:1163562. [PMID: 39916927 PMCID: PMC11797777 DOI: 10.3389/fdmed.2023.1163562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 02/09/2025] Open
Abstract
Periodontitis is a multifactorial disease that involves the destruction of hard and soft tissues surrounding the tooth. Routine periodontal treatment includes mechanical debridement (surgical and non-surgical) and the systemic administration of antibiotics. In contrast, severe and chronic periodontitis involves aggressive tissue destruction and bone resorption, and the damage is usually irreversible. In these severe cases, bone grafts, the delivery of growth hormones, and guided tissue regeneration can all be used to stimulate periodontal regeneration. However, these approaches do not result in consistent and predictable treatment outcomes. As a result, advanced biomaterials have evolved as an adjunctive approach to improve clinical performance. These novel biomaterials are designed to either prolong the release of antibacterial agents or osteogenic molecules, or to act as immunomodulators to promote healing. The first half of this review briefly summarizes the key immune cells and their underlying cellular pathways implicated in periodontitis. Advanced biomaterials designed to promote periodontal regeneration will be highlighted in the second half. Finally, the limitations of the current experimental design and the challenges of translational science will be discussed.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Chen Tao
- Stomatological Hospital of Chongqing, Key Laboratory of Oral Diseases and Biomaterial Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Mt. Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
17
|
Zhu Y, Winer D, Goh C, Shrestha A. Injectable thermosensitive hydrogel to modulate tolerogenic dendritic cells under hyperglycemic condition. Biomater Sci 2023; 11:2091-2102. [PMID: 36723183 DOI: 10.1039/d2bm01881k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hyperglycemia associated with diabetes mellitus is a significant risk factor for periodontitis and it polarizes the immune cells towards an inflammatory state. Specific biomaterials can deliver therapeutic or immunomodulatory agents to regulate the excessive periodontal inflammation. Dendritic cells (DCs) bridge the innate and adaptive immune systems and are crucially involved in periodontitis. Thus, targeting DCs is an attractive treatment option for diabetic periodontitis, which, by modulating the downstream adaptive immune cells could regulate the host immune responses. In this study, a chitosan-based thermosensitive injectable self-assembled hydrogel (TISH) was developed to modulate DCs towards a tolerogenic phenotype, which can induce regulatory T-cells to attenuate inflammation and promote healing. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and resveratrol were loaded into TISH (TISH(G + R)) and were sustainably released. TISH demonstrated good biocompatibility and cell penetration in its porous structure. DCs grown in TISH(G + R) under an in vitro hyperglycemic condition showed reduced maturation and activation markers such as CD80, CD83 and CD86, while simultaneously upregulated tolerogenic genes such as FOXP3, SOCS3, TGFß and IL10. Co-culture of these tolerogenic DCs with naïve T-cells induced regulatory T-cells differentiation, evidenced by elevated gene expressions of FOXP3, TGFβ and IL-10. In vivo subcutaneous injection of TISH (G + R) into the mice showed significant infiltration of DCs and regulatory T-cells. In conclusion, TISH was developed and optimized as an injectable hydrogel to modulate DCs towards the tolerogenic phenotype and induce regulatory T-cells under hyperglycemia. TISH has promising potential to improve periodontal parameters in diabetic periodontitis.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
| | - Daniel Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.,Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada.,Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, 80 George Street, Toronto, ON, M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 84 College Street, Toronto, ON, M5S 3E4, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
18
|
NIR-responsive 5-Fluorouracil delivery using polydopamine coated polygonal CuS nanoplates for synergistic chemo-photothermal therapy on breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci 2022; 23:ijms231810975. [PMID: 36142887 PMCID: PMC9504745 DOI: 10.3390/ijms231810975] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
Collapse
|
20
|
Development and Characterization of a Low-Fat Mayonnaise Salad Dressing Based on Arthrospira platensis Protein Concentrate and Sodium Alginate. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The food industry is constantly reformulating different foods to fulfill the demands of the consumers (natural ingredients and good sensory quality). The present work aimed to produce low-fat mayonnaises using 30.0, 22.5, and 15.0% oil, 1% soy protein isolate (SPI) or spirulina (Arthrospira platensis) protein concentrate (SPC), and 2% sodium alginate. The physical properties (thermal stability, rheological behavior, and particle size), the sensory attributes (appearance, texture, taste, and acceptability), the purchase probability, and amino acid availability (after a simulated digestion) were evaluated. The mayonnaises demonstrated good thermal stability (>90%) using 22.5 and 15% oil, all products showed shear-thinning behavior and a consistency index of 20–66 Pa·s. The reduction of oil from 30 to 15% increased the particle size from 6–9 µm to 10–38 µm. The most acceptable product was the formulated with SPI and 22.5% oil (8.3 of acceptability and 79% of purchase probability). Finally, the addition of proteins improved the total essential amino acids compared to a commercial product (28 and 5 mg/25 g, respectively). In summary, it was possible to obtain well accepted products with high purchase probability using low concentrations of oil and vegetable proteins.
Collapse
|