1
|
Dey P, Haldar D, Sharma C, Chopra J, Chakrabortty S, Dilip KJ. Innovations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and nanocomposites for sustainable food packaging via biochemical biorefinery platforms: A comprehensive review. Int J Biol Macromol 2024; 283:137574. [PMID: 39542313 DOI: 10.1016/j.ijbiomac.2024.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The substantial build-up of non-biodegradable plastic waste from packaging sector not only poses severe environmental threats but also hastens the depletion of natural petroleum-based resources. Presently, poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV), received enormous attention as ideal alternatives for such traditional petroleum-derived plastics based on their biocompatibility and superior mechanical properties. However, high cost of such copolymer, due to expensive nature of feedstock, inefficient microbial processes and unfavorable downstream processing strategies restricts its large-scale commercial feasibility in the packaging sector. This review explores merits and challenges associated with using potent agricultural and industrial waste biomasses as sustainable feedstocks alongside improved fermentation and downstream processing strategies for the biopolymer in terms of biorefinery concept. Despite PHBV's attractive properties, its inherent shortcomings like weak thermal stability, poor mechanical properties, processability difficulty, substantial hydrophobicity and comparatively higher water vapor permeability (WVP) demand the development of its composites based on the application. Based on this fact, the review assessed properties and potential applications of PHBV-based composite materials having natural raw materials, nanomaterials and synthetic biodegradable polymers. Besides, the review also enlightens sustainability, future prospects, and challenges associated with PHBV-based composites in the field of food packaging while considering insights about economic evaluation and life cycle assessment.
Collapse
Affiliation(s)
- Pinaki Dey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali 140413, India
| | - Jayita Chopra
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani K.K. Birla Goa Campus, 403726, India
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | | |
Collapse
|
2
|
Patiño Vidal C, Muñoz-Shugulí C, Guivier M, Puglia D, Luzi F, Rojas A, Velásquez E, Galotto MJ, López-de-Dicastillo C. PLA- and PHA-Biopolyester-Based Electrospun Materials: Development, Legislation, and Food Packaging Applications. Molecules 2024; 29:5452. [PMID: 39598841 PMCID: PMC11597656 DOI: 10.3390/molecules29225452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The high accumulation of plastic waste in the environment has led to great interest in biodegradable polymers, such as polylactic acid (PLA) or polyhydroxyalkanoates (PHAs). Their benefits, combined with the application of electrospinning technology, represent an innovative proposal for the food packaging industry. This article provides a comprehensive review of the latest developments of PLA- and PHA-biopolyester-based electrospun materials for food packaging applications, summarizing the reported technologies, material properties, applications, and invention patents. In addition, the legislation used to assess their biodegradability is also detailed. Electrospun packaging materials are largely developed through uniaxial, coaxial, emulsion, multiaxial, and needleless techniques. PLA- and PHA-biopolyester-based electrospun materials can be obtained as single and multilayer packaging structures, and the incorporation of natural extracts, organic compounds, and nanoparticles has become a great strategy for designing active food packaging systems. The biodegradability of electrospun materials has mainly been evaluated in soil, compost, and aquatic systems through ASTM and ISO normatives. In this review, the dependence of the biodegradation process on the polymer type, conditions, and test methods is clearly reviewed. Moreover, these biodegradable electrospun materials have shown excellent antioxidant and antimicrobial properties, resulting in a great method for extending the shelf life of fruits, bread, fish, and meat products.
