1
|
Lopez A, Amatori S, Olivieri E, Venditti I, Iucci G, Meneghini C, Bertelà F, Del Bello F, Quaglia W, Pellei M, Santini C, Battocchio C. Cu(I) Coordination Compounds Conjugated to Au Nanorods for Future Applications in Drug Delivery: Insights in Molecular, Electronic and Cu Local Structure in Solid and Liquid Phase. Chemphyschem 2024; 25:e202400074. [PMID: 38517325 DOI: 10.1002/cphc.202400074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/23/2024]
Abstract
In the framework of the design, synthesis and testing of a library of copper complexes and nanostructured assemblies potentially endowed with antitumor and antiviral activity and useful for several applications, from drugs and related delivery systems to the development of biocidal nanomaterials, we present the detailed spectroscopic investigation of the molecular and electronic structure of copper-based coordination compounds and of a new conjugated system obtained by grafting Cu(I) complexes to gold nanorods. More in detail, the electronic and molecular structures of two Cu complexes and one AuNRs/Cu-complex adduct were investigated by X-ray photoelectron spectroscopy (XPS), synchrotron-induced XPS (SR-XPS) and near edge X-ray absorption spectroscopy (NEXAFS) in solid state, and the local structure around copper ion was assessed by X-ray absorption spectroscopy (XAS) both in solid state and water solution for the AuNRs/Cu-complex nanoparticles. The proposed multi-technique approach allowed to properly define the coordination geometry around the copper ion, as well as to ascertain the molecular structures of the coordination compounds, their stability and modifications upon interaction with gold nanoparticles, by comparing solid state and liquid phase data.
Collapse
Affiliation(s)
- Alberto Lopez
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Simone Amatori
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Elena Olivieri
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Iole Venditti
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Giovanna Iucci
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Carlo Meneghini
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Federica Bertelà
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri (ChIP), 62032, Camerino, Macerata, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri (ChIP), 62032, Camerino, Macerata, Italy
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), 62032, Camerino, Macerata, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), 62032, Camerino, Macerata, Italy
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| |
Collapse
|
2
|
Li D, Zou S, Huang Z, Sun C, Liu G. Isolation and quantification of L1CAM-positive extracellular vesicles on a chip as a potential biomarker for Parkinson's Disease. J Extracell Vesicles 2024; 13:e12467. [PMID: 38898558 PMCID: PMC11186740 DOI: 10.1002/jev2.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Extracellular vesicles (EVs) carry disease-specific molecular profiles, demonstrating massive potential in biomarker discovery. In this study, we developed an integrated biochip platform, termed EVID-biochip (EVs identification and detection biochip), which integrates in situ electrochemical protein detection with on-chip antifouling-immunomagnetic beads modified with CD81 antibodies and zwitterion molecules, enabling efficient isolation and detection of neuronal EVs. The capability of the EVID-biochip to isolate common EVs and detect neuronal EVs associated with Parkinson's disease in human serum is successfully demonstrated, using the transmembrane protein L1-cell adhesion molecule (L1CAM) as a target biomarker. The EVID-biochip exhibited high efficiency and specificity for the detection of L1CAM with a sensitivity of 1 pg/mL. Based on the validation of 76 human serum samples, for the first time, this study discovered that the level of L1CAM/neuronal EV particles in serum could serve as a reliable indicator to distinguish Parkinson's disease from control groups with AUC = 0.973. EVID-biochip represents a reliable and rapid liquid biopsy platform for the analysis of complex biofluids offering EVs isolation and detection in a single chip, requiring a small sample volume (300 µL) and an assay time of 1.5 h. This approach has the potential to advance the diagnosis and biomarker discovery of various neurological disorders and other diseases.
Collapse
Affiliation(s)
- Danyu Li
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHKSZ‐Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Siyi Zou
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHKSZ‐Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Ziyang Huang
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHKSZ‐Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Congcong Sun
- Department of NeurologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHKSZ‐Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of MedicineThe Chinese University of Hong KongShenzhenChina
| |
Collapse
|
3
|
Faizullin BA, Dayanova IR, Kurenkov AV, Gubaidullin AT, Saifina AF, Nizameev IR, Kholin KV, Khrizanforov MN, Sirazieva AR, Litvinov IA, Voloshina AD, Lyubina AP, Sibgatullina GV, Samigullin DV, Musina EI, Strelnik ID, Karasik AA, Mustafina AR. ROS-producing nanomaterial engineered from Cu(I) complexes with P 2N 2-ligands for cancer cells treating. DISCOVER NANO 2023; 18:133. [PMID: 37903946 PMCID: PMC10616039 DOI: 10.1186/s11671-023-03912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023]
Abstract
The work presents core-shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic P2N2-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of P2N2-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence. The cytotoxic effects of the NPs toward the normal and some of cancer cells are significantly lower than those of the corresponding molecular complexes, which correlates with the chemical stability of the NPs in the solutions. The ability of the NPs to self-enhanced and H2O2-induced ROS generation is demonstrated in solutions and intracellular space by means of the standard electron spin resonance (ESR) and fluorescence techniques correspondingly. The anticancer specificity of the NPs toward HuTu 80 cancer cells and the apoptotic cell death pathway correlate with the intracellular level of ROS, which agrees well with the self-enhancing ROS generation of the NPs. The enhanced level of ROS revealed in HuTu 80 cells incubated with the NPs can be associated with the significant level of their mitochondrial localization.
