1
|
Karaca B, Sakarya D, Siyah P, Senisik AM, Kaptan Y, Çavusoglu FC, Mansuroglu DS, Öztürk S, Bayazit SS, Barlas FB. Dual-Functioning Metal-Organic Frameworks: Methotrexate-Loaded Gadolinium MOFs as Drug Carriers and Radiosensitizers. Chemistry 2025; 31:e202404106. [PMID: 40079794 PMCID: PMC12043039 DOI: 10.1002/chem.202404106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Cancer remains a critical global health challenge, necessitating advanced drug delivery systems through innovations in materials science and nanotechnology. This study evaluates gadolinium metal-organic frameworks (Gd-MOFs) as potential drug delivery systems for anticancer therapy, particularly when combined with radiotherapy. Gd-MOFs were synthesized using terephthalic acid and gadolinium (III) chloride hexahydrate and then loaded with methotrexate (MTX). Characterization via fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), magnetic resonance imaging (MRI), and X-ray diffraction (XRD) confirmed their correct structure and stability. Effective MTX loading and controlled release were demonstrated. Anticancer effects were assessed on human healthy bronchial epithelial cells (BEAS-2B) and human lung cancer cells (A549) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay under in vitro radiation therapy. MTX/Gd-MOF combined with radiotherapy showed a greater reduction in cancer cell viability (41.89% ± 2.75 for A549) compared to healthy cells (56.80% ± 1.97 for BEAS-2B), indicating selective cytotoxicity. These findings highlight the potential of Gd-MOFs not only as drug delivery vehicles but also as radiosensitizers, enhancing radiotherapy efficacy and offering promising evidence for their use in combinatory cancer therapies to improve treatment outcomes.
Collapse
Affiliation(s)
- Burcu Karaca
- Institute of Nanotechnology and BiotechnologyIstanbul Univeristy‐CerrahpasaIstanbulTurkey
| | - Deniz Sakarya
- Institute of Nanotechnology and BiotechnologyIstanbul Univeristy‐CerrahpasaIstanbulTurkey
- Health Biotechnology Joint Research and Applications Center of ExcellenceIstanbulTurkey
| | - Pinar Siyah
- Department of BiochemistrySchool of PharmacyBahcesehir UniversityIstanbulTurkey
| | - Ahmet M. Senisik
- Vocational School of Health ServicesAltınbas UniversityIstanbulTurkey
| | - Yasemin Kaptan
- Department of Chemical EngineeringFaculty of Engineering and ArchitectureIstanbul Beykent UniversityIstanbulTurkey
| | - Ferda C. Çavusoglu
- Department of Chemical EngineeringFaculty of Engineering and ArchitectureIstanbul Beykent UniversityIstanbulTurkey
| | - Demet S. Mansuroglu
- Boğaziçi University Center for Life Sciences and Tecnologies (LifeSci)IstanbulTurkey
| | - Sadullah Öztürk
- Institute of Nanotechnology and BiotechnologyIstanbul Univeristy‐CerrahpasaIstanbulTurkey
- Health Biotechnology Joint Research and Applications Center of ExcellenceIstanbulTurkey
| | - Sahika S. Bayazit
- Institute of Nanotechnology and BiotechnologyIstanbul Univeristy‐CerrahpasaIstanbulTurkey
- Health Biotechnology Joint Research and Applications Center of ExcellenceIstanbulTurkey
| | - Firat B. Barlas
- Institute of Nanotechnology and BiotechnologyIstanbul Univeristy‐CerrahpasaIstanbulTurkey
- Health Biotechnology Joint Research and Applications Center of ExcellenceIstanbulTurkey
- Clinical Research Excellence Application and Research CenterIstanbul Univeristy‐CerrahpasaIstanbulTurkey
| |
Collapse
|
2
|
Rashid SA, Naseem F, Shah PA, Hashmi HB, Mazher M, Mubarak MS, Sharifi-Rad J, Badar M. Development and evaluation of methotrexate-loaded nanoemulsion formulation for topical treatment of psoriasis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1765-1783. [PMID: 39177784 DOI: 10.1007/s00210-024-03364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Psoriasis is a chronic inflammatory disease that is becoming widespread and is associated with many kinds of additional severe diseases. The present study aimed to develop a methotrexate-loaded almond oil-based nanoemulsion formulation (MTX NE) for topical administration. The drug-loaded nanoemulsion formulation was prepared by high shear homogenization technique. The formulation's stability, as well as other physical and chemical characteristics, including entrapment effectiveness, drug release kinetics, skin permeability, skin irritation, and in vivo evaluation of the optimized formulation, was assessed. Additionally, imiquimod-induced psoriasis in rats was employed to investigate the efficacy of MTX NE against skin disorders. The MTX NE formulation was developed with a particle size of 18.74 ± 9.748 nm, a polydispersity index (PDI) of 0.198 ± 0.01, and an average entrapment efficiency of 79.65 ± 3.84%. The release kinetics model estimates 81.08% drug release at pH 5.5 after 24 h. The major layers of the skin, the epidermis, and dermis were successfully fluidized by the optimized MTX NE formulation, as shown by FTIR results, most likely enhancing drug retention and permeability. However, since Tween 80 and PEG 400 are well-known penetration enhancers, their application greatly accelerates these effects. Permeation data indicate that after 24 h, methotrexate was released from the nano-emulsion at 76.83 ± 4.98 g/cm2 with a flux rate of 2.385 ± 0.61 µg/cm2/h. The in vivo study conducted on rabbit skin showed that the enhanced skin penetration of the prepared MTX-loaded nanoemulsion formulation does not cause any structural modifications in the inter-cellular lipid layers of the stratum corneum. Rabbits used in the in vivo anti-psoriatic investigation demonstrated that MTX NE produced a 95% reduction in PASI. The pharmacokinetic profile revealed that the Cmax, Tmax, and t1/2 values were 8.63 µg/mL, 12.5 h, and 17.77 ± 2.21 h, respectively. These findings suggest that the formulation MTX NE is effective in treating psoriasis and may reduce psoriasis symptoms.
