1
|
Rahiman N, Kesharwani P, Karav S, Sahebkar A. Curcumin-based nanofibers: A promising approach for cancer therapy. Pathol Res Pract 2024; 266:155791. [PMID: 39742832 DOI: 10.1016/j.prp.2024.155791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Nanofibers are among the promising platforms for efficient delivery of drugs (both hydrophilic and hydrophobic) through harnessing polymers with different natures as their base. Hydrophobic low-solubility agents such as curcumin could be incorporated in various types of electrospun nanofibers for different aims in drug delivery, such as enhancing its solubility, making this agent sustained release with improved pharmacological efficacy. Through using this nanoplatform, curcumin may become more bioavailable and more efficcious in the field of cancer therapy as well as tissue engineering and wound healing for local delivery of this anti-inflammatory and antioxidant agent. In this review, the characteristics of curcumin-loaded nanofibers, their targeting potential or stimuli-responsiveness accompanied with therapeutic anti-cancerous applications of them (mostly in local application) are securitized. These nanofibers follow the aim of enhancing curcumin's therapeutic effectiveness and release profile. We laso elaborate on the mechanisms of action through which curcumin exerts its effect on various cancerous cells after its incorporation in various types of nanofibers which have been prepared by exploiting different polymers.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Sharma G, Saini SK, Mulchandani K, Bheemaraju A, Lal C. Investigation of ultrafast carrier dynamics in curcumin dye for environment friendly dye-sensitized solar cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121175-121181. [PMID: 37950128 DOI: 10.1007/s11356-023-30668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Natural dyes have been widely employed in the fabrication of dye-sensitized solar cells (DSSCs). DSSCs are favored for their cost-effective, and simple fabrication process relies on metal-based and organic dyes. The choice of dyes greatly affects the performance of DSSCs. DSSCs have found a lot of applications in indoor, solar power gadgets with reasonable efficiency up to 13%. Nonetheless, despite advances in DSSC technology, the complex photophysics and excited state dynamics associated with natural dyes employed in DSSCs remain elusive and have not been adequately investigated. This information gap emphasizes the need for more study and analysis into the behavior of these dyes, since understanding their underlying principles might lead to major improvements in DSSC performance and efficiency. In this work, we have investigated the fundamental characteristics and excited-state carrier dynamics of natural dye curcumin using ultrafast transient absorption (TA) spectroscopy technique. The curcumin dye shows delay time-dependent positive and negative signals in the TA spectra, which are related to excited state absorption and stimulated emission. We also found that hydrogen bonding and polarity effect of solvent significantly influence the carrier dynamics of curcumin. Ultrafast lifetime component indicates that hydrogen-bond rearrangements are involved in the kinetics of the relaxation process of the S1 state of curcumin photo-sensitizer.
Collapse
Affiliation(s)
- Govind Sharma
- Department of Physics, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India
- Department of Physics, Rajiv Gandhi Govt. P.G. College, Mandsaur (M.P.), 458001, India
| | - Saurabh K Saini
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Komal Mulchandani
- Department of Physics, Rajiv Gandhi Govt. P.G. College, Mandsaur (M.P.), 458001, India
| | - Amarnath Bheemaraju
- Department of Applied Sciences, School of Engineering and Technology, BML University, Gurgaon Sidhrawali, Haryana, 122413, India
| | - Chhagan Lal
- Department of Physics, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
- Centre for Non-Conventional Energy Resources, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India.
| |
Collapse
|
3
|
Su X, Zhai Y, Jia C, Xu Z, Luo D, Pan Z, Xiang H, Yu S, Zhu L, Zhu M. Improved Antibacterial Properties of Polylactic Acid-Based Nanofibers Loaded with ZnO-Ag Nanoparticles through Pore Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42920-42929. [PMID: 37650731 DOI: 10.1021/acsami.3c06791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In the post-epidemic era, bio-based protective fiber materials with active protective functions are of utmost importance, not only to combat the spread of pathogens but also to reduce the environmental impact of petroleum-based protective materials. Here, efficient antibacterial polylactic acid-based (PLA-based) fibers are prepared by solution blow spinning and their pore structures are regulated by controlling the ratio of the solvent components in the spinning solutions. The porous PLA-based fibers exhibit antibacterial efficiencies of over 99% against Escherichia coli and over 98% against Bacillus subtilis, which are significantly higher than that of the nonporous PLA-based fibers. The excellent antibacterial property of the porous PLA-based fibers can be attributed to their high porosity, which allows antibacterial nanoparticles to be released more easily from the fibers, thus effectively killing pathogenic microorganisms. Moreover, pore structure regulation can also enhance the mechanical property of the PLA-based fiber materials. Our approach of regulating the microstructure and properties of the PLA-based fibers through pore engineering can be extended to other polymer fiber materials and is suitable for polymer-based composite systems that require optimal performance through sufficient exposure of doped materials.