Collapse
Affiliation(s)
- Bulat A Faizullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088.
| | - Irina R Dayanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Alexey V Kurenkov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Alina F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Irek R Nizameev
- Department of Physics, Kazan National Research Technological University, 68 Karl Marx Str., Kazan, Russia, 420015
| | - Kirill V Kholin
- Department of Nanotechnology in Electronics, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx Street, Kazan, Russia, 420111
| | - Mikhail N Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevski Str., Kazan, Russia, 420008
| | - Aisylu R Sirazieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Igor A Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Guzel V Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski Str., Kazan, Russia, 420111
| | - Dmitry V Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski Str., Kazan, Russia, 420111
- Institute for Radio-Electronics and Telecommunications, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx Street, Kazan, Russia, 420111
| | - Elvira I Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Igor D Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevski Str., Kazan, Russia, 420008
| | - Andrey A Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., Kazan, Russia, 420088
| |
Collapse
|
4
|
Binelli L, Dini V, Amatori S, Scotognella T, Giordano A, De Berardis B, Bertelà F, Battocchio C, Iucci G, Fratoddi I, Cartoni A, Venditti I. Gold Nanorods as Radiopharmaceutical Carriers: Preparation and Preliminary Radiobiological In Vitro Tests. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1898. [PMID: 37446414 DOI: 10.3390/nano13131898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Low-energy electrons (Auger electrons) can be produced via the interaction of photons with gold atoms in gold nanorods (AuNRs). These electrons are similar to those emitted during the decay of technetium-99m (99mTc), a radioactive nuclide widely used for diagnostics in nuclear medicine. Auger and internal conversion (IC) electron emitters appropriately targeted to the DNA of tumors cells may, therefore, represent a new radiotherapeutic approach. 99mTc radiopharmaceuticals, which are used for diagnosis, could indeed be used in theragnostic fields when loaded on AuNRs and delivered to a tumor site. This work aims to provide a proof of concept (i) to evaluate AuNRs as carriers of 99mTc-based radiopharmaceuticals, and (ii) to evaluate the efficacy of Auger electrons emitted by photon-irradiated AuNRs in inducing radio-induced damage in T98G cells, thus mimicking the effect of Auger electrons emitted during the decay of 99mTc used in clinical settings. Data are presented on AuNRs' chemical characterization (with an aspect ratio of 3.2 and Surface Plasmon Resonance bands at 520 and 680 nm) and the loading of pharmaceuticals (after 99mTc decay) on their surface. Spectroscopic characterizations, such as UV-Vis and synchrotron radiation-induced X-ray photoelectron (SR-XPS) spectroscopies, were performed to investigate the drug-AuNR interaction. Finally, preliminary radiobiological data on cell killing with AuNRs are presented.
Collapse
Affiliation(s)
- Ludovica Binelli
- Sciences Department, Roma Tre University, 00146 Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma3, Department of Sciences, Roma Tre University, 00146 Rome, Italy
| | - Valentina Dini
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma1, Department of Physics, University La Sapienza, 00185 Rome, Italy
| | - Simone Amatori
- Sciences Department, Roma Tre University, 00146 Rome, Italy
| | - Teresa Scotognella
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandro Giordano
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Barbara De Berardis
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | - Giovanna Iucci
- Sciences Department, Roma Tre University, 00146 Rome, Italy
| | - Ilaria Fratoddi
- Chemistry Department, Sapienza University, 00185 Rome, Italy
| | | | - Iole Venditti
- Sciences Department, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
5
|
Shabatina TI, Vernaya OI, Shimanovskiy NL, Melnikov MY. Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics 2023; 15:pharmaceutics15041181. [PMID: 37111666 PMCID: PMC10141702 DOI: 10.3390/pharmaceutics15041181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The development of antiviral treatment and anticancer theragnostic agents in recent decades has been associated with nanotechnologies, and primarily with inorganic nanoparticles (INPs) of metal and metal oxides. The large specific surface area and its high activity make it easy to functionalize INPs with various coatings (to increase their stability and reduce toxicity), specific agents (allowing retention of INPs in the affected organ or tissue), and drug molecules (for antitumor and antiviral therapy). The ability of magnetic nanoparticles (MNPs) of iron oxides and ferrites to enhance proton relaxation in specific tissues and serve as magnetic resonance imaging contrast agents is one of the most promising applications of nanomedicine. Activation of MNPs during hyperthermia by an external alternating magnetic field is a promising method for targeted cancer therapy. As therapeutic tools, INPs are promising carriers for targeted delivery of pharmaceuticals (either anticancer or antiviral) via magnetic drug targeting (in case of MNPs), passive or active (by attaching high affinity ligands) targeting. The plasmonic properties of Au nanoparticles (NPs) and their application for plasmonic photothermal and photodynamic therapies have been extensively explored recently in tumor treatment. The Ag NPs alone and in combination with antiviral medicines reveal new possibilities in antiviral therapy. The prospects and possibilities of INPs in relation to magnetic hyperthermia, plasmonic photothermal and photodynamic therapies, magnetic resonance imaging, targeted delivery in the framework of antitumor theragnostic and antiviral therapy are presented in this review.
Collapse
Affiliation(s)
- Tatyana I Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Olga I Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Nikolay L Shimanovskiy
- Department of Molecular Pharmacology and Radiobiology, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mikhail Ya Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
| |
Collapse
|
6
|
Smirnov AN, Aslanov SF, Danilov DV, Kurapova OY, Solovyeva EV. One-Pot Synthesis of Silica-Coated Gold Nanostructures Loaded with Cyanine 5.5 for Cell Imaging by SERS Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1267. [PMID: 37049360 PMCID: PMC10097174 DOI: 10.3390/nano13071267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Anisotropic gold nanoparticles have been recognized as promising agents for medical diagnostics and cancer therapy due to their wide functionality, photothermal effect, and ability for optical signal amplification in the near-infrared range. In this work, a simple and rapid method for the preparation of bone-shaped gold nanoparticles coated with a dye-impregnated silica shell with an aminated surface is proposed. The possibility of further functionalization the nanostructures with a delivery vector using folic acid as an example is demonstrated. The average size of the resulting tags does not exceed 70 nm, meeting the criteria of cell endocytosis. The prepared tags exhibit surface-enhanced Raman scattering (SERS) spectra at excitation with lasers of 632.8 and 785 nm. Cell imaging is performed on HeLa cells based on the most pronounced SERS bands as a tracking signal. The obtained images, along with scanning electron microscopy of cell samples, revealed the tendency of tags to agglomerate during endocytosis followed by the "hot spots" effect. To evaluate the toxic and proliferative effect of the nanotags, an MTT assay was performed with two HeLa and HEP G2 cell lines. The results revealed higher viability for HEP G2 cells.
