1
|
Liu Q, Wu W, Luo P, Yu H, Wang J, Chen R, Zhao Y. Preparation of Asymmetric Micro-Supercapacitors Based on Laser-Induced Graphene with Regulated Hydrophobicity and Hydrophilicity. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:584. [PMID: 40278450 PMCID: PMC12029501 DOI: 10.3390/nano15080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
Asymmetric micro-supercapacitors (AMSCs) with a small size and high energy density can be compatible with portable and wearable electronic devices and are capable of providing stable, long-term power supply, attracting great research interest in recent years. Here, we present a simple and rapid preparation method for AMSCs' fabrication. By regulating the hydrophilicity and hydrophobicity of coplanar laser-induced graphene (LIG) through the adjustment of the laser parameters, two electrode materials with distinct hydrophilic-hydrophobic properties were selectively deposited by sequentially dip-coating. The LIGs serve as current collectors, with activated carbon and poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) as active materials. After coating the electrolytes and folding the two electrodes, a high-performance AMSC was achieved. The device exhibits a high areal capacitance of 85.88 mF cm-2 at a current density of 0.4 mA cm-2, along with an impressive energy density of 11.93 µWh cm-2 and a good rate performance. Moreover, it is demonstrated to be highly stable in 500,000 cycles. Two AMSCs in series can supply power to an electronic clock and birthday card. The method of preparing asymmetric electrodes in the same plane greatly facilitates the large-area preparation of AMSCs and series-parallel connection, providing an excellent idea for developing high-performance miniature energy storage devices.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Q.L.); (W.W.); (P.L.); (H.Y.); (J.W.)
| | - Yang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Q.L.); (W.W.); (P.L.); (H.Y.); (J.W.)
| |
Collapse
|
2
|
Solcova O, Dlaskova M, Kastanek F. Innovative Sorbents for the Removal of Micropollutants from Water. Molecules 2025; 30:1444. [PMID: 40286024 PMCID: PMC11990518 DOI: 10.3390/molecules30071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
This review summarizes the current knowledge in the field of preparing new and/or innovative materials that can be advantageously used for the sorption of emerging pollutants from water. This paper highlights new innovative materials such as transition metal-modified biochar, zeolites, clays, carbon fibers, graphene, metal organic frameworks, and aerogels. These materials have great potential for the removal of heavy metals from water, particularly due to their large surface area, nanoscale size, and availability of various functionalities; moreover, they can easily be chemically modified and recycled. This paper not only highlights the advantages and ever-improving physicochemical properties of these new types of materials but also critically points out their shortcomings and suggests possible future directions.
Collapse
Affiliation(s)
- Olga Solcova
- Institute of Chemical Process Fundamentals ASCR, v.v.i., Rozvojová 135/1, 16500 Prague, Czech Republic; (M.D.); (F.K.)
| | | | | |
Collapse
|
3
|
Kolomijec A, Jankowski-Mihułowicz P, Węglarski M, Bailiuk N. Study on the Impact of Laser Settings on Parameters of Induced Graphene Layers Constituting the Antenna of UHF RFID LIG Transponders. SENSORS (BASEL, SWITZERLAND) 2025; 25:1906. [PMID: 40293039 PMCID: PMC11945540 DOI: 10.3390/s25061906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025]
Abstract
The aim of the research is to investigate the impact of laser operation parameters on the LIG (laser-induced graphene) process. It focuses on evaluating the feasibility of using the induced conductive layers to create antenna circuits that are dedicated to radio-frequency identification (RFID) technology. Given the specific design of textile RFIDtex transponders, applying the LIG technique to fabricate antenna modules on a flexible substrate (e.g., Kapton) opens new possibilities for integrating RFID labels with modern materials and products. The paper analyses the efficiency of energy and data transmission in the proposed innovative UHF RFIDLIG tags. The signal strength, read range, and effectiveness are estimated in the experimental setup, providing key insights into the performance of the devices. Based on the obtained results, it can be concluded that changes in laser cutting parameters, the size of the induced graphene layer, and the method of fixing the Kapton substrate significantly affect the quality of the cutting/engraving components and the conductivity of burned paths. However, these changes do not directly affect the correct operation of the RFIDLIG transponders, owing to the fact that these structures are resistant to external impacts. Nevertheless, an increased range of data readout from the RFIDLIG tags can be achieved by using graphene paths with higher conductivity. The obtained results confirm the validity of the proposed concept and provide a foundation for further research on adapting the LIG method to automated logistics, ultimately leading to the development of more versatile and innovative solutions for identification processes.