Collapse
Affiliation(s)
- Cristian Patiño Vidal
- Safety and Resources Valorization Research Group (INVAGRO), Faculty of Engineering, Universidad Nacional de Chimborazo (UNACH), Av. Antonio José de Sucre Km 1 1/2, Riobamba 060108, Ecuador
- Group for Research and Innovation in Food Packaging, Riobamba 060107, Ecuador;
| | - Cristina Muñoz-Shugulí
- Group for Research and Innovation in Food Packaging, Riobamba 060107, Ecuador;
- Faculty of Sciences, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba 060106, Ecuador
| | - Manon Guivier
- Polymer Chemistry and Materials, Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Débora Puglia
- Materials Science and Technology Laboratory, Civil and Environmental Engineering Department, University of Perugia (UNIPG), 05100 Terni, Italy;
| | - Francesca Luzi
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Polytechnic University of Marche (UNIVPM), 60131 Ancona, Italy;
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - Eliezer Velásquez
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - Carol López-de-Dicastillo
- Packaging Laboratory, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
3
|
Malagurski I, Lazic J, Ilic-Tomic T, Salevic A, Guzik M, Krzan M, Nikodinovic-Runic J, Ponjavic M. Double layer bacterial nanocellulose - poly(hydroxyoctanoate) film activated by prodigiosin as sustainable, transparent, UV-blocking material. Int J Biol Macromol 2024; 279:135087. [PMID: 39197614 DOI: 10.1016/j.ijbiomac.2024.135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Synthetic materials alternatives are crucial for reaching sustainable development goals and waste reduction. Biomaterials and biomolecules obtained through bacterial fermentation offer a viable solution. Double-layer active UV-blocking material composed of bacterial nanocellulose as an inner layer and poly(hydroxyoctanoic acid) containing prodigiosin as an active compound was produced by layer-by-layer deposition. This study referred the new material consisted of the three components produced in sustainable manner, by bacterial activity: bacterial bio-pigment prodigiosin, bacterial nanocellulose and poly(hydroytoctanoate) - biopolymer obtained by microbial fermentations. Prior the final double layer film was produced, PHO films containing different PG concentrations as a layer in charge of the bioactivity (0.2, 0.5 and 1 wt%) was casted and systematically characterized (FTIR, DSC, XRD, wettability, SEM, transparency, mechanical tests) to optimize their properties. The formulation with the best UV-blocking properties and less toxicity effect tested using MRC5 cells was chosen as an outer layer in double-layer films production. Water contact angle measurements confirmed that hydrophilic - hydrophobic double layer film was obtained with the improved mechanical properties in comparison to the native BNC. Migration test indicated release of PG in all tested media as a consequence of bilayer formulation, while the PG release from PHO in 10 % ethanol was not detected. All findings from the study suggested this activated, UV-blocking material as a candidate with excellent potential in packaging industry.
Collapse
Affiliation(s)
- Ivana Malagurski
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Microbiology and Plant Biology Department, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jelena Lazic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Microbiology and Plant Biology Department, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Tatjana Ilic-Tomic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Microbiology and Plant Biology Department, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Ana Salevic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Microbiology and Plant Biology Department, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Marijana Ponjavic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Microbiology and Plant Biology Department, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| |
Collapse
|
4
|
Yeo JCC, Muiruri JK, Fei X, Wang T, Zhang X, Xiao Y, Thitsartarn W, Tanoto H, He C, Li Z. Innovative biomaterials for food packaging: Unlocking the potential of polyhydroxyalkanoate (PHA) biopolymers. BIOMATERIALS ADVANCES 2024; 163:213929. [PMID: 39024863 DOI: 10.1016/j.bioadv.2024.213929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Polyhydroxyalkanoate (PHA) biopolyesters show a good balance between sustainability and performance, making them a competitive alternative to conventional plastics for ecofriendly food packaging. With an emphasis on developments over the last decade (2014-2024), this review examines the revolutionary potential of PHAs as a sustainable food packaging material option. It also delves into the current state of commercial development, competitiveness, and the carbon footprint associated with PHA-based products. First, a critical examination of the challenges experienced by PHAs in terms of food packaging requirements is undertaken, followed by an assessment of contemporary strategies addressing permeability, mechanical properties, and processing considerations. The various PHA packaging end-of-life options, including a comprehensive overview of the environmental impact and potential solutions will also be discussed. Finally, conclusions and future perspectives are elucidated with a view of prospecting PHAs as future green materials, with a blend of performance and sustainability of food packaging solutions.