Collapse
Affiliation(s)
- Aleksei N. Smirnov
- Chemistry Institute, Saint-Petersburg State University, 26 Universitetsky Pr., Peterhof, 198504 Saint-Petersburg, Russia; (A.N.S.); (S.F.A.); (O.Y.K.)
| | - Simar F. Aslanov
- Chemistry Institute, Saint-Petersburg State University, 26 Universitetsky Pr., Peterhof, 198504 Saint-Petersburg, Russia; (A.N.S.); (S.F.A.); (O.Y.K.)
| | - Denis V. Danilov
- Interdisciplinary Center for Nanotechnology, Saint-Petersburg State University, 1 Ulianovskaya Str., Peterhof, 198504 Saint-Petersburg, Russia;
| | - Olga Yu. Kurapova
- Chemistry Institute, Saint-Petersburg State University, 26 Universitetsky Pr., Peterhof, 198504 Saint-Petersburg, Russia; (A.N.S.); (S.F.A.); (O.Y.K.)
| | - Elena V. Solovyeva
- Chemistry Institute, Saint-Petersburg State University, 26 Universitetsky Pr., Peterhof, 198504 Saint-Petersburg, Russia; (A.N.S.); (S.F.A.); (O.Y.K.)
| |
Collapse
|
7
|
Stable Enzymatic Nanoparticles from Nucleases, Proteases, Lipase and Antioxidant Proteins with Substrate-Binding and Catalytic Properties. Int J Mol Sci 2023; 24:ijms24033043. [PMID: 36769367 PMCID: PMC9917993 DOI: 10.3390/ijms24033043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Limited membrane permeability and biodegradation hamper the intracellular delivery of the free natural or recombinant enzymes necessary for compensatory therapy. Nanoparticles (NP) provide relative protein stability and unspecific endocytosis-mediated cellular uptake. Our objective was the fabrication of NP from 7 biomedicine-relevant enzymes, including DNase I, RNase A, trypsin, chymotrypsin, catalase, horseradish peroxidase (HRP) and lipase, the analysis of their conformation stability and enzymatic activity as well as possible toxicity for eukaryotic cells. The enzymes were dissolved in fluoroalcohol and mixed with 40% ethanol as an anti-solvent with subsequent alcohol evaporation at high temperature and low pressure. The shapes and sizes of NP were determined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). Enzyme conformations in solutions and in NP were compared using circular dichroism (CD) spectroscopy. The activity of the enzymes was assayed with specific substrates. The cytotoxicity of the enzymatic NP (ENP) was studied by microscopic observations and by using an MTT test. Water-insoluble ENP of different shapes and sizes in a range 50-300 nm consisting of 7 enzymes remained stable for 1 year at +4 °C without any cross-linking. CD spectroscopy of the ENP permitted us to reveal changes in proportions of α-helixes, β-turns and random coils in comparison with fresh enzyme solutions in water. Despite the minor conformation changes of the proteins in the ENP, the enzymes retained their substrate-binding and catalytic properties. Among the studied bioactive ENP, only DNase NP were highly toxic for 3 cell lines with granulation in 1 day posttreatment, whereas other NP were less toxic (if any). Taken together, the enzymes in the stable ENP retained their catalytic activity and might be used for intracellular delivery.
Collapse
|
8
|
Asariha M, Kiaie SH, Izadi S, H. Pirhayati F, Fouladi M, Gholamhosseinpour M. Extended-release of doxorubicin through green surface modification of gold nanoparticles: in vitro and in ovo assessment. BMC Chem 2022; 16:110. [PMID: 36474292 PMCID: PMC9724295 DOI: 10.1186/s13065-022-00895-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
In the present study, a green surface modification of gold nanoparticles (GNPs) using chondroitin sulfate (CHS) and chitosan (CS) to deliver an extended-release of doxorubicin (DOX) was proposed. Following synthesis of each step of unconjugated counterpart, including CHS-GNPs, DOX-CHS-GNP, and conjugated construct DOX-CHS-GNP-CS, physicochemical properties of the nanoparticles (NPs) were characterized by FT-IR, DLS, and TEM analyses, and the release of DOX was determined by using UV-Vis spectrometry. Then, NPs were effectively taken up by MDA-MB-468, βTC-3, and human fibroblast (HFb) cell lines with high release percent and without significant cytotoxicity. The DOX-CHS-GNPs and DOX-CHS-GNP-CS NPs showed a mean size of 175.8 ± 1.94 and 208.9 ± 2.08 nm; furthermore, a zeta potential of - 34 ± 5.6 and - 25.7 ± 5.9 mV, respectively. The highest release of DOX was 73.37% after 45 h, while in the absence of CS, the release of DOX was 76.05% for 24 h. Compared to CHS-GNPs, the presence of CS decreased the rate of sustained release of DOX and improved the drug release efficiency. The results demonstrated an excellent release and negligible cytotoxicity at high concentrations of CHS-GNP-CS. Consequently, in ovo assessment corroborated the efficacy of the green fabricated NPs proposed effective targeted delivery of DOX for anti-tumor therapy in vitro.