Collapse
Affiliation(s)
- Aleksandr Kolomijec
- Doctoral School, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
| | - Piotr Jankowski-Mihułowicz
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, ul. Wincentego Pola 2, 35-959 Rzeszów, Poland; (M.W.); (N.B.)
| | - Mariusz Węglarski
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, ul. Wincentego Pola 2, 35-959 Rzeszów, Poland; (M.W.); (N.B.)
| | - Nikita Bailiuk
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, ul. Wincentego Pola 2, 35-959 Rzeszów, Poland; (M.W.); (N.B.)
| |
Collapse
|
4
|
Soleimani Dinani H, Reinbolt T, Zhang B, Zhao G, Gerald RE, Yan Z, Huang J. Miniaturized Wearable Biosensors for Continuous Health Monitoring Fabricated Using the Femtosecond Laser-Induced Graphene Surface and Encapsulated Traces and Electrodes. ACS Sens 2025; 10:761-772. [PMID: 39838965 DOI: 10.1021/acssensors.4c02214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate. The femtosecond laser-converted conductive traces can have a size of 20 to 2 μm compared to the traditionally larger CO2 laser dimensions of around 300 to 100 μm. This marks a 93-98% decrease in trace size when using a femtosecond laser. This miniaturization allows for the ability to process temperature, electrocardiography (ECG), electromyography (EMG), and glucose data in the same space that would have been occupied by a single sensor. The femtosecond laser-converted graphene (FSLIG) electrodes were modified to function as glucose sensors, and comprehensive electrochemical analyses using cyclic voltammetry (CV) and chronoamperometry (CA) were performed. These tests confirmed the capability of the sensors to detect glucose levels, showing a stability of 96.14%. Encapsulation of FSLIG within polyimide was achieved for the first time, demonstrating the ability to nondestructively create FSLIG electrodes within existing materials, thereby protecting them from external environmental factors. The encapsulated FSLIG shows potential as a method to produce LIG-coated Cu traces for improved multilayered printed circuit boards or layered circuits with complex geometries in polyamide to reduce size and increase functionality. Even sterile probes for use inside the body or under dermis polyamide injections and subsequent FSLIG circuit tattoos are possible. This study demonstrates the novel miniaturization and encapsulation capabilities enabled by the femtosecond laser, developing next-generation wearable biosensors focusing on miniaturization, flexibility, continuous monitoring, multifunctionality, and comfort.
Collapse
Affiliation(s)
- Homayoon Soleimani Dinani
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Tatianna Reinbolt
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Bohong Zhang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Ganggang Zhao
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Rex E Gerald
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
5
|
Rathod S, Snowdon M, Tino MP, Peng P. Laser writing of metal-oxide doped graphene films for tunable sensor applications. NANOSCALE ADVANCES 2025; 7:766-783. [PMID: 39669520 PMCID: PMC11632522 DOI: 10.1039/d4na00463a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Flexible and wearable devices play a pivotal role in the realm of smart portable electronics due to their diverse applications in healthcare monitoring, soft robotics, human-machine interfaces, and artificial intelligence. Nonetheless, the extensive integration of intelligent wearable sensors into mass production faces challenges within a resource-limited environment, necessitating low-cost manufacturing, high reliability, stability, and multi-functionality. In this study, a cost-effective fiber laser direct writing method (fLDW) was illustrated to create highly responsive and robust flexible sensors. These sensors integrate laser-induced graphene (LiG) with mixed metal oxides on a flexible polyimide film. fLDW simplifies the synthesis of graphene, functionalization of carbon structures into graphene oxides and reduced graphene oxides, and deposition of metal-oxide nanoparticles within a single experimental laser writing setup. The preparation and surface modification of dense oxygenated graphene networks and semiconducting metal oxide nanoparticles (CuO x , ZnO x , FeO x ) enables rapid fabrication of LiG/MO x composite sensors with the ability to detect and differentiate various stimuli, including visible light, UV light, temperature, humidity, and magnetic fluxes. Further, this in situ customizability of fLDW-produced sensors allows for tunable sensitivity, response time, recovery time, and selectivity. The normalized current gain of resistive LiG/MO x sensors can be controlled between -2.7 to 3.5, with response times ranging from 0.02 to 15 s, and recovery times from 0.04 to 6 s. Furthermore, the programmable properties showed great endurance after 200 days in air and extended bend cycles. Collectively, these LiG/MO x sensors stand as a testament to the effectiveness of fLDW in economically mass-producing flexible and wearable electronic devices to meet the explicit demands of the Internet of Things.