Collapse
Affiliation(s)
- Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Tong Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xikui Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yihang Xiao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Hendrix Tanoto
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chaobin He
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore.
| |
Collapse
|
5
|
Melendez-Rodriguez B, Prieto C, Pardo-Figuerez M, Angulo I, Bourbon AI, Amado IR, Cerqueira MA, Pastrana LM, Hilliou LHG, Vicente AA, Cabedo L, Lagaron JM. Multilayer Film Comprising Polybutylene Adipate Terephthalate and Cellulose Nanocrystals with High Barrier and Compostable Properties. Polymers (Basel) 2024; 16:2095. [PMID: 39125122 PMCID: PMC11314578 DOI: 10.3390/polym16152095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
In the present study, a multilayer, high-barrier, thin blown film based on a polybutylene adipate terephthalate (PBAT) blend with polyhydroxyalkanoate (PHA), and composed of four layers including a cellulose nanocrystal (CNC) barrier layer and an electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) hot-tack layer, was characterized in terms of the surface roughness, surface tension, migration, mechanical and peel performance, barrier properties, and disintegration rate. The results showed that the film exhibited a smooth surface. The overall migration tests showed that the material is suitable to be used as a food contact layer. The addition of the CNC interlayer had a significant effect on the mechanical properties of the system, drastically reducing the elongation at break and, thus, the flexibility of the material. The film containing CNCs and electrospun PHBV hot-tack interlayers exhibited firm but not strong adhesion. However, the multilayer was a good barrier to water vapor (2.4 ± 0.1 × 10-12 kg·m-2·s-1·Pa-1), and especially to oxygen (0.5 ± 0.3 × 10-15 m3·m-2·s-1·Pa-1), the permeance of which was reduced by up to 90% when the CNC layer was added. The multilayer system disintegrated completely in 60 days. All in all, the multilayer system developed resulted in a fully compostable structure with significant potential for use in high-barrier food packaging applications.
Collapse
Affiliation(s)
- Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
- Bioinicia R&D, Bioinicia S.L., Calle Algepser 65, Nave 3, 46980 Paterna, Spain
| | - Inmaculada Angulo
- Gaiker Technological Centre, Department of Plastics and Composites, Parque Tecnológico Edificio 202, 48170 Zamudio, Spain;
| | - Ana I. Bourbon
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | - Isabel R. Amado
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (I.R.A.); (M.A.C.); (L.M.P.)
| | | | - António A. Vicente
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal;
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain;
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (C.P.); (M.P.-F.)
| |
Collapse
|
6
|
Foli G, Capelli F, Grande M, Tagliabue S, Gherardi M, Minelli M. Optimization of Laminated Bio-Polymer Fabrication for Food Packaging Application: A Sustainable Plasma-Activated Approach. Polymers (Basel) 2024; 16:1851. [PMID: 39000706 PMCID: PMC11244328 DOI: 10.3390/polym16131851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
The current level of packaging consumption imposes a need to fabricate single-use food packaging with renewable and compostable materials, such as bio-polyesters (e.g., polylactic acid, PLA and polybutylene succinate, PBS) or cellulose, but their use is still problematic. Fabrication of bio-compostable composites can specifically address impeding challenges, and adhesive lamination, achieved with compostable glue, is becoming more and more popular with respect to the less versatile hot lamination. In this context, plasma activation, a chemical-free oxidation technique of a material's surface, is used to increase the affinity of three different biomaterials (cellulose, PLA and PBS) toward a compostable polyurethane adhesive to decrease its amount by gluing bio-polyesters to cellulose. Optical Microscopy reveals activation conditions that do not affect the integrity of the materials, while Water Contact Analyses confirm the activation of the surfaces, with contact angles decreased to roughly 50 deg in all cases. Unexpectedly, ζ-potential analyses and subtractive infrared spectroscopy highlight how the activation performed superficially etches cellulose, while for both PLA and PBS, a general decrease in surface potential and an increase in superficial hydroxyl group populations confirm the achievement of the desired oxidation. Thus, we rationalize continuous activation conditions to treat PLA and PBS and to glue them to neat cellulose. While no beneficial effect is observed with activated PLA, bi-laminate composites fabricated with activated PBS fulfill the benchmark for adhesion strength using less than before, while oxygen permeation analyses exclude plasma-induced etching even at a nanoscale.