Collapse
Affiliation(s)
- Xiaolong Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaling Zhai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhe Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dianfeng Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyi Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Liu C, Dong S, Wang X, Xu H, Liu C, Yang X, Wu S, Jiang X, Kan M, Xu C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater Today Bio 2023; 21:100729. [PMID: 37529216 PMCID: PMC10387615 DOI: 10.1016/j.mtbio.2023.100729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Infectious disease is one of the top 10 causes of death worldwide, especially in low-income countries. The extensive use of antibiotics has led to an increase in antibiotic resistance, which poses a critical threat to human health globally. Natural products such as polyphenolic compounds and their derivatives have been shown the positive therapeutic effects in antibacterial therapy. However, the inherent physicochemical properties of polyphenolic compounds and their derivatives limit their pharmaceutical effects, such as short half-lives, chemical instability, low bioavailability, and poor water solubility. Nanoformulations have shown promising advantages in improving antibacterial activity by controlling the release of drugs and enhancing the bioavailability of polyphenols. In this review, we listed the classification and antibacterial mechanisms of the polyphenolic compounds. More importantly, the nanoformulations for the delivery of polyphenols as the antibacterial agent were summarized, including different types of nanoparticles (NPs) such as polymer-based NPs, metal-based NPs, lipid-based NPs, and nanoscaffolds such as nanogels, nanofibers, and nanoemulsions. At the same time, we also presented the potential biological applications of the nano-system to enhance the antibacterial ability of polyphenols, aiming to provide a new therapeutic perspective for the antibiotic-free treatment of infectious diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
5
|
Seyhan SA, Alkaya DB, Cesur S, Sahin A. Investigation of the antitumor effect on breast cancer cells of the electrospun amygdalin-loaded poly(l-lactic acid)/poly(ethylene glycol) nanofibers. Int J Biol Macromol 2023; 239:124201. [PMID: 37001771 DOI: 10.1016/j.ijbiomac.2023.124201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
In this study, PLA/PEG nanofibers (NFs) loaded with amygdalin (AMG) and bitter almond kernels extract were produced by electrospinning to prevent local breast cancer recurrence, and the effect of produced NFs on the MCF-7 cell line was investigated in vitro. The electrospun NFs were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis (DSC) and tensile strength and physical analyzes were performed. Loading of AMG to nanofibers increased fiber diameters from 827.93 ± 174.507 nm to 1855.32 ± 291.057 μm. When drug release results were analyzed, the NFs showed a controlled release profile extending up to 10 h. The encapsulation efficiency of AMG-loaded NFs was calculated at 100 ± 0,01 %, 94 ± 0,02 %, and 88 ± 0,02 %. When in vitro cytotoxicity results were analyzed, showed that all NFs are effective in inducing cytotoxicity against MCF-7 breast cancer cells. Importantly, 20 mg AMG-loaded NFs displayed effectively higher cytotoxic effects against breast cancer cells relative to the other NFs. Considering all the results, AMG-loaded NFs can give sustained release of drugs at the local sites. Therefore, AMG-loaded nanofibers can reduce the risk of local recurrence of cancer after surgery and can be directly implanted into solid tumor cells for treatment.