Collapse
Affiliation(s)
- Maryam Asariha
- grid.412112.50000 0001 2012 5829Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hossein Kiaie
- grid.412112.50000 0001 2012 5829Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran ,grid.412888.f0000 0001 2174 8913Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Izadi
- grid.412888.f0000 0001 2174 8913Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh H. Pirhayati
- grid.412112.50000 0001 2012 5829Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Fouladi
- grid.412112.50000 0001 2012 5829Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Gholamhosseinpour
- grid.412112.50000 0001 2012 5829Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Ciccone L, Nencetti S, Marino M, Battocchio C, Iucci G, Venditti I, Marsotto M, Montalesi E, Socci S, Bargagna B, Orlandini E. Pterostilbene fluorescent probes as potential tools for targeting neurodegeneration in biological applications. J Enzyme Inhib Med Chem 2022; 37:1812-1820. [PMID: 35758192 PMCID: PMC9246042 DOI: 10.1080/14756366.2022.2091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several epidemiological studies suggest that a diet rich in fruit and vegetables reduces the incidence of neurodegenerative diseases. Resveratrol (Res) and its dimethylated metabolite, pterostibene (Ptb), have been largely studied for their neuroprotective action. The clinical use of Res is limited because of its rapid metabolism and its poor bioavailability. Ptb with two methoxy groups and one hydroxyl group has a good membrane permeability, metabolic stability and higher in vivo bioavailability in comparison with Res. The metabolism and pharmacokinetics of Ptb are still sparse, probably due to the lack of tools that allow following the Ptb destiny both in living cells and in vivo. In this contest, we propose two Ptb fluorescent derivatives where Ptb has been functionalised by benzofurazan and rhodamine-B-isothiocyanate, compounds 1 and 2, respectively. Here, we report the synthesis, the optical and structural characterisation of 1 and 2, and, their putative cytotoxicity in two different cell lines.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP - Centre for Instrumentation Sharing, University of Pisa, Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP - Centre for Instrumentation Sharing, University of Pisa, Pisa, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | - Iole Venditti
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | - Simone Socci
- Department of Earth Science, University of Pisa, Pisa, Italy
| | | | - Elisabetta Orlandini
- Department of Earth Science, University of Pisa, Pisa, Italy.,Research Centre E. Piaggio, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Eissa DM, Mabrouk MM, Ebeid EZM, Abdel Hamid MA. Hydrophilic gold nanospheres: influence of alendronate, memantine, and tobramycin on morphostructural features. BMC Chem 2022; 16:101. [PMID: 36419078 PMCID: PMC9682697 DOI: 10.1186/s13065-022-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Turkevich gold nanospheres are the original nanospheres that have been modified over time. Its combination with targeting medications such as alendronate, memantine, and tobramycin will provide additional benefits in targeting specific areas in the bone, brain, and microorganisms, respectively. Hence, The reactivity and stability of nanospheres with various drug concentrations (milli-,micro-, and nano-levels) have been studied. With alendronate, the absorbance spectra of nanospheres at [Formula: see text] 520 nm were always stable and no redshifts occurred. In contrast, the spectra with memantine and tobramycin were stable at the nano-level and redshifts occurred at the milli- and micro-levels. HRTEM and DLS revealed that the core diameter was relatively stable in all cases, whereas the hydrodynamic diameter and zeta potential varied with varying drug concentrations. Increasing concentration increased hydrodynamic diameter slightly with memantine (from 64.99 to 98.41 nm), dramatically with tobramycin (from 135.3 to 332.16 nm), and almost negligibly with alendronate (from 52.08 to 58.94 nm ). Zeta Potential, conversely, is reduced as concentration increases. Memantine had the greatest reduction in negativity, followed by tobramycin, but alendronate had a slight increase in negativity. Benefits from this research would be in targeted drug delivery, where stability and reactivity of gold nanospheres are critical.
Collapse
Affiliation(s)
- Dina M. Eissa
- grid.415762.3Ministry of Health and Population, Menoufia, Egypt
| | - Mokhtar M. Mabrouk
- grid.412258.80000 0000 9477 7793Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111 Egypt
| | - El Zeiny M. Ebeid
- grid.412258.80000 0000 9477 7793Chemistry Department, Faculty of Science, Tanta University, Elgeish Street, Tanta, 31111 Egypt
| | - Mohamed A. Abdel Hamid
- grid.412258.80000 0000 9477 7793Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111 Egypt
| |
Collapse
|
11
|
Green synthesis of gold nanoparticles in Gum Arabic using pulsed laser ablation for CT imaging. Sci Rep 2022; 12:10549. [PMID: 35732668 PMCID: PMC9218112 DOI: 10.1038/s41598-022-14339-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Laser ablation synthesis in liquid solution (PLAL) is a green technique that allows for the physical formation of nanomaterials. This study indicates the preparation of stable gold nanoparticles (AuNPs) in Gum Arabic (GA) solution via laser ablation as a CT contrast agent. The optical properties were achieved using the absorption spectroscopic technique whereas the morphology and size distribution were investigated by TEM and ImageJ software. TEM image shows greater stability and spherical shape of GA-AuNPs with smaller size at 1.85 ± 0.99 nm compared to AuNPs without GA. The absorption spectrum of pure AuNPs has a lower absorption peak height in the visible range at λ = 521 nm, while the spectrum of GA-AuNPs has a higher plasmon peak height at λ = 514 nm with a blue shift towards lower wavelengths. The concentration of GA that dissolved in 10 mL of DI water via laser ablation is set at 20 mg. Increasing the number of pulses has only a minor effect on particle size distribution, which remains tiny in the nanometer range (less than 3 nm). For energies greater than 200 mJ, there is a blue shift toward shorter wavelengths. As the concentration of GA-AuNPs increases, the CT number is also increased indicating good image contrast. It can be concluded that there is a positive and significant influence of GA as a reducing agent for AuNPs, and a contrast agent for CT imaging which highlights its superiority in future medical applications.
Collapse
|
12
|
Ferreira-Gonçalves T, Ferreira D, Ferreira HA, Reis CP. Nanogold-based materials in medicine: from their origins to their future. Nanomedicine (Lond) 2021; 16:2695-2723. [PMID: 34879741 DOI: 10.2217/nnm-2021-0265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The properties of gold-based materials have been explored for centuries in several research fields, including medicine. Multiple published production methods for gold nanoparticles (AuNPs) have shown that the physicochemical and optical properties of AuNPs depend on the production method used. These different AuNP properties have allowed exploration of their usefulness in countless distinct biomedical applications over the last few years. Here we present an extensive overview of the most commonly used AuNP production methods, the resulting distinct properties of the AuNPs and the potential application of these AuNPs in diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, Évora, 7000, Portugal
| | - Hugo A Ferreira
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Catarina P Reis
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal.,Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| |
Collapse
|
13
|
Lazar G, Nekvapil F, Hirian R, Glamuzina B, Tamas T, Barbu-Tudoran L, Pinzaru SC. Novel Drug Carrier: 5-Fluorouracil Formulation in Nanoporous Biogenic Mg-calcite from Blue Crab Shells-Proof of Concept. ACS OMEGA 2021; 6:27781-27790. [PMID: 34722978 PMCID: PMC8552355 DOI: 10.1021/acsomega.1c03285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The ever-growing demand for novel, cheaper, and more effective drugs has put nanomedicine and targeted drug delivery to the forefront of scientific innovation. Owing to its porous three-dimensional (3D)-nanostructure and properties, the biogenic calcite from wasted blue crab shells is employed in the present work as a new drug carrier for 5-fluorouracil (5-FU), a drug widely used in cancer therapy. The drug solution has been loaded in the porous nanoarchitecture of the powdered biogenic material and further pelleted in tablets with a 5-FU concentration of 1.748 mg/g. Their structural and morphological properties were characterized using Raman, X-ray diffraction, and scanning electron microscopy. Confocal micro-Raman spectra of tablet surface showed a typical signal of biogenic carbonate with preserved carotenoids and carotenoproteins found in the native waste shell, while the drug Raman signal was absent, indicating its adsorption in the intricate nanoporous biogenic carrier. The slow release of the drug from the newly formulated tablet was investigated by tracking the surface-enhanced Raman scattering (SERS) signal of the tablet solution in a series of time-dependent experiments. The SERS signal quantification is achieved using the well-known SERS spectral fingerprint of 5-fluorouracil aqueous solution adsorbed on Ag nanoparticles. The proof of concept is demonstrated by quantifying the slow release of the drug through the characteristic SERS band intensity of 5-FU in a time course of 26 h. This proof of concept boosted further investigations concerning the released drug identity in simulated solutions that mimic the pH of the upper- and lower gastrointestinal tract, as well as the multiple possibilities to control porosity and composition during powdering and treatment of biogenic material, to achieve the most convenient formulation for relevant biomedical drug delivery. Nonetheless, the present results showed great promise for innovative reusing waste biogenic 3D-nanomaterials of aquatic origin as advantageous drug carriers for slow release purposes, in line with the concept of blue bioeconomy.