Collapse
Affiliation(s)
- Giacomo Foli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Umberto Terracini, 28, 40131 Bologna, Italy
| | - Filippo Capelli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | - Mariachiara Grande
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | | | - Matteo Gherardi
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | - Matteo Minelli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Umberto Terracini, 28, 40131 Bologna, Italy
| |
Collapse
|
7
|
Yue S, Zhang T, Wang S, Han D, Huang S, Xiao M, Meng Y. Recent Progress of Biodegradable Polymer Package Materials: Nanotechnology Improving Both Oxygen and Water Vapor Barrier Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:338. [PMID: 38392711 PMCID: PMC10892516 DOI: 10.3390/nano14040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
Biodegradable polymers have become a topic of great scientific and industrial interest due to their environmentally friendly nature. For the benefit of the market economy and environment, biodegradable materials should play a more critical role in packaging materials, which currently account for more than 50% of plastic products. However, various challenges remain for biodegradable polymers for practical packaging applications. Particularly pertaining to the poor oxygen/moisture barrier issues, which greatly limit the application of current biodegradable polymers in food packaging. In this review, various strategies for barrier property improvement are summarized, such as chain architecture and crystallinity tailoring, melt blending, multi-layer co-extrusion, surface coating, and nanotechnology. These strategies have also been considered effective ways for overcoming the poor oxygen or water vapor barrier properties of representative biodegradable polymers in mainstream research.
Collapse
Affiliation(s)
- Shuangshuang Yue
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Tianwei Zhang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
- Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- China Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
| |
Collapse
|
8
|
Jaffur BN, Kumar G, Jeetah P, Ramakrishna S, Bhatia SK. Current advances and emerging trends in sustainable polyhydroxyalkanoate modification from organic waste streams for material applications. Int J Biol Macromol 2023; 253:126781. [PMID: 37696371 DOI: 10.1016/j.ijbiomac.2023.126781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The current processes for producing polyhydroxyalkanoates (PHAs) are costly, owing to the high cost of cultivation feedstocks, and the need to sterilise the growth medium, which is energy-intensive. PHA has been identified as a promising biomaterial with a wide range of potential applications and its functionalization from waste streams has made significant advances recently, which can help foster the growth of a circular economy and waste reduction. Recent developments and novel approaches in the functionalization of PHAs derived from various waste streams offer opportunities for addressing these issues. This study focuses on the development of sustainable, efficient, and cutting-edge methods, such as advanced bioprocess engineering, novel catalysts, and advances in materials science. Chemical techniques, such as epoxidation, oxidation, and esterification, have been employed for PHA functionalization, while enzymatic and microbial methods have indicated promise. PHB/polylactic acid blends with cellulose fibers showed improved tensile strength by 24.45-32.08 % and decreased water vapor and oxygen transmission rates while PHB/Polycaprolactone blends with a 1:1 ratio demonstrated an elongation at break four to six times higher than pure PHB, without altering tensile strength or elastic modulus. Moreover, PHB films blended with both polyethylene glycol and esterified sodium alginate showed improvements in crystallinity and decreased hydrophobicity.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental, Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
9
|
Perera KY, Jaiswal AK, Jaiswal S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023; 12:2422. [PMID: 37372632 DOI: 10.3390/foods12122422] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Biopolymer-based packaging materials have become of greater interest to the world due to their biodegradability, renewability, and biocompatibility. In recent years, numerous biopolymers-such as starch, chitosan, carrageenan, polylactic acid, etc.-have been investigated for their potential application in food packaging. Reinforcement agents such as nanofillers and active agents improve the properties of the biopolymers, making them suitable for active and intelligent packaging. Some of the packaging materials, e.g., cellulose, starch, polylactic acid, and polybutylene adipate terephthalate, are currently used in the packaging industry. The trend of using biopolymers in the packaging industry has increased immensely; therefore, many legislations have been approved by various organizations. This review article describes various challenges and possible solutions associated with food packaging materials. It covers a wide range of biopolymers used in food packaging and the limitations of using them in their pure form. Finally, a SWOT analysis is presented for biopolymers, and the future trends are discussed. Biopolymers are eco-friendly, biodegradable, nontoxic, renewable, and biocompatible alternatives to synthetic packaging materials. Research shows that biopolymer-based packaging materials are of great essence in combined form, and further studies are needed for them to be used as an alternative packaging material.