Collapse
Affiliation(s)
- Shasvat Rathod
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Monika Snowdon
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Matthew Peres Tino
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Peng Peng
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
6
|
De Chiara B, Del Duca F, Hussain MZ, Kratky T, Banerjee P, Dummert SV, Khoshouei A, Chanut N, Peng H, Al Boustani G, Hiendlmeier L, Jinschek J, Ameloot R, Dietz H, Wolfrum B. Laser-Induced Metal-Organic Framework-Derived Flexible Electrodes for Electrochemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3772-3784. [PMID: 39762089 PMCID: PMC11744510 DOI: 10.1021/acsami.4c18243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025]
Abstract
The successful development of a metal-organic framework (MOF)-derived Co/Co3O4/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors. Comprehensive morphological, structural, and chemical analyses confirm the formation of porous LIG from the laser irradiation of polyimide, while the LIG+ZIF-67-derived composites feature size-controlled and uniformly distributed Co/Co3O4 core/shell nanoparticles (NPs) in the semihollow wasp-nest-like carbon matrix from photothermal decomposition of ZIF-67, embedded within the LIG electrode area. The high surface area and porosity of this ZIF-67-derived nitrogen-rich carbon facilitate charge transfer processes, whereas size-controlled Co/Co3O4 core/shell NPs offer accessible electrochemical active sites, making these LIG+ZIF-67-derived composite-based sensors promising materials for applications requiring high charge injection capability and low electrode/electrolyte interface impedance. The PI+Z67L sensor exhibited a 400 times higher specific capacitance (2.4 mF cm-2) compared to the PIL sensor (6 μF cm-2). This laser scribing approach enables the rapid and cost-effective fabrication of high-performance electrochemical sensors enhanced by the integration of tailored MOF-derived composites.
Collapse
Affiliation(s)
- Beatrice De Chiara
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| | - Fulvia Del Duca
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| | - Mian Zahid Hussain
- Chair
of Inorganic and Metal−Organic Chemistry, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Tim Kratky
- Physical
Chemistry with Focus on Catalysis, Department of Chemistry, School
of Natural Sciences, Technical University
of Munich, Lichtenbergstr 4, 85748 Garching, Germany
| | - Pritam Banerjee
- National
Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Sarah V. Dummert
- Chair
of Inorganic and Metal−Organic Chemistry, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ali Khoshouei
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
| | - Nicolas Chanut
- Center for
Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven, 3001 Leuven, Belgium
| | - Hu Peng
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| | - George Al Boustani
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| | - Lukas Hiendlmeier
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| | - Joerg Jinschek
- National
Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Rob Ameloot
- Center for
Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven, 3001 Leuven, Belgium
| | - Hendrik Dietz
- Laboratory
for Biomolecular Nanotechnology, Department of Biosciences, School
of Natural Sciences, Technical University
of Munich, Am Coulombwall 4a, 85748 Garching, Germany
| | - Bernhard Wolfrum
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany
| |
Collapse
|
7
|
Aftab S, Koyyada G, Mukhtar M, Kabir F, Nazir G, Memon SA, Aslam M, Assiri MA, Kim JH. Laser-Induced Graphene for Advanced Sensing: Comprehensive Review of Applications. ACS Sens 2024; 9:4536-4554. [PMID: 39284075 DOI: 10.1021/acssensors.4c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Laser-induced graphene (LIG) and Laser-scribed graphene (LSG) are both advanced materials with significant potential in various applications, particularly in the field of sustainable sensors. The practical uses of LIG (LSG), which include gas detection, biological process monitoring, strain assessment, and environmental variable tracking, are thoroughly examined in this review paper. Its tunable characteristics distinguish LIG (LSG), which is developed from accurate laser beam modulation on polymeric substrates, and they are essential in advancing sensing technologies in many applications. The recent advances in LIG (LSG) applications include energy storage, biosensing, and electronics by steadily advancing efficiency and versatility. The remarkable flexibility of LIG (LSG) and its transformative potential in regard to sensor manufacturing and utilization are highlighted in this manuscript. Moreover, it thoroughly examines the various fabrication methods used in LIG (LSG) production, highlighting precision and adaptability. This review navigates the difficulties that are encountered in regard to implementing LIG sensors and looks ahead to future developments that will propel the industry forward. This paper provides a comprehensive summary of the latest research in LIG (LSG) and elucidates this innovative material's advanced and sustainable elements.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea
| | - Ganesh Koyyada
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, School of Sciences, SR University, Warangal 506371, Telangana, India
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6 British Columbia, Canada
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul 05006, Republic of Korea
| | - Sufyan Ali Memon
- Defense Systems Engineering Sejong University, Seoul 05006, South Korea
| | - Muhammad Aslam
- Institute of Physics and Technology, Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
| | - Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Jae Hong Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Liu L, Dou Y, Wang J, Zhao Y, Kong W, Ma C, He D, Wang H, Zhang H, Chang A, Zhao P. Recent Advances in Flexible Temperature Sensors: Materials, Mechanism, Fabrication, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405003. [PMID: 39073012 PMCID: PMC11423192 DOI: 10.1002/advs.202405003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Flexible electronics is an emerging and cutting-edge technology which is considered as the building blocks of the next generation micro-nano electronics. Flexible electronics integrate both active and passive functions in devices, driving rapid developments in healthcare, the Internet of Things (IoT), and industrial fields. Among them, flexible temperature sensors, which can be directly attached to human skin or curved surfaces of objects for continuous and stable temperature measurement, have attracted much attention for applications in disease prediction, health monitoring, robotic signal sensing, and curved surface temperature measurement. Preparing flexible temperature sensors with high sensitivity, fast response, wide temperature measurement interval, high flexibility, stretchability, low cost, high reliability, and stability has become a research target. This article reviewed the latest development of flexible temperature sensors and mainly discusses the sensitive materials, working mechanism, preparation process, and the applications of flexible temperature sensors. Finally, conclusions based on the latest developments, and the challenges and prospects for research in this field are presented.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yingying Dou
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Junhua Wang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Yan Zhao
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Wenwen Kong
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Chaoyan Ma
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Donglin He
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Hongguang Wang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Huimin Zhang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Aimin Chang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Pengjun Zhao
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| |
Collapse
|
9
|
Zhong H, Lu X, Yang R, Pan Y, Lin J, Kim M, Chen S, Li MG. Seeing Through Muddy Water: Laser-Induced Graphene for Portable Tomography Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406905. [PMID: 39007503 PMCID: PMC11425229 DOI: 10.1002/advs.202406905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Due to its outstanding physical and chemical properties, graphene synthesized by laser scribing on polyimide (PI) offers excellent opportunities for photothermal applications, antiviral and antibacterial surfaces, and electrochemical storage and sensing. However, the utilization of such graphene for imaging is yet to be explored. Herein, using chemically durable and electrically conductive laser-induced graphene (LIG) for tomography imaging in aqueous suspensions is proposed. These graphene electrodes are designed as impedance imaging units for four-terminal electrical measurements. Using the real-time portable imaging prototypes, the conductive and dielectric objects can be seen in clear and muddy water with equivalent impedance modeling. This low-cost graphene tomography measurement system offers significant advantages over traditional visual cameras, in which the suspended muddy particles hinder the imaging resolution. This research shows the potential of applying graphene nanomaterials in emerging marine technologies, such as underwater robotics and automatic fisheries.
Collapse
Affiliation(s)
- Haosong Zhong
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xupeng Lu
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rongliang Yang
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yexin Pan
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jing Lin
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Minseong Kim
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Siyu Chen
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Mitch Guijun Li
- Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Ghosh A, Kaur S, Verma G, Dolle C, Azmi R, Heissler S, Eggeler YM, Mondal K, Mager D, Gupta A, Korvink JG, Wang DY, Sharma A, Islam M. Enhanced Performance of Laser-Induced Graphene Supercapacitors via Integration with Candle-Soot Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39052020 DOI: 10.1021/acsami.4c07094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Laser-induced graphene (LIG) has been emerging as a promising electrode material for supercapacitors due to its cost-effective and straightforward fabrication approach. However, LIG-based supercapacitors still face challenges with limited capacitance and stability. To overcome these limitations, in this work, we present a novel, cost-effective, and facile fabrication approach by integrating LIG materials with candle-soot nanoparticles. The composite electrode is fabricated by laser irradiation on a Kapton sheet to generate LIG material, followed by spray-coating with candle-soot nanoparticles and annealing. Materials characterization reveals that the annealing process enables a robust connection between the nanoparticles and the LIG materials and enhances nanoparticle graphitization. The prepared supercapacitor yields a maximum specific capacitance of 15.1 mF/cm2 at 0.1 mA/cm2, with a maximum energy density of 2.1 μWh/cm2 and a power density of 50 μW/cm2. Notably, the synergistic activity of candle soot and LIG surpasses the performances of previously reported LIG-based supercapacitors. Furthermore, the cyclic stability of the device demonstrates excellent capacitance retention of 80% and Coulombic efficiency of 100% over 10000 cycles.