Collapse
Affiliation(s)
- Geza Lazar
- Biomolecular
Physics Department, Babes Bolyai University, Kogalniceanu 1, RO-400084 Cluj-Napoca, Romania
- Institute
for Research, Development and Innovation in Applied Natural Science, Fântânele 30, 400327 Cluj-Napoca, Romania
| | - Fran Nekvapil
- Biomolecular
Physics Department, Babes Bolyai University, Kogalniceanu 1, RO-400084 Cluj-Napoca, Romania
- Institute
for Research, Development and Innovation in Applied Natural Science, Fântânele 30, 400327 Cluj-Napoca, Romania
| | - Razvan Hirian
- Babes
Bolyai University, Faculty of Physics, Kogalniceanu 1, RO-400084 Cluj-Napoca, Romania
| | - Branko Glamuzina
- Department
of Aquaculture, University of Dubrovnik, Ćira Carića 4, 20 000 Dubrovnik, Croatia
| | - Tudor Tamas
- Department
of Geology, Babeş-Bolyai University, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron
Microscopy Centre, Babes;-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
- Advanced
Research and Technology Center for Alternative Energy, National Institute for Research and Development of
Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania
| | - Simona Cinta Pinzaru
- Biomolecular
Physics Department, Babes Bolyai University, Kogalniceanu 1, RO-400084 Cluj-Napoca, Romania
- Institute
for Research, Development and Innovation in Applied Natural Science, Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Rizzi V, Gubitosa J, Fini P, Nuzzo S, Agostiano A, Cosma P. Snail slime-based gold nanoparticles: An interesting potential ingredient in cosmetics as an antioxidant, sunscreen, and tyrosinase inhibitor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112309. [PMID: 34563935 DOI: 10.1016/j.jphotobiol.2021.112309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
Due to their properties, snail slime-based products have been appreciated and used worldwide. So, as an alternative and innovative use of snail slime, it was adopted to induce gold nanoparticles' formation, conferring them interesting properties. By a simple, one-pot, and eco-friendly approach, 14 ± 6 nm wide hybrid gold nanoparticles, having an inorganic metallic core decorated by the slime's main components, were obtained. Among their several properties, their antioxidant and tyrosinase inhibition activity were investigated through the DPPH and ABTS and the tyrosinase assays, respectively. After assessing their non-cytotoxicity in our previous work, the results revealed positive responses, enabling their use as a potential novel multifunctional ingredient in cosmetics. Interestingly, the gold nanoparticle photostability, investigated by means of a solar simulator lamp, suggests using them in commercial cosmetic sunscreen products as a potential alternative to the commonly used inorganic sunscreen ingredients. The theoretical Sun Protection Factor was evaluated, obtaining values in the range 0-12. The proposed environmentally friendly and cost-effective protocol for nanoparticle synthesis, following the principles of Green Chemistry, opens a hugely attractive space toward the study of snail slime-based gold nanoparticles as a potential multipurpose platform in cosmetics.
Collapse
Affiliation(s)
- Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4 - 70126 Bari, Italy.
| | - Jennifer Gubitosa
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4 - 70126 Bari, Italy
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4 - 70126 Bari, Italy
| | - Sergio Nuzzo
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4 - 70126 Bari, Italy
| | - Angela Agostiano
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4 - 70126 Bari, Italy; Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4 - 70126 Bari, Italy
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4 - 70126 Bari, Italy.
| |
Collapse
|
15
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Rodríguez-Prieto T, Michlewska S, Hołota M, Ionov M, de la Mata FJ, Cano J, Bryszewska M, Gómez R. Organometallic dendrimers based on Ruthenium(II) N-heterocyclic carbenes and their implication as delivery systems of anticancer small interfering RNA. J Inorg Biochem 2021; 223:111540. [PMID: 34273717 DOI: 10.1016/j.jinorgbio.2021.111540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
With the purpose of obtaining a new dendritic system against cancer, this paper is focused on the synthesis of spherical carbosilane metallodendrimers of different generations holding Ru(II) N-heterocyclic carbene (NHC) on the periphery from the imidazolium precursors. Both imidazolium salt dendrimers and their metallodendrimers counterparts showed promising anticancer activity, similar to cisplatin, mainly at high generations. In addition, both families of second and third generations were able to form dendriplexes with anticancer small interfering RNA (siRNA), protecting the cargo against RNAse and being able to internalize it in HEPG2 (human liver cancer) tumour cells. The characterization and effectiveness of the dendriplexes were evaluated by various analytical techniques such as zeta potential, electrophoresis and circular dichroism, the stability of the system and the protective nature of the dendrimer estimated using RNAse and the internalization of dendriplexes by confocal microscopy. The major advantage observed with the ruthenium metallodendrimers with respect to the imidazolium salts precursors was in cellular uptake, where the internalization of Mcl-1-FITC siRNA (myeloid cell leukaemia-1 fluorescein labelled siRNA) proceeded more efficiently. Therefore, we propose here that both imidazolium and Ru metallodendrimers are interesting candidates in cancer due to their double action, as anticancer per se and as carrier for anticancer siRNA, providing in this way a combined action.