Collapse
Affiliation(s)
- Sheikh Abdur Rashid
- Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, 29050, Dera Ismail Khan, Pakistan
| | - Faiza Naseem
- Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, 29050, Dera Ismail Khan, Pakistan
| | - Pervaiz Akhtar Shah
- Punjab University College of Pharmacy, University of the Punjab Lahore, Lahore, Pakistan
| | - Hamna Batool Hashmi
- Gomal Center of Biochemistry and Biotechnology, Gomal University, 29050, Dera Ismail Khan, Pakistan
| | - Mudassar Mazher
- Department of Pharmacy, The University of Chenab, Gujrat, Pakistan
| | | | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, 29050, Dera Ismail Khan, Pakistan.
| |
Collapse
|
3
|
Fiaschini N, Hanieh PN, Ariaudo D, Cimino R, Abbate C, Romano E, Cavalieri F, Venanzi M, Palumbo V, Scimeca M, Bernardini R, Mattei M, Migliore A, Rinaldi A. Application of Microsponge Drug Platform to Enhance Methotrexate Administration in Rheumatoid Arthritis Therapy. Pharmaceutics 2024; 16:1593. [PMID: 39771571 PMCID: PMC11676977 DOI: 10.3390/pharmaceutics16121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to develop a novel nanotechnological slow-release drug delivery platform based on hyaluronic acid Microsponge (MSP) for the subcutaneous administration of methotrexate (MTX) in the treatment of rheumatoid arthritis (RA). RA is a chronic autoimmune disease characterized by joint inflammation and damage, while MTX is a common disease-modifying antirheumatic drug (DMARD), the conventional use of which is limited by adverse effects and the lack of release control. METHODS MSP were synthesized as freeze-dried powder to increase their stability and allow for a facile reconstitution prior to administration and precise MTX dosing. RESULTS A highly stable and rounded-shaped micrometric MSP, characterized by an open porosity inner structure, achieved both a high MTX loading efficiency and a slow release of MTX after injection. Our drug release assays indeed demonstrated a characteristic drug release profile consisting of a very limited burst release in the first few hours, followed by a slow release of MTX sustained for over a month. By means of a preclinical rat model of RA, the administration of MTX-loaded MSP proved to nearly double the therapeutic efficacy compared to sole MTX, according to a steep reduction in arthritic score compared to control groups. The preclinical study was replicated twice to confirm this improvement in performance and the safety profile of the MSP. CONCLUSIONS This study suggests that the MSP drug delivery platform holds significant potential for clinical use in improving RA therapy by enabling the sustained slow release of MTX, thereby enhancing therapeutic outcomes and minimizing side effects associated with conventional burst-release drug administration.
Collapse
Affiliation(s)
- Noemi Fiaschini
- Nanofaber S.r.l., Via Anguillarese 301, 00123 Rome, Italy; (N.F.); (P.N.H.)
| | | | - Daniela Ariaudo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (R.C.); (C.A.); (F.C.); (M.V.)
| | - Rita Cimino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (R.C.); (C.A.); (F.C.); (M.V.)
| | - Carlo Abbate
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (R.C.); (C.A.); (F.C.); (M.V.)
| | - Elena Romano
- Centre of Advance Microscopy P. Albertano, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica Snc, 00133 Rome, Italy;
| | - Francesca Cavalieri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (R.C.); (C.A.); (F.C.); (M.V.)
| | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (R.C.); (C.A.); (F.C.); (M.V.)
| | - Valeria Palumbo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (V.P.); (M.S.)
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (V.P.); (M.S.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Alberto Migliore
- San Pietro Fatebenefratelli Hospital, Via Cassia 600, 00189 Rome, Italy
| | - Antonio Rinaldi
- Nanofaber S.r.l., Via Anguillarese 301, 00123 Rome, Italy; (N.F.); (P.N.H.)