Collapse
Affiliation(s)
- Arnab Ghosh
- IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid Spain
| | - Sukhman Kaur
- Mechanical Engineering Department, Punjab Engineering College, Sector 12, Chandigarh, 160012, India
| | - Gulshan Verma
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Christian Dolle
- Microscopy of Nanoscale Structures and Mechanisms (MNM), Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology, Engesserstr. 7, D-76131 Karlsruhe, Germany
| | - Raheleh Azmi
- Institut für Angewandte Materialien, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Heissler
- Institut für Funktionelle Grenzflächen, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yolita M Eggeler
- Microscopy of Nanoscale Structures and Mechanisms (MNM), Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology, Engesserstr. 7, D-76131 Karlsruhe, Germany
| | - Kunal Mondal
- Idaho National Laboratory, 1955 North Fremont Avenue, Idaho Falls, Idaho 83415, United States
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - De-Yi Wang
- IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid Spain
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Monsur Islam
- IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid Spain
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Chaitoglou S, Klini A, Papakosta N, Ma Y, Amade R, Loukakos P, Bertran-Serra E. Processing and Functionalization of Vertical Graphene Nanowalls by Laser Irradiation. J Phys Chem Lett 2024; 15:3779-3784. [PMID: 38552645 PMCID: PMC11017314 DOI: 10.1021/acs.jpclett.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
The processing of vertical graphene nanowalls (VGNWs) via laser irradiation is proposed as a means to modulate their physicochemical properties. The effects of the number of applied pulses and fluence of each pulse are examined. Raman spectroscopy studies the effect of irradiation on the chemical structure of the VGNWs. Results show a decrease in density of defects and number of layers, which points toward a mechanism including evaporation of amorphous or loosely bonded C from defective points and recrystallization of graphene. Moreover, the effect of laser irradiation parameters on the morphology of Mo thin films deposited on VGNWs is investigated. The received thermal dosage results in the formation of particles. In this case, the number of pulses and pulse fluence are found to affect the size and distribution of these particles. The study provides a novel approach for the functionalization of VGNWs via laser irradiation, which can be extended to other graphene-based nanostructures.
Collapse
Affiliation(s)
- Stefanos Chaitoglou
- Department
of Applied Physics, University of Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Catalonia, Spain
- ENPHOCAMAT
Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Argyro Klini
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology—Hellas, 70013 Heraklion, Greece
| | - Nikandra Papakosta
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology—Hellas, 70013 Heraklion, Greece
| | - Yang Ma
- Department
of Applied Physics, University of Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Catalonia, Spain
- ENPHOCAMAT
Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Roger Amade
- Department
of Applied Physics, University of Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Catalonia, Spain
- ENPHOCAMAT
Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Panagiotis Loukakos
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology—Hellas, 70013 Heraklion, Greece
| | - Enric Bertran-Serra
- Department
of Applied Physics, University of Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Catalonia, Spain
- ENPHOCAMAT
Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Reyes-Loaiza V, De La Roche J, Hernandez-Renjifo E, Idárraga O, Da Silva M, Valencia DP, Ghneim-Herrera T, Jaramillo-Botero A. Laser-induced graphene electrochemical sensor for quantitative detection of phytotoxic aluminum ions (Al 3+) in soils extracts. Sci Rep 2024; 14:5772. [PMID: 38459204 PMCID: PMC10923804 DOI: 10.1038/s41598-024-56212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
Aluminum in its Al3+ form is a metal that inhibits plant growth, especially in acidic soils (pH < 5.5). Rapid and accurate quantitative detection of Al3+ in agricultural soils is critical for the timely implementation of remediation strategies. However, detecting metal ions requires time-consuming preparation of samples, using expensive instrumentation and non-portable spectroscopic techniques. As an alternative, electrochemical sensors offer a cost-effective and minimally invasive approach for in situ quantification of metal ions. Here, we developed and validated an electrochemical sensor based on bismuth-modified laser-induced graphene (LIG) electrodes for Al3+ quantitative detection in a range relevant to agriculture (1-300 ppm). Our results show a linear Al3+ detection range of 1.07-300 ppm with a variation coefficient of 5.3%, even in the presence of other metal ions (Pb2+, Cd2+, and Cu2+). The sensor offers a limit of detection (LOD) of 0.34 ppm and a limit of quantification (LOQ) of 1.07 ppm. We compared its accuracy for soil samples with pH < 4.8 to within 89-98% of spectroscopic methods (ICP-OES) and potentiometric titration. This technology's portability, easy to use, and cost-effectiveness make it a promising candidate for in situ quantification and remediation of Al3+ in agricultural soils and other complex matrices.