Collapse
Affiliation(s)
- Tamara Rodríguez-Prieto
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging & Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Marcin Hołota
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - F Javier de la Mata
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
17
|
Zhang P, Yu B, Jin X, Zhao T, Ye F, Liu X, Li P, Zheng X, Chen W, Li Q. Therapeutic Efficacy of Carbon Ion Irradiation Enhanced by 11-MUA-Capped Gold Nanoparticles: An in vitro and in vivo Study. Int J Nanomedicine 2021; 16:4661-4674. [PMID: 34262274 PMCID: PMC8275145 DOI: 10.2147/ijn.s313678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Gold nanoparticles (AuNPs) are widely studied as radiosensitizers, but their radiosensitization in carbon ion radiotherapy is unsatisfactory. There is a lack of in vivo data on the radiosensitization of AuNPs under carbon ion irradiation. This study focused on the radiosensitization effect of AuNPs in the mouse melanoma cell line B16-F10 in vitro and in vivo. MATERIALS AND METHODS 11-mercaptoundecanoic acid (11-MUA)-coated gold (Au) nanoparticles (mAuNPs) formulations were prepared and characterized. To verify the radiosensitization effect of mAuNPs, hydroxyl radicals were generated in aqueous solution, and the detection of intracellular reactive oxygen species (ROS) and clone survival were carried out in vitro. The tumor growth rate (TGR) and survival of mice were analyzed to verify the radiosensitization effect of mAuNPs in vivo. The apoptosis of tumor cells was detected, and the expression of key proteins in the apoptosis pathway was verified by immunohistochemistry. RESULTS The intracellular ROS level in B16-F10 cells was enhanced by mAuNPs under carbon ion irradiation. The sensitization rate of mAuNPs was 1.22 with a 10% cell survival rate. Compared with irradiation alone, the inhibitory effect of mAuNPs combined with carbon ion irradiation on tumor growth was 1.94-fold higher, the survival time of mice was prolonged by 1.75-fold, and the number of apoptotic cells was increased by 1.43-fold. The ratio of key proteins Bax and Bcl2 in the apoptosis pathway was up-regulated, and the expression of caspase-3, a key executor of the apoptosis pathway, was up-regulated. CONCLUSION In in vivo and in vitro experiments, mAuNPs showed radiosensitivity to carbon ion irradiation. The sensitization effect of mAuNPs on mice tumor may be achieved by activating the mitochondrial apoptosis pathway and increasing tumor tissue apoptosis. To our best knowledge, the present study is the first in vivo evidence for radiosensitization of mAuNPs in tumor-bearing mice exposed to carbon ion irradiation.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
- The First Hospital of Lanzhou University, Lanzhou, 730000, People’s Republic of China
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| |
Collapse
|
18
|
Zhang Y, Khan AR, Yang X, Fu M, Wang R, Chi L, Zhai G. Current advances in versatile metal-organic frameworks for cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Wang Y, Ding Y, Yao D, Dong H, Ji C, Wu J, Hu Y, Yuan A. Copper-Based Nanoscale Coordination Polymers Augmented Tumor Radioimmunotherapy for Immunogenic Cell Death Induction and T-Cell Infiltration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006231. [PMID: 33522120 DOI: 10.1002/smll.202006231] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Insufficient T-cell infiltration seriously hinders the efficacy of tumor immunotherapy. Induction of immunogenic cell death (ICD) is a potentially feasible approach to increase T-cell infiltration. Since ionizing radiation can only induce low-level ICD, this study constructs Cu-based nanoscale coordination polymers (Cu-NCPs) with mixed-valence (Cu+ /Cu2+ ), which can simultaneously and independently induce the generation of Cu+ -triggered hydroxyl radicals and Cu2+ -triggered GSH elimination, to synergize with radiation therapy for potent ICD induction. Markedly, this synergetic therapy remarkably enhances dendritic cell maturation and promotes antitumor CD8+ T-cell infiltration, thereby potentiating the development of checkpoint blockade immunotherapies against primary and metastatic tumors.
Collapse
Affiliation(s)
- Yuxiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Yawen Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Dan Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Changwei Ji
- Urology Department, The Affiliated Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
20
|
Jarrar Y, Al-Doaiss A, Alfaifi M, Shati A, Al-Kahtani M, Jarrar B. The influence of five metallic nanoparticles on the expression of major drug-metabolizing enzyme genes with correlation of inflammation in mouse livers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103449. [PMID: 32593632 DOI: 10.1016/j.etap.2020.103449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Metallic nanoparticles (NPs) are widely used in medical preparations. The present study aims to find out the influence of widely used five metallic NPs on the expression of major hepatic drug-metabolizing enzyme (DME) genes. Six groups of BALB/C mice, 7 mice each, were exposed to: Gold NPs, silver NPs, copper oxide NPs, silicon dioxide NPs and zinc oxide NPs, for 21 days. Liver biopsies from all mice were subjected to mouse cyp3a11, cyp2c29, ugt2b1 and interleukin-6 (il6) gene expression quantification using real-time polymerase chain reaction, in addition to inflammatory cell infiltration examination. All tested NPs caused a sharp and significant (ANOVA, p value <0.05) downregulation in the expression of DME genes, with the highest influence was observed in mice exposed to copper oxide NPs. Additionally, all NPs induced hepatic inflammation and upregulated the expression of il6 gene, which were inversely correlated with the expression of DMEs. It is concluded that all tested NPs downregulated the expression of DME genes, with the highest influence exhibited by copper oxide NPs, in correlation with inflammation and il6 gene induction in the liver. Further studies are needed to find out the effect of anti-inflammatory compounds against the alterations induced by metallic NPs exposure on hepatic DMEs.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan
| | - Amin Al-Doaiss
- Department of Biology, College of Science, King Khalid University, Saudi Arabia
| | - Mohammad Alfaifi
- Department of Biology, College of Science, King Khalid University, Saudi Arabia
| | - Ali Shati
- Department of Biology, College of Science, King Khalid University, Saudi Arabia
| | - Mohammed Al-Kahtani
- Department of Biology, College of Science, King Khalid University, Saudi Arabia
| | - Bashir Jarrar
- Nanobiology Unit, Department of Biological Sciences, College of Science, Jerash University, Jordan.