| |
Collapse
|
4
|
Zewail MB, Doghish AS, El-Husseiny HM, Mady EA, Mohammed OA, Elbadry AMM, Elbokhomy AS, Bhnsawy A, El-Dakroury WA. Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. Biomater Sci 2024; 12:6163-6195. [PMID: 39484700 DOI: 10.1039/d4bm01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, etc. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 17 Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, 10 Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amir S Elbokhomy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdelmenem Bhnsawy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
5
|
Shrivastava S, Bahuguna T, Mondal S, Kumar S, Mathew B, Jeengar MK, Naidu VGM. Attenuation of adjuvant-induced arthritis with carnosic acid by inhibiting mPGES-1, COX-2, and bone loss in male SD rats. Immunopharmacol Immunotoxicol 2024:1-12. [PMID: 39013842 DOI: 10.1080/08923973.2024.2377984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE Rheumatoid arthritis (RA), a chronic inflammatory disease, is characterized by joint swelling, cartilage erosion, and bone destruction. This study investigated the therapeutic efficacy of Carnosic acid (CA), a natural compound with anti-inflammatory and antioxidant properties, in an adjuvant-induced arthritis model. METHODS Paw swelling and arthritis index were measured. Oxidative stress markers, including lipid peroxidation and antioxidant enzyme levels, were assessed. Synovial tissue was analyzed for pro-inflammatory markers using real-time Q-PCR and Western blotting. The expression of mPGES-1 was determined by Western blotting. Peripheral neuropathic pain was assessed using cold and mechanical allodynia tests. Bone loss was quantitatively assessed through microcomputed tomography (μCT) scanning of femurs and X-ray radiography. Indomethacin-induced gastric ulcers were evaluated. Molecular docking studies were conducted to analyze the binding affinity of CA to mPGES-1. RESULTS The CA treatment not only demonstrated a significant reduction in joint inflammation and paw swelling but also mitigated oxidative stress and improved the antioxidant defence system. CA inhibited microsomal prostaglandin E synthase-1 (mPGES-1) expression and the expression of pro-inflammatory molecules such as inducible nitric oxide synthase (iNOS) and cyclooxygenases-2 (COX-2), thus attenuating the arthritis symptoms without severe gastrointestinal side effects. Additionally, it inhibited the expression of pro-inflammatory molecules such as iNOS and COX-2, contributing to the reduction of arthritis symptoms. Notably, CA treatment prevented the common side effects of traditional RA treatments like corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs), including weight loss, bone degradation, and gastric ulcers. CONCLUSIONS These findings suggest that CA, through specific enzyme inhibition, offers a compelling alternative therapeutic approach for RA. Further research is warranted to explore the potential of CA in other arthritis models and its suitability for human RA treatment.
Collapse
Affiliation(s)
- Shweta Shrivastava
- School of Pharmacy, School of Health and Allied Sciences, ARKA JAIN University, Gamharia, Seraikela Kharsawan, Jharkhand, India
| | - Tribhuwan Bahuguna
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute (NIPER), Balanagar, Hyderabad, India
| | - Sudipto Mondal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute (NIPER), Balanagar, Hyderabad, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute (NIPER), Assam, India
| |
Collapse
|
6
|
Zhao H, Wei J, He Y, Wu Y, Ge L, Zheng C. A novel treatment modality for rheumatoid arthritis: Inflammation-targeted multifunctional metal-organic frameworks with synergistic phototherapy and chemotherapy. Colloids Surf B Biointerfaces 2024; 239:113952. [PMID: 38733646 DOI: 10.1016/j.colsurfb.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease with complex pathogenesis. Single chemotherapy struggles to eliminate the disease permanently and reduce the pain owing to drug resistance and inadequate delivery to target cells. This study developed hyaluronic acid (HA)-modified and methotrexate (MTX)-load metal-organic frameworks (denoted as FT-HA-MTX NPs), combining photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy to inhibit the progression of RA. In vitro experiments proved that the obtained NPs exhibited good biocompatibility and commendable photothermal conversion efficiency of 36.3 %. Additionally, they promoted ∙OH and O2 production via the Fenton reaction, which dramatically alleviated hypoxia and enhanced ROS generation, and induced substantial mortality in activated RAW 264.7 cells, with cell viability of 31.72 %. Cellular uptake and in vivo imaging confirmed that the modification of HA enabled the NPs to specifically target activated macrophage, ensured prolonged retention of NPs in inflamed synovial tissues, and reduced systemic toxicity. In vivo, after FT-HA-MTX NPs treatment with laser irradiation, the levels of TNF-α and IL-1β in the synovial tissue were reduced by approximately 50 % compared to those in the inflamed synovium, demonstrating a significant enhancement in the anti-inflammatory effect (p < 0.001). In conclusion, FT-HA-MTX NPs are promising inflammation-targeted multifunctional nanoparticles that combine PTT, PDT, and chemotherapy, thereby significantly inhibiting the progression of RA while reducing systemic toxicity.
Collapse
Affiliation(s)
- Hejie Zhao
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Jun Wei
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yangjingwan He
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yiqun Wu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Liang Ge
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211100, China.
| | - Chunli Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211100, China.
| |
Collapse
|
7
|
Bakhshan MA, Sheikhzadeh S, Delirezh N. Hesperidin nanoparticles for prostate cancer therapy: preparation, characterization and cytotoxic activity. Biomed Mater 2024; 19:035044. [PMID: 38653315 DOI: 10.1088/1748-605x/ad4221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Hesperidin, a phytochemical renowned for its therapeutic effects including anticancer, antioxidant, and anti-inflammatory properties, encounters a significant limitation in its application due to its low bioavailability and restricted solubility in water. To surmount these challenges, we employed a spontaneous emulsification method to produce hesperidin nanoparticles. These nanoparticles, averaging 197.2 ± 2.8 nm, exhibited uniform dispersion (polydispersity index: 0.13), a zeta potential (ZP) of -28 mV, encapsulation efficiency of 84.04 ± 1.3%, and demonstrated stable and controlled release across various environments. Assessment of the nanoemulsions stability revealed remarkably high stability levels. Cytotoxicity evaluations (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyl-2-H-tetrazolium bromide, neutral red, trypan blue, and lactate dehydrogenase) indicated that cancer cell viability following treatment with hesperidin nanoemulsion was concentration and time-dependent, significantly lower compared to cells treated with free hesperidin. The colony formation assay and cell morphology evaluation further corroborated the heightened efficacy of hesperidin in its nano form compared to the free form. In summary, hesperidin nanoparticles not only exhibited more potent anticancer activity than free hesperidin but also demonstrated high biocompatibility with minimal cytotoxic effects on healthy cells. These findings underscore the potential for further exploration of hesperidin nanoparticles as an adjunctive therapy in prostate cancer therapy.