Collapse
Affiliation(s)
- Kalpani Y Perera
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
10
|
Marín A, Feijoo P, de Llanos R, Carbonetto B, González-Torres P, Tena-Medialdea J, García-March JR, Gámez-Pérez J, Cabedo L. Microbiological Characterization of the Biofilms Colonizing Bioplastics in Natural Marine Conditions: A Comparison between PHBV and PLA. Microorganisms 2023; 11:1461. [PMID: 37374962 DOI: 10.3390/microorganisms11061461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biodegradable polymers offer a potential solution to marine pollution caused by plastic waste. The marine biofilms that formed on the surfaces of poly(lactide acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were studied. Bioplastics were exposed for 6 months to marine conditions in the Mediterranean Sea, and the biofilms that formed on their surfaces were assessed. The presence of specific PLA and PHBV degraders was also studied. PHBV showed extensive areas with microbial accumulations and this led to higher microbial surface densities than PLA (4.75 vs. 5.16 log CFU/cm2). Both polymers' surfaces showed a wide variety of microbial structures, including bacteria, fungi, unicellular algae and choanoflagellates. A high bacterial diversity was observed, with differences between the two polymers, particularly at the phylum level, with over 70% of bacteria affiliated to three phyla. Differences in metagenome functions were also detected, revealing a higher presence of proteins involved in PHBV biodegradation in PHBV biofilms. Four bacterial isolates belonging to the Proteobacteria class were identified as PHBV degraders, demonstrating the presence of species involved in the biodegradation of this polymer in seawater. No PLA degraders were detected, confirming its low biodegradability in marine environments. This was a pilot study to establish a baseline for further studies aimed at comprehending the marine biodegradation of biopolymers.
Collapse
Affiliation(s)
- Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Patricia Feijoo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Rosa de Llanos
- MicroBIO, Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Belén Carbonetto
- Microomics Systems S.L., IIB Sant Pau, C/Sant Quintí, 77-79, 08041 Barcelona, Spain
| | | | - José Tena-Medialdea
- IMEDMAR-UCV Institute of Environment and Marine Science Research, Universidad Católica de Valencia, Av. del Port, 15, 03710 Calpe, Spain
| | - José R García-March
- IMEDMAR-UCV Institute of Environment and Marine Science Research, Universidad Católica de Valencia, Av. del Port, 15, 03710 Calpe, Spain
| | - José Gámez-Pérez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, 12071 Castelló, Spain
| |
Collapse
|
11
|
Marcoaldi C, Pardo-Figuerez M, Prieto C, Arnal C, Torres-Giner S, Cabedo L, Lagaron JM. Electrospun Multilayered Films Based on Poly(3-hydroxybutyrate- co-3-hydroxyvalerate), Copolyamide 1010/1014, and Electrosprayed Nanostructured Silica. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:972. [PMID: 36985866 PMCID: PMC10052066 DOI: 10.3390/nano13060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In this research, bio-based electrospun multilayered films for food packaging applications with good barrier properties and close to superhydrophobic behavior were developed. For this purpose, two different biopolymers, a low-melting point and fully bio-based synthetic aliphatic copolyamide 1010/1014 (PA1010/1014) and the microbially synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and food-contact-complying organomodified silica (SiO2) nanostructured microparticles, were processed by electrospinning. The production of the multilayer structure was finally obtained by means of a thermal post-treatment, with the aim to laminate all of the components by virtue of the so-called interfiber coalescence process. The so developed fully electrospun films were characterized according to their morphology, their permeance to water vapor and oxygen, the mechanical properties, and their water contact angle properties. Interestingly, the annealed electrospun copolyamide did not show the expected improved barrier behavior as a monolayer. However, when it was built into a multilayer form, the whole assembly exhibited a good barrier, an improved mechanical performance compared to pure PHBV, an apparent water contact angle of ca. 146°, and a sliding angle of 8°. Consequently, these new biopolymer-based multilayer films could be a bio-based alternative to be potentially considered in more environmentally friendly food packaging strategies.