| |
Collapse
|
21
|
Venditti I, Iucci G, Fratoddi I, Cipolletti M, Montalesi E, Marino M, Secchi V, Battocchio C. Direct Conjugation of Resveratrol on Hydrophilic Gold Nanoparticles: Structural and Cytotoxic Studies for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1898. [PMID: 32977463 PMCID: PMC7598182 DOI: 10.3390/nano10101898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Strongly hydrophilic gold nanoparticles (AuNPs), functionalized with citrate and L-cysteine, were synthetized and used as Resveratrol (RSV) vehicle to improve its bioavailability. Two different conjugation procedures were investigated: the first by adding RSV during AuNPs synthesis (1) and the second by adding RSV after AuNPs synthesis (2). The two different conjugated systems, namely AuNPs@RSV1 and AuNPs@RSV2 respectively, showed good loading efficiency (η%): η1 = 80 ± 5% for AuNPs@RSV1 and η2 = 20 ± 3% for AuNPs@RSV2. Both conjugated systems were investigated by means of Dynamic Light Scattering (DLS), confirming hydrophilic behavior and nanodimension (<2RH> 1 = 45 ± 12 nm and <2RH> 2 = 170 ± 30 nm). Fourier Transform Infrared Spectroscopy (FT-IR), Synchrotron Radiation induced X-Ray Photoelectron Spectroscopy (SR-XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) techniques were applied to deeply understand the hooking mode of RSV on AuNPs surface in the two differently conjugated systems. Moreover, the biocompatibility of AuNPs and AuNPs@RSV1 was evaluated in the concentration range 1.0-45.5 µg/mL by assessing their effect on breast cancer cell vitality. The obtained data confirmed that, at the concentration used, AuNPs do not induce cell death, whereas AuNPs@RSV1 maintains the same anticancer effects as the unconjugated RSV.
Collapse
Affiliation(s)
- Iole Venditti
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Giovanna Iucci
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Manuela Cipolletti
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Emiliano Montalesi
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Maria Marino
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Valeria Secchi
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| |
Collapse
|
22
|
Heredia FL, Resto PJ, Parés-Matos EI. Fast Adhesion of Gold Nanoparticles (AuNPs) to a Surface Using Starch Hydrogels for Characterization of Biomolecules in Biosensor Applications. BIOSENSORS 2020; 10:E99. [PMID: 32824022 PMCID: PMC7460011 DOI: 10.3390/bios10080099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022]
Abstract
Gold nanoparticles (AuNPs) are the most thoroughly studied nanoparticles because of their remarkable optical properties. Color changes in assays that use AuNPs can be easily observed with the naked eye, resulting in sensitive colorimetric methods, useful for detecting a variety of biological molecules. However, while AuNPs represent an excellent nano-platform for developing analytical methods for biosensing, there are still challenges that must be overcome before colloidal AuNPs formulation can be successfully translated into practical applications. One of those challenges is the ability to immobilize AuNPs in a solid support. There are many difficulties with controlling both the cluster size and the adhesion of the coatings formed. In addition, many of the techniques employed are expensive and time-consuming, or require special equipment. Thus, a simple and inexpensive method that only requires common lab equipment for immobilizing AuNPs on a surface using Starch Hydrogels has been developed. Starch hydrogels confer a 400% increase in stability to the nanoparticles when exposed to changes in the environment while also allowing for macromolecules to interact with the AuNPs surface. Several starch derivatives were tested, including, dextrin, beta-cyclodextrin and maltodextrin, being dextrin the one that conferred the highest stability. As a proof-of-concept, a SlipChip microfluidic sensor scheme was developed to measure the concentration of DNA in a sample. The detection limit of our biosensor was found to be 25 ng/mL and 75 ng/mL for instrument and naked eye detection, respectively.
Collapse
Affiliation(s)
- Frances L. Heredia
- Department of Chemistry, University of Puerto Rico at Mayagüez, Mayagüez, PR 00680, USA;
| | - Pedro J. Resto
- Department of Mechanical Engineering, University of Puerto Rico at Mayagüez, Mayagüez, PR 00680, USA;
| | - Elsie I. Parés-Matos
- Department of Chemistry, University of Puerto Rico at Mayagüez, Mayagüez, PR 00680, USA;
| |
Collapse
|
23
|
Ding X, Li D, Jiang J. Gold-based Inorganic Nanohybrids for Nanomedicine Applications. Theranostics 2020; 10:8061-8079. [PMID: 32724458 PMCID: PMC7381751 DOI: 10.7150/thno.42284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Noble metal Au nanoparticles have attracted extensive interests in the past decades, due to their size and morphology dependent localized surface plasmon resonances. Their unique optical property, high chemical stability, good biocompatibility, and easy functionalization make them promising candidates for a variety of biomedical applications, including bioimaging, biosensing, and cancer therapy. With the intention of enhancing their optical response in the near infrared window and endowing them with additional magnetic properties, Au nanoparticles have been integrated with other functional nanomaterials that possess complementary attributes, such as copper chalcogenides and magnetic metal oxides. The as constructed hybrid nanostructures are expected to exhibit unconventional properties compared to their separate building units, due to nanoscale interactions between materials with different physicochemical properties, thus broadening the application scope and enhancing the overall performance of the hybrid nanostructures. In this review, we summarize some recent progresses in the design and synthesis of noble metal Au-based hybrid inorganic nanostructures for nanomedicine applications, and the potential and challenges for their clinical translations.
Collapse
|
24
|
Nanomaterials in Cosmetics: Recent Updates. NANOMATERIALS 2020; 10:nano10050979. [PMID: 32443655 PMCID: PMC7279536 DOI: 10.3390/nano10050979] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
This review paper collects the recent updates regarding the use of nanomaterials in cosmetics. Special focus is given to the applications of nanomaterials in the cosmetic industry, their unique features, as well as the advantages of nanoscale ingredients compared to non-nanoscale products. The state-of-the-art practices for physicochemical and toxicological characterization of nanomaterials are also reviewed. Moreover, special focus is given to the current regulations and safety assessments that are currently in place regarding the use of nanomaterials in cosmetics—the new 2019 European guidance for the safety assessment of nanomaterials in cosmetics, together with the new proposed methodologies for the toxicity evaluation of nanomaterials. Concerns over health risks have limited the further incorporation of nanomaterials in cosmetics, and since new nanomaterials may be used in the future by the cosmetic industry, a detailed characterization and risk assessment are needed to fulfill the standard safety requirements.