Collapse
Affiliation(s)
- Mohammad Amin Bakhshan
- Department of Microbiology, Faculty of Veterinay Medicine, Urmia University, Urmia, Iran
| | - Sanaz Sheikhzadeh
- Department of Microbiology, Faculty of Veterinay Medicine, Urmia University, Urmia, Iran
| | - Nowruz Delirezh
- Department of Microbiology, Faculty of Veterinay Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
8
|
Babanzadeh R, Vafaei SY, Moghadam DA, Komaki A, Mohammadi M. Quercetin-loaded nanoemulsions prevent Scopolamine-induced neurotoxicity in male rats. Physiol Behav 2024; 277:114494. [PMID: 38360390 DOI: 10.1016/j.physbeh.2024.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Quercetin (QCT) is well-known as a neuroprotective agent due to its antioxidant capacities and reinstating mitochondrial functions. Scopolamine is commonly used as a model to induce Alzheimer's disease (AD-like) symptoms. The current study develops QCT-loaded nanoemulsion (QCT-NE) accompanied by evaluating its neuro-therapeutic effectiveness against SCO-induced neurotoxicity in male rats. The QCT-NE was prepared by the spontaneous emulsification technique and characterized by using particle size, zeta potential, drug loading, in vitro drug release behavior, and stability studies. In vivo studies were done on adult Wistar rats by applying the Morris water maze (MWM) test to study spatial memory and learning. The levels of lipid peroxidation and reduced glutathione were quantitatively determined to reveal the potential mechanism of SCO-induced oxidative stress. Finally, histological studies were performed using staining techniques. The QCT-NE particle size, zeta potential, polydispersity index (PDI), and DL were obtained at 172.4 ± 16.8 nm, -29 ± 0.26 mV, 0.3 ± 0.07, and 81.42 ± 9.14 %, respectively. The QCT and more effectively QCT-NE reduced the elevation of neurobehavioral abnormalities in the MWM test in SCO-exposed rats. The results of oxidative status showed that SCO significantly could increase the LPO and decrease the GSH levels in the rat's brain. However, QCT-NE treatment was more effective than free QCT to inhibit oxidative damage and was well correlated with histopathological findings. Taken together, QCT-NE, compared to QCT, was superior in ameliorating SCO-induced AD-like symptoms due to its better neuroprotective activity and can be considered a novel supplementary therapeutic agent in AD management.
Collapse
Affiliation(s)
- Reza Babanzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Yaser Vafaei
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Davood Ahmadi Moghadam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
9
|
Gharat S, Basudkar V, Momin M. In-Vitro and in-Vivo Evaluation of the Developed Curcumin-Cyclosporine-Loaded Nanoemulgel for the Management of Rheumatoid Arthritis. Immunol Invest 2024; 53:490-522. [PMID: 38197806 DOI: 10.1080/08820139.2024.2301997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Topical nanogel-based formulations have shown potential in the management of rheumatoid arthritis (RA). The aim of this research work was to explore the synergistic effect of Curcumin (CUR) and Cyclosporine (CYC) in combination via a topical route for the management of RA. METHODS The CUR+CYC loaded nanoemulsion was developed using the spontaneous emulsification technique and was subsequently incorporated into Carbopol® Ultrez 30-NF gel. The effect of the developed formulation on levels of proinflammatory cytokines (IL-6, TNF-α) and anti-inflammatory cytokine (IL-10) was evaluated using lipopolysaccharide (LPS) induced RAW 264.7 cell culture model. The anti-arthritic activity was evaluated in a Complete Freund's Adjuvant (CFA) induced arthritic rat model. RESULTS The optimized nanoemulgel (CUR + CYC NE gel) exhibited average globule size of 15.32 nm ±2.7 nm, poly-dispersity index of 0.181 ± 0.034 and zeta potential of -16.3 mV ± 0.9 mV. The cumulative drug release from ex-vivo diffusion studies on porcine ear skin was 99.189% ± 1.419% at the of 24 h and 99.177% ± 1.234% at the end of 18 h for CUR and CYC, respectively. The cell culture studies revealed that the formulation was able to significantly lower (p < .001) the levels of IL-6 and TNF-α, inhibited prostaglandin E2 (PGE2) while significantly elevating (p < .001) the levels of anti-inflammatory cytokine (IL-10). The gel was found to be non-irritating and showed the inhibition of paw edema and substantial reduction of arthritic symptoms in an arthritic rat model as compared to commercial and other conventional alternatives. CONCLUSION This study highlights the potential of the developed nanoemulgel for the management of RA by enhancing the topical permeation of CUR and CYC.