Collapse
|
6
|
Pan L, Yang J, Xu L. Preparation and Characterization of Simvastatin-Loaded PCL/PEG Nanofiber Membranes for Drug Sustained Release. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217158. [PMID: 36363985 PMCID: PMC9656846 DOI: 10.3390/molecules27217158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023]
Abstract
Simvastatin (SIM) particles are liposoluble drugs with large particle sizes, resulting in poor compatibility with electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) nanofibers, so that part of them will be exposed to the electrospun nanofiber surface, which is easy to cause the burst release of drugs. Therefore, in this paper, stearic acid (SA) with good biocompatibility was innovatively added to increase the dispersion uniformity of SIM in the spinning solution, thus improving the performances of SIM-loaded PCL/PEG nanofiber membranes (NFMs). Accordingly, the effects of SA addition on the morphologies, mechanical properties, wettability, and drug release properties of the SIM-loaded NFMs were studied. The results showed that after SIM was dissolved in SA solution, the particle size of SIM was significantly reduced and could be evenly dispersed in the polymer spinning solution, thus obtaining the SIM-loaded composite NFMs with the best morphology and performance.
Collapse
|
7
|
Mitra S, Mateti T, Ramakrishna S, Laha A. A Review on Curcumin-Loaded Electrospun Nanofibers and their Application in Modern Medicine. JOM (WARRENDALE, PA. : 1989) 2022; 74:3392-3407. [PMID: 35228788 PMCID: PMC8867693 DOI: 10.1007/s11837-022-05180-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/23/2022] [Indexed: 05/04/2023]
Abstract
Herbal drugs are safe and show significantly fewer side effects than their synthetic counterparts. Curcumin (an active ingredient primarily found in turmeric) shows therapeutic properties, but its commercial use as a medication is unrealized, because of doubts about its potency. The literature reveals that electrospun nanofibers show simplicity, efficiency, cost, and reproducibility compared to other fabricating techniques. Forcespinning is a new technique that minimizes limitations and provides additional advantages to electrospinning. Polymer-based nanofibers-whose advantages lie in stability, solubility, and drug storage-overcome problems related to drug delivery, like instability and hydrophobicity. Curcumin-loaded polymer nanofibers show potency in healing diabetic wounds in vitro and in vivo. The release profiles, cell viability, and proliferation assays substantiate their efficacy in bone tissue repair and drug delivery against lung, breast, colorectal, squamous, glioma, and endometrial cancer cells. This review mainly discusses how polymer nanofibers interact with curcumin and its medical efficacy.
Collapse
Affiliation(s)
- Souradeep Mitra
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104 Udupi, Karnataka India
| | - Tarun Mateti
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104 Udupi, Karnataka India
| | - Seeram Ramakrishna
- Center of Nanofibers and Nanotechnology, National University of Singapore, Singapore, 117581 Singapore
| | - Anindita Laha
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104 Udupi, Karnataka India
| |
Collapse
|
8
|
Fan T, Daniels R. Preparation and Characterization of Electrospun Polylactic Acid (PLA) Fiber Loaded with Birch Bark Triterpene Extract for Wound Dressing. AAPS PharmSciTech 2021; 22:205. [PMID: 34286391 PMCID: PMC8292269 DOI: 10.1208/s12249-021-02081-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Drug-loaded electrospun fibers have attracted increasing attention as a promising wound dressing material due to their capability of preventing from infections and inflammation and maintaining an appropriate environment for wound healing. In this study, polylactic acid (PLA), which is widely used in wound management, was chosen as electrospinnable polymer. A triterpene extract (TE) from the outer bark of birch known for its anti-inflammatory, antiviral, antibacterial, and wound healing effects was chosen to produce TE-loaded PLA electrospun fibers for wound dressing. A binary solvent system of dichloromethane (DCM) and dimethyl sulfoxide (DMSO) was employed, and the ratio of the solvents was optimized for preparing smooth and uniform fibers. The morphology of TE-loaded PLA electrospun fibers was investigated by scanning electron microscopy (SEM). The entrapment of TE in PLA fibers was confirmed by confocal laser scanning microscopy (CLSM). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to analyze the solid state of TE in PLA fibers. The release behavior of TE was assayed by a shaking flask method for a period of 96 h. The results revealed that TE-loaded electrospun PLA microfibers could be reliably prepared and are promising future candidates in wound therapy.