Collapse
Affiliation(s)
- Chiara Marcoaldi
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Carmen Arnal
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
12
|
Mujtaba M, Lipponen J, Ojanen M, Puttonen S, Vaittinen H. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158328. [PMID: 36037892 DOI: 10.1016/j.scitotenv.2022.158328] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, petroleum-based synthetic plastics are used as a key barrier material in the paper-based packaging of several food and nonfood goods. This widespread usage of plastic as a barrier lining is not only harmful to human and marine health, but it is also polluting the ecosystem. Researchers and food manufacturers are focused on biobased alternatives because of its numerous advantages, including biodegradability, biocompatibility, non-toxicity, and structural flexibility. When used alone or in composites/multilayers, these biobased alternatives provide strong barrier qualities against grease, oxygen, microbes, air, and water. According to the most recent literature reports, biobased polymers for barrier coatings are having difficulty breaking into the business. Technological breakthroughs in the field of bioplastic production and application are rapidly evolving, proffering new options for academics and industry to collaborate and develop sustainable packaging solutions. Existing techniques, such as multilayer coating of nanocomposites, can be improved further by designing them in a more systematic manner to attain the best barrier qualities. Modified nanocellulose, lignin nanoparticles, and bio-polyester are among the most promising future candidates for nanocomposite-based packaging films with high barrier qualities. In this review, the state-of-art and research advancements made in biobased polymeric alternatives such as paper and board barrier coating are summarized. Finally, the existing limitations and potential future development prospects for these biobased polymers as barrier materials are reviewed.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland; VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Juha Lipponen
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland
| | - Mari Ojanen
- Kemira Oyj, Energiakatu 4, 00101 Helsinki, Finland
| | | | - Henri Vaittinen
- Valmet Technologies, Wärtsilänkatu 100, 04440 Järvenpää, Finland
| |
Collapse
|
13
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
14
|
Transparency of polymeric food packaging materials. Food Res Int 2022; 161:111792. [DOI: 10.1016/j.foodres.2022.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
|
15
|
A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022. [DOI: 10.3390/catal12030319] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyhydroxyalkanoates, or PHAs, belong to a class of biopolyesters where the biodegradable PHA polymer is accumulated by microorganisms as intracellular granules known as carbonosomes. Microorganisms can accumulate PHA using a wide variety of substrates under specific inorganic nutrient limiting conditions, with many of the carbon-containing substrates coming from waste or low-value sources. PHAs are universally thermoplastic, with PHB and PHB copolymers having similar characteristics to conventional fossil-based polymers such as polypropylene. PHA properties are dependent on the composition of its monomers, meaning PHAs can have a diverse range of properties and, thus, functionalities within this biopolyester family. This diversity in functionality results in a wide array of applications in sectors such as food-packaging and biomedical industries. In order for PHAs to compete with the conventional plastic industry in terms of applications and economics, the scale of PHA production needs to grow from its current low base. Similar to all new polymers, PHAs need continuous technological developments in their production and material science developments to grow their market opportunities. The setup of end-of-life management (biodegradability, recyclability) system infrastructure is also critical to ensure that PHA and other biobased biodegradable polymers can be marketed with maximum benefits to society. The biobased nature and the biodegradability of PHAs mean they can be a key polymer in the materials sector of the future. The worldwide scale of plastic waste pollution demands a reformation of the current polymer industry, or humankind will face the consequences of having plastic in every step of the food chain and beyond. This review will discuss the aforementioned points in more detail, hoping to provide information that sheds light on how PHAs can be polymers of the future.
Collapse
|