Collapse
Affiliation(s)
- Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Vivek Basudkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Director (I/C), SVKM's Shri C. B. Patel Research Centre for Chemistry and Biological Sciences, Mumbai, India
| |
Collapse
|
10
|
Febrianti NQ, Aziz AYR, Tunggeng MGR, Ramadhany ID, Syafika N, Azis SBA, Djabir YY, Asri RM, Permana AD. Development of pH-Sensitive Nanoparticle Incorporated into Dissolving Microarray Patch for Selective Delivery of Methotrexate. AAPS PharmSciTech 2024; 25:70. [PMID: 38538953 DOI: 10.1208/s12249-024-02777-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/22/2024] [Indexed: 04/24/2024] Open
Abstract
PURPOSE Rheumatoid arthritis (RA) is a systemic autoimmune disease that attacks human joints. Methotrexate (MTX), as one the most effective medications to treat RA, has limitations when administered either orally or by injection. To overcome this limitation, we formulated MTX through a smart nanoparticle (SNP) combined with dissolving microarray patch (DMAP) to achieve selective-targeted delivery of RA. METHODS SNP was made using the combination of polyethylene glycol (PEG) and polycaprolactone (PCL) polymers, while DMAP was made using the combination of hyaluronic acid and polyvinylpyrrolidone K-30. SNP-DMAP was then evaluated for its mechanical and chemical characteristics, ex vivo permeation test, in vivo pharmacokinetic study, hemolysis, and hen's egg test-chorioallantoic membrane (HET-CAM) test. RESULT The results showed that the characteristics of the SNP-DMAP-MTX formulas meet the requirements for transdermal delivery, with the particle size of 189.09 ±12.30 nm and absorption efficiency of 65.40 ± 5.0%. The hemolysis and HET-CAM testing indicate that this formula was non-toxic and non-irritating. Ex vivo permeation shows a concentration of 51.50 ± 3.20 µg/mL of SNP-DMAP-MTX in PBS pH 5.0. The pharmacokinetic profile of SNP-DMAP-MTX showed selectivity and sustained release compared with oral and DMAP-MTX with values of t1/2 (4.88 ± 0 h), Tmax (8 ± 0 h), Cmax (0.50 ± 0.04 μg/mL), AUC (3.15 ± 0.54 μg/mL.h), and mean residence time (MRT) (9.13 ± 0 h). CONCLUSION The developed SNP-DMAP-MTX has been proven to deliver MTX transdermal and selectively at the RA site, potentially avoiding conventional MTX side effects and enhancing the effectiveness of RA therapy.
Collapse
Affiliation(s)
| | | | | | | | - Nur Syafika
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | | | | | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia.
| |
Collapse
|
11
|
Elshabrawy HA, Abo Dena AS, El-Sherbiny IM. Triple-layered platform utilizing electrospun nanofibers and 3D-printed sodium alginate-based hydrogel for effective topical treatment of rheumatoid arthritis. Int J Biol Macromol 2024; 259:129195. [PMID: 38184049 DOI: 10.1016/j.ijbiomac.2023.129195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Rheumatoid arthritis (RA), an autoimmune disease impacting the joints, significantly diminishes the quality of life for patients. Conventional treatments predominantly rely on oral or injectable formulations, underscoring the crucial need for an effective topical remedy. The present study reports a novel triple-layered transdermal platform for efficient RA treatment. The patches are based on an electrospun/electrosprayed diclofenac (DIC)-conjugated polyvinyl alcohol (PVA) nanofibers/nanoparticles (NFs/NPs) composite layer sandwiched between an electrospun supporting layer of polycaprolactone (PCL) NFs, and a 3D-printed sodium alginate-based hydrogel (HG) layer incorporating sodium hyaluronate (HA) and rosuvastatin (ROS)-loaded core-shell lipid nanocapsules (LNCs). The ingeniously designed transdermal patches release the chemically conjugated DIC via skin-secreted esterases at the inflamed sites. The LNCs and patches were characterized using DLS, FTIR, DSC, and electron microscopy. ROS-loaded LNCs (<50 nm as per the TEM micrographs) were able to release about 97 % of ROS during 5 days. In-vitro and in-vivo evaluations definitively established the efficacy of the developed platform, showcasing a substantial reduction in IL-6 and TNF-α through sandwich ELISA measurements in cell culture and Rattus norvegicus plasma samples. Besides, the stained photomicrographs of the rats' ankle joints confirmed the alleviation of the RA symptoms via reducing cell infiltration with a preserved joint tissue structure.
Collapse
Affiliation(s)
- Hend A Elshabrawy
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City 12578, Giza, Egypt.
| | - Ahmed S Abo Dena
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City 12578, Giza, Egypt.
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th of October City 12578, Giza, Egypt.
| |
Collapse
|
12
|
Chando A, Basudkar V, Gharat S, Momin M, Khan T. Development and preclinical assessment of nanoemulgel loaded with phytoconstituents for the management of rheumatoid arthritis. Drug Deliv Transl Res 2024; 14:524-541. [PMID: 37606759 DOI: 10.1007/s13346-023-01416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
In recent years, natural ingredients have gained importance for therapeutic treatment due to their minimal toxicity. However, the delivery of these phytoconstituents poses a challenge to provide better efficacy. Current research reports the development of nanoemulgel (NEG) loaded with ginger oleoresin (GOR) and lipid guggul extract (LGE) for the management of rheumatoid arthritis (RA). The nanoemulsion (NE) was developed using the spontaneous emulsification technique by the pseudo-ternary method. The optimized nanoemulsion exhibited globule size of 16.08 ± 2.55 nm, PDI of 0.187 ± 0.06, and zeta potential of - 22.4 ± 0.31 mV. The cumulative release from in vitro diffusion studies at pH 7.4 was about 99.72 ± 3.47%, 57.98 ± 2.11%, and 86.42 ± 5.13% of 6-gingerol, E-guggulsterone, and Z-guggulsterone respectively at the end of 24 h. The ex vivo studies on porcine ear skin showed sustained release with 92.8 ± 3.21% for 6-gingerol, 55.61 ± 0.91% for E-guggulsterone, and 84.2 ± 4.22% for Z-guggulsterone released at the end of 24 h. The cell culture studies on RAW 264.7 cells indicated a robust inhibition of LPS-induced IL-6 and TNF-α production indicating its efficacy in the management of RA. The preclinical studies on male Wistar rats suggest that the developed NEG exhibited a comparable decrease in paw edema inflammation as compared to the marketed diclofenac sodium gel. These encouraging results demonstrate the potential of the developed nanoemulgel containing combination of GOR and LGE for the management of RA.