Collapse
|
9
|
Sludge Fiber Waste and Kraft Lignin Powder as Fillers in Polylactic Acid Biocomposites: Physical, Mechanical, and Thermal Properties. Polymers (Basel) 2021; 13:polym13050672. [PMID: 33668081 PMCID: PMC7956680 DOI: 10.3390/polym13050672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
In this investigation, sludge fibre waste (SFW) and Kraft lignin powder (KLP) are introduced into polylactic acid (PLA) matrix biocomposites. These alternative materials allow for both the reuse of fibre waste from paper mill sludge and a reduction in the amount of high-cost biopolymer used in the same volume. Proportions from 10 to 40 wt.% of SFW with the addition of 2.5% and 5% of KLP are incorporated in PLA by extrusion and injection moulding. The thermogravimetric properties, water absorption, tensile and flexural properties, and morphology of the fabricated biocomposites were investigated. According to the results, KLP contributes to thermically stabilising the loss resulting from the incorporation of SFW. Flexural and tensile tests reveal a more pronounced decrease in strength with an SFW ratio above 10%. The modulus of elasticity increases significantly with an SFW ratio above 20%. The strength properties are stabilised with the addition of 5% KLP. The addition of KLP presents a tendency to reduce water absorption obtained by the incorporation of SFW into biocomposites. Scanning electron micrographs evidence that KLP improves the interfacial adhesion by reducing the voids between fibres and PLA.
Collapse
|
10
|
Shoueir KR, El-Desouky N, Rashad MM, Ahmed MK, Janowska I, El-Kemary M. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int J Biol Macromol 2021; 167:1176-1197. [PMID: 33197477 DOI: 10.1016/j.ijbiomac.2020.11.072] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in the synthesis, properties, and applications of chitosan as the second after cellulose available biopolymer in nature were discussed in this review. A general overview of processing and production procedures from A to Z was highlighted. Chitosan exists in three polymorphic forms which differ in degree of crystallinity (α, β, and γ). Thus, the degree of deacetylation, crystallinity, surface area, and molecular mass significantly affect most applications. Otherwise, the synthesis of chitosan nanofibers is suffering from many drawbacks that were recently treated by co-electrospun with other polymers such as polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polycaprolactone (PCL). Ultimately, this review focuses on the area of new trend utilization of chitosan nanoparticles as nanospheres and nanocapsules, in cartilage and bone regenerative medicine. Owing to its biocompatibility, bioavailability, biodegradability, and costless synthesis, chitosan is a promising biopolymeric structure for water remediation, drug delivery, antimicrobials, and tissue engineering.
Collapse
Affiliation(s)
- Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg, France.
| | - Nagwa El-Desouky
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Moataz M Rashad
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Izabela Janowska
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg, France
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Pharos University, Alexandria, Egypt.
| |
Collapse
|
11
|
Preparation and Characterization of Nano-Laponite/PLGA Composite Scaffolds for Urethra Tissue Engineering. Mol Biotechnol 2020; 62:192-199. [PMID: 32016781 DOI: 10.1007/s12033-020-00237-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to construct a biomimetic urethral repair substitute. The nano-Laponite/polylactic acid-glycolic acid copolymer (PLGA) fiber scaffolds were produced to replicate the natural human urethra tissue microenvironment. PLGA (molar ratio 50:50) and Laponite were used in this study as raw materials. The nano-Laponite/PLGA scaffolds were fabricated via electrospinning technology. After preparing the material, the microstructural and mechanical properties of the nano-Laponite/PLGA scaffold were tested via scanning electron microscopy and electronic universal testing. The effects of different amounts of Laponite on the degradation of the nano-Laponite/PLGA scaffold were studied. Human umbilical vein endothelial cells (HUVECs) were co-cultured with PLGA and nano-Laponite/PLGA scaffolds for 24, 48, or 72 h. Scanning electron microscopy results illustrated that the microstructure of the scaffold fabricated by electrospinning was similar to that of the natural extracellular matrix. When the electrospinning liquid contained 10% Laponite, the nano-Laponite/PLGA stress-strain curve illustrated that the scaffold has strong elastic deformation ability. HUVECs exhibited good growth on the nano-Laponite/PLGA scaffold. When the scaffold contained 1% Laponite, the cell proliferation rate in the CCK-8 test was significantly better than that for the other three materials, displaying good cell culture characteristics. The 1% nano-Laponite/PLGA composite scaffold can be used as a suitable urethral repair material, but its performance requires further development and research.