Collapse
Affiliation(s)
- Vanessa Reyes-Loaiza
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
| | - Jhonattan De La Roche
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
| | - Erick Hernandez-Renjifo
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
| | - Orlando Idárraga
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
- Department of Natural and Exact Sciences, Universidad del Valle, Cali, Valle del Cauca, 760031, Colombia
| | - Mayesse Da Silva
- Multifunctional Landscapes, Alliance Bioversity-CIAT, Cali-Palmira, Valle del Cauca, 763537, Colombia
| | - Drochss P Valencia
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
| | - Thaura Ghneim-Herrera
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
- Department of Biological Sciences, Universidad ICESI, Cali, Valle del Cauca, 760031, Colombia
| | - Andres Jaramillo-Botero
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia.
- Chemistry and Chemical Engineering Division, California Institute of Technology, 1200 E California Blvd, Mail Code 139-74, Pasadena, CA, 91125, USA.
| |
Collapse
|
13
|
Antunes M. Application of Graphene-Based Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2748. [PMID: 37887899 PMCID: PMC10609724 DOI: 10.3390/nano13202748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023]
Abstract
This Topic on the "Application of Graphene-Based Materials", which consists of a total of twenty-six articles, including two review articles, written by research groups of experts in the field, considers the most recent research and trends on the synthesis and characterization of graphene-based materials, including nanohybrids, intended for a vast array of high-demanding technological applications, namely batteries/fuel cells, aerogels, laser technology, sensors, electronic/magnetic devices, catalysts, etc [...].
Collapse
Affiliation(s)
- Marcelo Antunes
- Department of Materials Science and Engineering, Poly2 Group, Technical University of Catalonia (UPC BarcelonaTech), ESEIAAT, C/Colom 11, 08222 Terrassa, Spain
| |
Collapse
|
14
|
Liu H, Chen K, Wu R, Pan S, Zhang C. Laser-Induced Graphene-based Flexible Substrate with Photothermal Conversion and Photoresponse Performance on Polyimide Film. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46550-46558. [PMID: 37734037 DOI: 10.1021/acsami.3c10729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Graphene-based flexible electronic devices are widely used in photoelectric components and photodetectors. However, it remains a huge challenge to fabricate graphene-based flexible devices efficiently and economically. Compared with the flexible electronic devices made by combining the flexible film with metal and semiconductor materials, the graphene-based flexible substrate (GFS) can be efficiently and conveniently induced by laser direct writing on the flexible film. In this paper, the GFS with a resistance of as low as 15 Ω was successfully induced by CO2 laser on a polyimide (PI) film in one step, and the GFS surface covered with carbon nanoparticles (GFSC) with a resistance of 25 Ω was further induced by femtosecond (fs) laser reprocessing. Benefiting from the laser-induced porous graphene structure, the absorptivity of GFS is up to 90% in the wavelength range of 200-2000 nm. The formation of carbon nanoparticles on the GFSC surface further improves the absorptivity to 97.5% in a wide spectral range. Under white light irradiation of 1 sun, the surface temperature of GFS reaches 65.7 °C and that of GFSC is up to 70.8 °C within 2 min. Under the irradiation of a light-emitting diode (LED) with a central wavelength of 365 nm, the highest photoresponsivity of GFS and GFSC was 8.8 and 1.3 mA/W, respectively. The response time and recovery time of GFS are 8 and 7.3 s, and those of GFSC are 8.3 and 6.7 s, respectively. Importantly, GFSC has a more stable photoresponse performance due to the better electron capture and transfer capability of carbon nanoparticles. It is believed that GFS and GFSC have great application potential in flexible photodetectors and sensors.