Collapse
|
25
|
Abstract
This review provides an up-to-date overview on silver nanoparticles-based materials suitable as optical sensors for water pollutants. The topic is really hot considering the implications for human health and environment due to water pollutants. In fact, the pollutants present in the water disturb the spontaneity of life-related mechanisms, such as the synthesis of cellular constituents and the transport of nutrients into cells, and this causes long / short-term diseases. For this reason, research continuously tends to develop always innovative, selective and efficient processes / technologies to remove pollutants from water. In this paper we will report on the silver nanoparticles synthesis, paying attention to the stabilizers and mostly used ligands, to the characterizations, to the properties and applications as colorimetric sensors for water pollutants. As water pollutants our attention will be focused on several heavy metals ions, such as Hg(II), Ni(II),Cu(II), Fe(III), Mn(II), Cr(III/V) Co(II) Cd(II), Pb(II), due to their dangerous effects on human health. In addition, several systems based on silver nanoparticles employed as pesticides colorimetric sensors in water will be also discussed. All of this with the aim to provide to readers a guide about recent advanced silver nanomaterials, used as colorimetric sensors in water.
Collapse
|
26
|
Jamila N, Khan N, Hwang IM, Saba M, Khan F, Amin F, Khan SN, Atlas A, Javed F, Minhaz A, Ullah F. Characterization of natural gums via elemental and chemometric analyses, synthesis of silver nanoparticles, and biological and catalytic applications. Int J Biol Macromol 2020; 147:853-866. [DOI: 10.1016/j.ijbiomac.2019.09.245] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
|
27
|
Conjugates of Gold Nanoparticles and Antitumor Gold(III) Complexes as a Tool for Their AFM and SERS Detection in Biological Tissue. Int J Mol Sci 2019; 20:ijms20246306. [PMID: 31847177 PMCID: PMC6940825 DOI: 10.3390/ijms20246306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Citrate-capped gold nanoparticles (AuNPs) were functionalized with three distinct antitumor gold(III) complexes, e.g., [Au(N,N)(OH)2][PF6], where (N,N)=2,2'-bipyridine; [Au(C,N)(AcO)2], where (C,N)=deprotonated 6-(1,1-dimethylbenzyl)-pyridine; [Au(C,N,N)(OH)][PF6], where (C,N,N)=deprotonated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine, to assess the chance of tracking their subcellular distribution by atomic force microscopy (AFM), and surface enhanced Raman spectroscopy (SERS) techniques. An extensive physicochemical characterization of the formed conjugates was, thus, carried out by applying a variety of methods (density functional theory-DFT, UV/Vis spectrophotometry, AFM, Raman spectroscopy, and SERS). The resulting gold(III) complexes/AuNPs conjugates turned out to be pretty stable. Interestingly, they exhibited a dramatically increased resonance intensity in the Raman spectra induced by AuNPs. For testing the use of the functionalized AuNPs for biosensing, their distribution in the nuclear, cytosolic, and membrane cell fractions obtained from human lymphocytes was investigated by AFM and SERS. The conjugates were detected in the membrane and nuclear cell fractions but not in the cytosol. The AFM method confirmed that conjugates induced changes in the morphology and nanostructure of the membrane and nuclear fractions. The obtained results point out that the conjugates formed between AuNPs and gold(III) complexes may be used as a tool for tracking metallodrug distribution in the different cell fractions.
Collapse
|
28
|
Nanostructured Materials Based on Noble Metals for Advanced Biological Applications. NANOMATERIALS 2019; 9:nano9111593. [PMID: 31717645 PMCID: PMC6915412 DOI: 10.3390/nano9111593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
This special issue focuses on highlighting the progress of last decade regarding the new nanostructured materials based on noble metals, especially gold and silver. Innovative preparations, functionalizations, and characterizations of these nanomaterials are investigated. Moreover, biotechnological applications, and advanced uses of these compounds for environmental sensing are reported. In particular gold and silver nanomaterials are widely studied due to their high stability, amazing chemical–physical features and, for silver, marked antibacterial properties. It is also hoped that the current special issue will encourage multidisciplinary research on noble metal nanomaterials, expanding the range of potential biological applications. This must be associated with improvements in synthetic methods and with economic feasibility studies of the proposed processes, also exploring the ecotoxicological aspects.
Collapse
|
29
|
Gold Nanoparticles and Nanorods in Nuclear Medicine: A Mini Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163232] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the last decade, many innovative nanodrugs have been developed, as well as many nanoradiocompounds that show amazing features in nuclear imaging and/or radiometabolic therapy. Their potential uses offer a wide range of possibilities. It can be possible to develop nondimensional systems of existing radiopharmaceuticals or build engineered systems that combine a nanoparticle with the radiopharmaceutical, a tracer, and a target molecule, and still develop selective nanodetection systems. This review focuses on recent advances regarding the use of gold nanoparticles and nanorods in nuclear medicine. The up-to-date advancements will be shown concerning preparations with special attention on the dimensions and functionalizations that are most used to attain an enhanced performance of gold engineered nanomaterials. Many ideas are offered regarding recent in vitro and in vivo studies. Finally, the recent clinical trials and applications are discussed.
Collapse
|
30
|
Venditti I. Engineered Gold-Based Nanomaterials: Morphologies and Functionalities in Biomedical Applications. A Mini Review. Bioengineering (Basel) 2019; 6:bioengineering6020053. [PMID: 31185667 PMCID: PMC6630817 DOI: 10.3390/bioengineering6020053] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
In the last decade, several engineered gold-based nanomaterials, such as spheres, rods, stars, cubes, hollow particles, and nanocapsules have been widely explored in biomedical fields, in particular in therapy and diagnostics. As well as different shapes and dimensions, these materials may, on their surfaces, have specific functionalizations to improve their capability as sensors or in drug loading and controlled release, and/or particular cell receptors ligands, in order to get a definite targeting. In this review, the up-to-date progress will be illustrated regarding morphologies, sizes and functionalizations, mostly used to obtain an improved performance of nanomaterials in biomedicine. Many suggestions are presented to organize and compare the numerous and heterogeneous experimental data, such as the most important chemical-physical parameters, which guide and control the interaction between the gold surface and biological environment. The purpose of all this is to offer the readers an overview of the most noteworthy progress and challenges in this research field.
Collapse
Affiliation(s)
- Iole Venditti
- Department of Sciences, University of Roma Tre, via della Vasca Navale 79, 00146 Rome, Italy.
| |
Collapse
|