Collapse
Affiliation(s)
- Anita Chando
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Vivek Basudkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
- SVKM's Shri C. B. Patel Research Centre for Chemistry and Biological Sciences, Vile Parle (West), Mumbai, Maharashtra, India.
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
13
|
Nautiyal G, Sharma SK, Kaushik D, Pandey P. Nano - Based Therapeutic Strategies in Management of Rheumatoid Arthritis. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:433-456. [PMID: 37904559 DOI: 10.2174/1872210517666230822100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents as one of the utmost promising scientific technologies of the 21st century. It exhibits remarkable potential in the field of medicine, including imaging techniques and diagnostic tools, drug delivery systems and providing advances in treatment of several diseases with nanosized structures (less than 100 nm). OBJECTIVE Conventional drugs as a cornerstone of RA management including disease-modifying antirheumatic drugs (DMARDS), Glucocorticosteroids, etc are under clinical practice. Nevertheless, their low solubility profile, poor pharmacokinetics behaviour, and non-targeted distribution not only hamper their effectiveness, but also give rise to severe adverse effects which leads to the need for the emergence of nanoscale drug delivery systems. METHODS Several types of nano-diagnostic agents and nanocarriers have been identified; including polymeric nanoparticles (NPs), liposomes, nanogels, metallic NPs, nanofibres, carbon nanotubes, nano fullerene etc. Various patents and clinical trial data have been reported in relevance to RA treatment. RESULTS Nanocarriers, unlike standard medications, encapsulate molecules with high drug loading efficacy and avoid drug leakage and burst release before reaching the inflamed sites. Because of its enhanced targeting specificity with the ability to solubilise hydrophobic drugs, it acts as an enhanced drug delivery system. CONCLUSION This study explores nanoparticles potential role in RA as a carrier for site-specific delivery and its promising strategies to overcome the drawbacks. Hence, it concludes that nanomedicine is advantageous compared with conventional therapy to enhanced futuristic approach.
Collapse
Affiliation(s)
- Gunjan Nautiyal
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Shiv Kant Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Dhirender Kaushik
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| |
Collapse
|
14
|
Zewail MB, El-Gizawy SA, Asaad GF, Shabana ME, El-Dakroury WA. Chitosan coated clove oil-based nanoemulsion: An attractive option for oral delivery of leflunomide in rheumatoid arthritis. Int J Pharm 2023; 643:123224. [PMID: 37451327 DOI: 10.1016/j.ijpharm.2023.123224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Rheumatoid arthritis (RA), a distressing inflammatory autoimmune disease, is managed mainly by Disease-modifying antirheumatic drugs (DMARDs), e.g. leflunomide (LEF). LEF (BCS class II) has limited solubility and adverse effects following its systemic exposure. The appealing antirheumatic properties of both clove oil and chitosan (CS) were exploited to design oral leflunomide (LEF)-loaded nanoemulsion (NE) system to augment the therapeutic action of LEF and decrease its systemic side effects as well. Different LEF-NEs were prepared using clove oil, Tween® 20 (surfactant), and PEG 400(co-surfactant) and characterized by thermodynamic stability, percentage transmittance, cloud point, size analysis, and drug content. Optimized LEF-NE was subjected to CS coating forming LEF-CS-NE that exhibited nanometric size range, prolonged drug release, and good physical stability. In vivo anti-rheumatic activity of pure LEF, market LEF, and LEF-CS-NE was assessed utilizing a complete Freund's adjuvant (CFA) rat model. Treatment with LEF-CS-NE reduced edema rate (48.68% inhibition) and caused a marked reduction in interleukin-6 (IL-6) (510.9 ± 2.48 pg/ml), tumor necrosis factor- α (TNF-α) (397.3 ± 2.53 pg/ml), and rheumatoid factor (RF) (42.58 ± 0.49 U/ml). Furthermore, LEF-CS-NE reduced serum levels of glutamic pyruvic transaminase (GPT) to (83.19%) and glutamic oxaloacetic transaminase (GOT) to (40.68%) compared to the control + ve group. The effects of LEF-CS-NE were also superior to both pure and market LEF and showed better results in histopathological studies of paws, liver, kidney, lung, and heart. The remarkable therapeutic and safety profile of LEF-CS-NE makes it a potential oral system for the management of RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Marwa E Shabana
- Pathology Department, National Research Centre, Dokki, Giza, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
15
|
Wang J, Ni R, Jiang T, Peng D, Ming Y, Cui H, Liu Y. The applications of functional materials-based nano-formulations in the prevention, diagnosis and treatment of chronic inflammation-related diseases. Front Pharmacol 2023; 14:1222642. [PMID: 37593176 PMCID: PMC10427346 DOI: 10.3389/fphar.2023.1222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chronic inflammation, in general, refers to systemic immune abnormalities most often caused by the environment or lifestyle, which is the basis for various skin diseases, autoimmune diseases, cardiovascular diseases, liver diseases, digestive diseases, cancer, and so on. Therapeutic strategies have focused on immunosuppression and anti-inflammation, but conventional approaches have been poor in enhancing the substantive therapeutic effect of drugs. Nanomaterials continue to attract attention for their high flexibility, durability and simplicity of preparation, as well as high profitability. Nanotechnology is used in various areas of clinical medicine, such as medical diagnosis, monitoring and treatment. However, some related problems cannot be ignored, including various cytotoxic and worsening inflammation caused by the nanomaterials themselves. This paper provides an overview of functional nanomaterial formulations for the prevention, diagnosis and treatment of chronic inflammation-related diseases, with the intention of providing some reference for the enhancement and optimization of existing therapeutic approaches.