Collapse
|
12
|
Electrospun Nanomaterials: Applications in Food, Environmental Remediation, and Bioengineering. NANOMATERIALS 2020; 10:nano10091714. [PMID: 32872555 PMCID: PMC7559815 DOI: 10.3390/nano10091714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
Among the large number of methods to fabricate nanofibers[…] .
Collapse
|
13
|
Liu Y, Jiang S, Yan W, He M, Qin J, Qin S, Yu J. Crystallization Morphology Regulation on Enhancing Heat Resistance of Polylactic Acid. Polymers (Basel) 2020; 12:polym12071563. [PMID: 32679673 PMCID: PMC7407181 DOI: 10.3390/polym12071563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/26/2022] Open
Abstract
To expand the use of polylactic acid (PLA) in high-temperature environments, crystallization morphology regulation was studied to enhance the heat resistance of PLA. PLA crystallinity was controlled using heat treatment and nucleating agent (zinc phenylphosphonate, brand TMC). The heat deflection temperatures of PLAs with same crystallinities considerably varied using different treatments. The crystallization morphology of PLA (4032D) and PLA/TMC composites was studied using X-ray diffraction (XRD) and polarized optical microscopy. XRD test results show that TMC can improve the crystallization rate and heat treatment can enhance the crystallinity and thickness of PLA, suggesting that the crystallization morphology improved after heat treatment. Nucleating agents can increase the crystallinity of PLA but cannot improve its crystallization morphology. The findings indicate that at the same crystallinity, PLAs exhibit improved crystallization morphology and high heat resistance; these results can provide guidance for improving the heat resistance of PLAs and facilitate the design of new nucleating agents.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (Y.L.); (S.J.); (J.Q.)
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China;
| | - Siyuan Jiang
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (Y.L.); (S.J.); (J.Q.)
| | - Wei Yan
- School of Chemistry and Materials, Guiyang University, Guiyang 550005, China;
| | - Min He
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (Y.L.); (S.J.); (J.Q.)
- Correspondence: (M.H.); (J.Y.)
| | - Jun Qin
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (Y.L.); (S.J.); (J.Q.)
| | - Shuhao Qin
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China;
| | - Jie Yu
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China;
- Correspondence: (M.H.); (J.Y.)
| |
Collapse
|
14
|
Fang W, Yu L, Xu L. Preparation, characterization and photocatalytic performance of heterostructured CuO-ZnO-loaded composite nanofiber membranes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:631-650. [PMID: 32363130 PMCID: PMC7177000 DOI: 10.3762/bjnano.11.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Inorganic semiconductor oxides loaded on composite nanofibers (CNFs) have been widely applied in environmental monitoring, industry, aviation, and transportation. In this paper, heterostructured CuO-ZnO-loaded CNF membranes (CNFMs) were prepared successfully by a combination of electrospinning, heat treatment, and hydrothermal synthesis. The influence of the synthesis parameters on morphology, structure, and properties of the CNFMs was investigated, and the optimal process parameters were determined. Then, the CNFMs obtained with optimal process parameters were applied for the photocatalytic degradation of methyl orange. It was found that the CNFMs could be reused to degrade methyl orange at least three times, and the degradation rate remained above 90%.