Collapse
Affiliation(s)
- Haiwen Liu
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Kaishen Chen
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Runmin Wu
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Shusheng Pan
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School, Guangzhou University, Guangzhou 510555, China
- Education Department of Guangdong Province, Key Lab of Si-based Information Materials & Devices and Integrated Circuits Design, Guangzhou 510006, China
| | - Chengyun Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School, Guangzhou University, Guangzhou 510555, China
- Education Department of Guangdong Province, Key Lab of Si-based Information Materials & Devices and Integrated Circuits Design, Guangzhou 510006, China
| |
Collapse
|
15
|
Bressi AC, Dallinger A, Steksova Y, Greco F. Bioderived Laser-Induced Graphene for Sensors and Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37471123 PMCID: PMC10401514 DOI: 10.1021/acsami.3c07687] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The maskless and chemical-free conversion and patterning of synthetic polymer precursors into laser-induced graphene (LIG) via laser-induced pyrolysis is a relatively new but growing field. Bioderived precursors from lignocellulosic materials can also be converted to LIG, opening a path to sustainable and environmentally friendly applications. This review is designed as a starting point for researchers who are not familiar with LIG and/or who wish to switch to sustainable bioderived precursors for their applications. Bioderived precursors are described, and their performances (mainly crystallinity and sheet resistance of the obtained LIG) are compared. The three main fields of application are reviewed: supercapacitors and electrochemical and physical sensors. The key advantages and disadvantages of each precursor for each application are discussed and compared to those of a benchmark of polymer-derived LIG. LIG from bioderived precursors can match, or even outperform, its synthetic analogue and represents a viable and sometimes better alternative, also considering its low cost and biodegradability.
Collapse
Affiliation(s)
- Anna Chiara Bressi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alexander Dallinger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
| | - Yulia Steksova
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Francesco Greco
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
- Interdisciplinary Center on Sustainability and Climate, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
16
|
Bokobza L. Elastomer Nanocomposites: Effect of Filler-Matrix and Filler-Filler Interactions. Polymers (Basel) 2023; 15:2900. [PMID: 37447545 DOI: 10.3390/polym15132900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The reinforcement of elastomers is essential in the rubber industry in order to obtain the properties required for commercial applications. The addition of active fillers in an elastomer usually leads to an improvement in the mechanical properties such as the elastic modulus and the rupture properties. Filled rubbers are also characterized by two specific behaviors related to energy dissipation known as the Payne and the Mullins effects. The Payne effect is related to non-linear viscoelastic behavior of the storage modulus while the Mullins or stress-softening effect is characterized by a lowering in the stress when the vulcanizate is extended a second time. Both effects are shown to strongly depend on the interfacial adhesion and filler dispersion. The basic mechanisms of reinforcement are first discussed in the case of conventional rubber composites filled with carbon black or silica usually present in the host matrix in the form of aggregates and agglomerates. The use of nanoscale fillers with isotropic or anisotropic morphologies is expected to yield much more improvement than that imparted by micron-scale fillers owing to the very large polymer-filler interface. This work reports some results obtained with three types of nanoparticles that can reinforce rubbery matrices: spherical, rod-shaped and layered fillers. Each type of particle is shown to impart to the host medium a specific reinforcement on account of its own structure and geometry. The novelty of this work is to emphasize the particular mechanical behavior of some systems filled with nanospherical particles such as in situ silica-filled poly(dimethylsiloxane) networks that display a strong polymer-filler interface and whose mechanical response is typical of double network elastomers. Additionally, the potential of carbon dots as a reinforcing filler for elastomeric materials is highlighted. Different results are reported on the reinforcement imparted by carbon nanotubes and graphenic materials that is far below their expected capability despite the development of various techniques intended to reduce particle aggregation and improve interfacial bonding with the host matrix.
Collapse
Affiliation(s)
- Liliane Bokobza
- Independent Researcher, 194-196 Boulevard Bineau, 92200 Neuilly-Sur-Seine, France
| |
Collapse
|
17
|
Baachaoui S, Mabrouk W, Rabti A, Ghodbane O, Raouafi N. Laser-induced graphene electrodes scribed onto novel carbon black-doped polyethersulfone membranes for flexible high-performance microsupercapacitors. J Colloid Interface Sci 2023; 646:1-10. [PMID: 37178610 DOI: 10.1016/j.jcis.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
A facile and expandable methodology was successfully developed to fabricate laser-induced graphene from novel pristine aminated polyethersulfone (amPES) membranes. The as-prepared materials were applied as flexible electrodes for microsupercapacitors. The doping of amPES membranes with various weight percentages of carbon black (CB) microparticles was then performed to improve their energy storage performance. The lasing process allowed the formation of sulfur- and nitrogen-codoped graphene electrodes. The effect of electrolyte on the electrochemical performance of as-prepared electrodes was investigated and the specific capacitance was significantly enhanced in 0.5 M HClO4. Remarkably, the highest areal capacitance of 47.3 mF·cm-2 was achieved at a current density of 0.25 mA·cm-2. This capacitance is approximately 12.3 times higher than the average value for commonly used polyimide membranes. Furthermore, the energy and power densities were as high as 9.46 µWh·cm-2 and 0.3 mW·cm-2 at 0.25 mA·cm-2, respectively. The galvanostatic charge-discharge experiments confirmed the excellent performance and stability of amPES membranes during 5,000 cycles, where more than 100% of capacitance retention was achieved and the coulombic efficiency was improved up to 96.67%. Consequently, the fabricated CB-doped PES membranes offer several advantages including low carbon fingerprint, cost-effectiveness, high electrochemical performance and potential applications in wearable electronic systems.