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| | - Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Tingting Jiang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Lu W, Luo D, Chen D, Zhang S, Chen X, Zhou H, Liu Q, Chen S, Liu W. Systematic Study of Paeonol/Madecassoside Co-Delivery Nanoemulsion Transdermal Delivery System for Enhancing Barrier Repair and Anti-Inflammatory Efficacy. Molecules 2023; 28:5275. [PMID: 37446936 DOI: 10.3390/molecules28135275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sensitive skin is defined as skin with low tolerance and high reactivity. Natural products, such as paeoniflorin and madecassoside, have unique skin care functionality. However, because they are hampered by the skin barrier, paeoniflorin and madecassoside have difficulty penetrating the stratum corneum, resulting in weakened skin barrier repair and anti-inflammatory effects. In addition, there is a lack of detailed studies on the efficacy of paeonol and madecassic in human skin, especially in 3D skin models and clinical trials. To overcome the low transdermal delivery issue, we developed nanoemulsions (PM-NEs) loaded with paeonol and madecassoside to improve their delivery efficiency and promote sensitive skin repair and anti-inflammation effects. Furthermore, systematic evaluations of the efficacy in cell line models, 3D skin models, and clinical trials were conducted. The PM-NEs effectively improved the efficacy of paeonol and madecassoside glucoside transdermal penetration and retention and enhanced cellular uptake. Cellular assays and 3D epidermal models showed that the PM-NEs significantly promoted the secretion of filamentous protein, aquaporin 3, Claudin-1, and hyaluronic acid, and considerably inhibited the secretion of interleukin 1α, interleukin 6, tumor necrosis factor-α, and prostaglandin E2 compared to free components. Notably, clinical trial data showed that the PM-NEs significantly reduced transepidermal water loss, a* values, erythropoietin, the amount of non-inflammatory acne, and the amount of inflammatory acne in the facial skin. Three levels of systematic studies suggest that co-delivery of paeoniflorin and madecassoside via nanoemulsions is a promising strategy to improve topical delivery efficiency and anti-inflammatory repair efficacy in sensitive skin.
Collapse
Affiliation(s)
- Wangwang Lu
- Guangzhou Jiyan Cosmetics Technology Co., Ltd., Guangzhou 510275, China
| | - Dan Luo
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430075, China
| | - Dan Chen
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430075, China
| | - Shuting Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuan Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Liu
- Guangzhou Jiyan Cosmetics Technology Co., Ltd., Guangzhou 510275, China
| | - Siyuan Chen
- Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing 211816, China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430075, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Wang H, Shao W, Lu X, Gao C, Fang L, Yang X, Zhu P. Synthesis, characterization, and in vitro anti-tumor activity studies of the hyaluronic acid-mangiferin-methotrexate nanodrug targeted delivery system. Int J Biol Macromol 2023; 239:124208. [PMID: 36972827 DOI: 10.1016/j.ijbiomac.2023.124208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
In this study, to increase the accumulation of MTX in the tumor site and reduce the toxicity to normal tissues by MA, a novel nano-drug delivery system comprised of hyaluronic acid (HA)-mangiferin (MA)-methotrexate (MTX) (HA-MA-MTX) was developed by a self-assembly strategy. The advantage of the nano-drug delivery system is that MTX can be used as a tumor-targeting ligand of the folate receptor (FA), HA can be used as another tumor-targeting ligand of the CD44 receptor, and MA serves as an anti-inflammatory agent. 1HNMR and FT-IR results confirmed that HA, MA, and MTX were well coupled together by the ester bond. DLS and AFM images revealed that the size of HA-MA-MTX nanoparticles was about ~138 nm. In vitro cell experiments proved that HA-MA-MTX nanoparticles have a positive effect on inhibiting K7 cancer cells while having relatively lower toxicity to normal MC3T3-E1 cells than MTX does. All these results indicated that the prepared HA-MA-MTX nanoparticles can be selectively ingested by K7 tumor cells through FA and CD44 receptor-mediated endocytosis, thus inhibiting the growth of tumor tissues and reducing the nonspecific uptake toxicity caused by chemotherapy. Therefore, these self-assembled HA-MA-MTX NPs could be a potential anti-tumor drug delivery system.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital of Jiangsu Province, Wuxi 214105, PR China
| | - Wanfei Shao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xianyi Lu
- Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital of Jiangsu Province, Wuxi 214105, PR China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Ling Fang
- Department of Dermatology, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214105, China
| | - Xiaojun Yang
- The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, Jiangsu Province, China.