Collapse
Affiliation(s)
- Wei Fang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Liang Yu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| |
Collapse
|
15
|
The effect of molecular weight and content of PEG on in vitro drug release of electrospun curcumin loaded PLA/PEG nanofibers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Yang F, Zeng J, Long H, Xiao J, Luo Y, Gu J, Zhou W, Wei Y, Dong X. Micrometer Copper-Zinc Alloy Particles-Reinforced Wood Plastic Composites with High Gloss and Antibacterial Properties for 3D Printing. Polymers (Basel) 2020; 12:polym12030621. [PMID: 32182784 PMCID: PMC7182845 DOI: 10.3390/polym12030621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/02/2023] Open
Abstract
In this work, micrometer copper-zinc alloy particles-reinforced particleboard wood flour/poly (lactic acid) (mCu-Zn/PWF/PLA) wood plastic composites with high gloss and antibacterial properties for 3D printing were prepared by a melt blending process. The structure and properties of the composites with different contents of mCu-Zn were analyzed by means of mechanical testing, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and antibacterial testing. The results showed that the mechanical properties, thermal stability, and antibacterial performance of the composites were significantly improved, as mCu-Zn was added into the wood plastic composites. When adding 2 wt.% mCu-Zn, the flexural strength of mCu-Zn/PWF/PLA composites (with 5 wt.% of particleboard wood flour) (PWF) increased by 47.1% compared with pure poly (lactic acid) (PLA), and 18.9% compared with PWF/PLA wood plastic composites. The surface gloss was increased by 1142.6% compared with PWF/PLA wood plastic composites. Furthermore, the inhibition rates of mCu-Zn/PWF/PLA composites against Escherichia coli reached 90.43%. Therefore, this novel high gloss and antibacterial wood plastic composites for fused deposition modeling (FDM) 3D printing have potential applications in personalized and classic furniture, art, toys, etc.
Collapse
Affiliation(s)
- Feiwen Yang
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; (F.Y.); (J.Z.); (H.L.); (J.X.); (Y.L.); (J.G.)
| | - Jianhui Zeng
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; (F.Y.); (J.Z.); (H.L.); (J.X.); (Y.L.); (J.G.)
| | - Haibo Long
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; (F.Y.); (J.Z.); (H.L.); (J.X.); (Y.L.); (J.G.)
| | - Jialin Xiao
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; (F.Y.); (J.Z.); (H.L.); (J.X.); (Y.L.); (J.G.)
| | - Ying Luo
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; (F.Y.); (J.Z.); (H.L.); (J.X.); (Y.L.); (J.G.)
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Modern Agriculture Materials of Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jin Gu
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; (F.Y.); (J.Z.); (H.L.); (J.X.); (Y.L.); (J.G.)
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Modern Agriculture Materials of Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Wuyi Zhou
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; (F.Y.); (J.Z.); (H.L.); (J.X.); (Y.L.); (J.G.)
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Modern Agriculture Materials of Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (W.Z.); (X.D.)
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frotier Polymer Research, Tsinghua University, Beijing 10084, China;
| | - Xianming Dong
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; (F.Y.); (J.Z.); (H.L.); (J.X.); (Y.L.); (J.G.)
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Modern Agriculture Materials of Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (W.Z.); (X.D.)
| |
Collapse
|
17
|
Song Y, Wang Y, Xu L, Wang M. Fabrication and Characterization of Electrospun Aligned Porous PAN/Graphene Composite Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1782. [PMID: 31847494 PMCID: PMC6955752 DOI: 10.3390/nano9121782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022]
Abstract
A modified parallel electrode method (MPEM), conducted by placing a positively charged ring between the needle and the paralleled electrode collector, was presented to fabricate aligned polyacrylonitrile/graphene (PAN/Gr) composite nanofibers (CNFs) with nanopores in an electrospinning progress. Two kinds of solvents and one kind of nanoparticle were used to generate pores on composite nanofibers. The spinning parameters, such as the concentration of solute and solvent, spinning voltage and spinning distance were discussed, and the optimal parameters were determined. Characterizations of the aligned CNFs with nanopores were investigated by scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), high-resistance meter, and other methods. The results showed that graphene (Gr) nanoparticles were successfully introduced into aligned CNFs with nanopores and almost aligned along the axis of the CNFs. The MPEM method could make hydrophobic materials more hydrophobic, and improve the alignment degree and conductive properties of electrospun-aligned CNFs with nanopores. Moreover, the carbonized CNFs with nanopores, used as an electrode material, had a smaller charge-transfer resistance, suggesting potential application in electrochemical areas and electron devices.
Collapse
Affiliation(s)
- Yanhua Song
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; (Y.S.); (Y.W.)
| | - Yi Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; (Y.S.); (Y.W.)
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; (Y.S.); (Y.W.)
| | - Mingdi Wang
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China;
| |
Collapse
|