Collapse
Affiliation(s)
- Sabrine Baachaoui
- University of Tunis El Manar, Chemistry Department, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Tunis El Manar 2092, Tunisia
| | - Walid Mabrouk
- CERTE, Laboratory Water, Membranes and Environmental Biotechnology, Water Research and Technologies Center, Technologic Park Borj Cedria, BP 273, Soliman 8020, Tunisia
| | - Amal Rabti
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LMTA), Biotechpole Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Ouassim Ghodbane
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LMTA), Biotechpole Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Noureddine Raouafi
- University of Tunis El Manar, Chemistry Department, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Tunis El Manar 2092, Tunisia.
| |
Collapse
|
18
|
Zhou M, Liu L, Liu J, Mei Z. Prediction and Control of Thermal Transport at Defective State Gr/ h-BN Heterojunction Interfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091462. [PMID: 37177007 PMCID: PMC10179821 DOI: 10.3390/nano13091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023]
Abstract
The control of interfacial thermal conductivity is the key to two-dimensional heterojunction in semiconductor devices. In this paper, by using non-equilibrium molecular dynamics (NEMD) simulations, we analyze the regulation of interfacial thermal energy transport in graphene (Gr)/hexagonal boron nitride (h-BN) heterojunctions and reveal the variation mechanism of interfacial thermal energy transport. The calculated results show that 2.16% atomic doping can effectively improve interfacial heat transport by more than 15.6%, which is attributed to the enhanced phonon coupling in the mid-frequency region (15-25 THz). The single vacancy in both N and B atoms can significantly reduce the interfacial thermal conductivity (ITC), and the ITC decreases linearly with the increase in vacancy defect concentration, mainly due to the single vacancy defects leading to an increased phonon participation rate (PPR) below 0.4 in the low-frequency region (0-13 THz), which shows the phonon the localization feature, which hinders the interfacial heat transport. Finally, a BP neural network algorithm is constructed using machine learning to achieve fast prediction of the ITC of Gr/h-BN two-dimensional heterogeneous structures, and the results show that the prediction error of the model is less than 2%, and the method will provide guidance and reference for the design and optimization of the ITC of more complex defect-state heterogeneous structures.
Collapse
Affiliation(s)
- Mingjian Zhou
- School of Mechanical Engineering, Chaohu University, Chaohu 238000, China
| | - Liqing Liu
- School of Mechanical Engineering, Chaohu University, Chaohu 238000, China
| | - Jiahao Liu
- School of Mechanical Engineering, Chaohu University, Chaohu 238000, China
| | - Zihang Mei
- School of Mechanical Engineering, Chaohu University, Chaohu 238000, China
| |
Collapse
|
19
|
Abd Elhamid AEM, Shawkey H, Khalil AA, Azzouz IM. Collaborated nanosecond lasers processing of crude graphene oxide for superior supercapacitive performance. JOURNAL OF ENERGY STORAGE 2023; 60:106669. [DOI: 10.1016/j.est.2023.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Li J, Yin J, Ramakrishna S, Ji D. Smart Mask as Wearable for Post-Pandemic Personal Healthcare. BIOSENSORS 2023; 13:205. [PMID: 36831971 PMCID: PMC9953568 DOI: 10.3390/bios13020205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A mask serves as a simple external barrier that protects humans from infectious particles from poor air conditions in the surrounding environment. As an important personal protective equipment (PPE) to protect our respiratory system, masks are able not only to filter pathogens and dust particles but also to sense, reflect or even respond to environmental conditions. This smartness is of particular interest among academia and industries due to its potential in disease detection, health monitoring and caring aspects. In this review, we provide an overlook of the current air filtration strategies used in masks, from structural designs to integrated functional modules that empower the mask's ability to sense and transfer physiological or environmental information to become smart. Specifically, we discussed recent developments in masks designed to detect macroscopic physiological signals from the wearer and mask-based disease diagnoses, such as COVID-19. Further, we propose the concept of next-generation smart masks and the requirements from material selection and function design perspectives that enable masks to interact and play crucial roles in health-caring wearables.
Collapse
Affiliation(s)
- Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117081, Singapore
| | - Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117081, Singapore
| | - Dongxiao Ji
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|