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
18
|
Liang GC, Duan WG, Chen SY, Pang XF, Fang JK. Qinteng Tongbi Decoction Medicated Serum Exerts Regulates the Proliferation, Migration, and Apoptosis of Synovial Fibroblasts in Adjuvant-Induced Arthritis Rats Model via Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling Pathway. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231157939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Background Qinteng Tongbi decoction (QTTBD) was an empirical prescription that could effectively prevent and treat rheumatoid arthritis (RA), but there was no report of pharmacological studies on this prescription. The purpose of this paper was to report the effects of QTTBD on the proliferation, migration, and apoptosis of synovial fibroblasts in adjuvant arthritis model rats, and to reveal its anti-RA regulatory mechanism. Methods To divide the fibroblast-like synovial (FLS) cells of experimental rats into 6 groups (blank control group, model control group, positive drug group, QTTBD high, medium, and low dose groups) and cultured with serum-containing drugs. And using Cell Counting Kit-8 to detect the proliferation rate of FLS cells, flow cytometry to detect the apoptosis of FLS cells, the enzyme-linked immunosorbent assay method to detect the levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), Western Blot to detect phosphatidylinositol 3-kinase (PI3K), AKT1, p-AKT1, Bax and Bcl-2 gene and protein expression. Results Experimental results showed that QTTBD-containing serum could effectively inhibit the proliferation of FLS cells ( p <0 .05), induce the apoptosis of FLS cells, reduce the expression levels of inflammatory factors such as IL-6, IL-1β, and TNF-α ( p <0 .05), reduce expression of PI3K, AKT1, p-AKT1, and Bax ( p <0 .05), while the Bcl-2 expression increased ( p <0 .05). Conclusion QTTBD could effectively regulate the proliferation, migration, and apoptosis of FLS cells in adjuvant-induced arthritis (AIA) rats, and its mechanism might be related to regulating the level of inflammatory factors and intervening in the PI3K/protein kinase B (AKT) signaling pathway.
Collapse
Affiliation(s)
- Guo-Cheng Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wen-Gui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shu-Yin Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xue-Feng Pang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian-Kang Fang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
19
|
Lee YM, Lee S, Kim WJ. Nitric oxide scavengers based on o-phenylenediamine for the treatment of rheumatoid arthritis. Biomater Sci 2023; 11:2395-2404. [PMID: 36786425 DOI: 10.1039/d2bm01994a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Nitric oxide (NO) plays various physiologically favorable roles in the body. However, excessive production of NO causes inflammation and leads to various chronic inflammatory diseases. A typical NO-related disease is rheumatoid arthritis (RA), and it is well known that NO is a critical molecule for inflammation in the pathophysiology of RA. Therefore, depletion of NO can be an attractive treatment option for RA. In this study, we proposed a new method to discover effective NO scavengers in the form of small molecules. o-Phenylenediamine (o-PD), the core structure of the NO scavenger, is a diamino-aromatic compound that irreversibly reacts with NO through nucleophilic substitution of amine. Inspired by the nucleophilicity, we attempted to find new scavenger candidates by searching for conditions that increase the nucleophilicity of the amine moieties. Candidates were classified into the basic form o-PD, monoamine aniline, o-PD substituted with a nitro group, carboxyl group, and three methyl groups. The NO-scavenging ability of these candidates was demonstrated using the DAF-2 assay. N-Methyl-o-PD (N-Me) in the methyl (-CH3) group had the highest reactivity with NO among the candidates, and the efficiency of NO scavengers was confirmed in vitro and in vivo. Depleted levels of NO and reduced levels of pro-inflammatory cytokines by N-Me demonstrated remarkable therapeutic efficacy against joint damage and delayed severity in a collagen-induced arthritis (CIA) model. Therefore, our findings suggest that N-Me is a new NO scavenger with great potential for RA treatment and further clinical drug development.
Collapse
Affiliation(s)
- Yeong Mi Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Sanggi Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. .,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. .,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
20
|
Afzal O, Altamimi ASA, Alamri MA, Altharawi A, Alossaimi MA, Akhtar MS, Tabassum F, Almalki WH, Singh T. Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis. Gels 2023; 9:gels9020131. [PMID: 36826301 PMCID: PMC9956310 DOI: 10.3390/gels9020131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Natural anti-inflammatory nutraceuticals may be useful in preventing rheumatoid arthritis from worsening. Resveratrol (RV) and chia seed oil, having antioxidant potential, can assist in avoiding oxidative stress-related disorders. This investigation developed and evaluated resveratrol-loaded chia seed oil-based nanoemulsion (NE) gel formulations through in vitro and in vivo studies. The physical stability and in vitro drug permeability of the chosen formulations (NE1 to NE10) were studied. The optimized RV-loaded nanoemulsion (NE2) had droplets with an average size of 37.48 nm that were homogeneous in shape and had a zeta potential of -18 mV. RV-NE2, with a permeability of 98.21 ± 4.32 µg/cm2/h, was gelled with 1% carbopol-940P. A 28-day anti-arthritic assessment (body weight, paw edema, and levels of pro-inflammatory mediators including TNF-α, IL-6, IL-1β, and COX-2) following topical administration of RV-NE2 gel showed significant reversal of arthritic symptoms in arthritic Wistar rats induced by Freund's complete adjuvant injection. Therefore, RV-NE2 gel demonstrated the potential to achieve local therapeutic benefits in inflammatory arthritic conditions due to its increased topical bioavailability and balancing of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: ; Tel.: +966-1158-86094
| | - Abdulamalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Fauzia Tabassum
- Department of Pharmacology, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Waleed H. Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Tanuja Singh
- Department of Botany, Patliputra University, Patna 800020, India
| |
Collapse
|
21
|
Ferraro A. Special Issue “Nanomaterials for Biomedical and Biotechnological Applications”. NANOMATERIALS 2022; 12:nano12111923. [PMID: 35683778 PMCID: PMC9182482 DOI: 10.3390/nano12111923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Angelo Ferraro
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Zografou, 15772 Athens, Greece
| |
Collapse
|