1
|
Kao PF, Cheng CH, Cheng TH, Liu JC, Sung LC. Therapeutic Potential of Momordicine I from Momordica charantia: Cardiovascular Benefits and Mechanisms. Int J Mol Sci 2024; 25:10518. [PMID: 39408847 PMCID: PMC11477196 DOI: 10.3390/ijms251910518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Momordica charantia (bitter melon), a traditional medicinal plant, has been demonstrated to have potential in managing diabetes, gastrointestinal problems, and infections. Among its bioactive compounds, momordicine I, a cucurbitane-type triterpenoid, has attracted attention due to its substantial biological activities. Preclinical studies have indicated that momordicine I possesses antihypertensive, anti-inflammatory, antihypertrophic, antifibrotic, and antioxidative properties, indicating its potential as a therapeutic agent for cardiovascular diseases. Its mechanisms of action include modulating insulin signaling, inhibiting inflammatory pathways, and inducing apoptosis in cancer cells. The proposed mechanistic pathways through which momordicine I exerts its cardiovascular benefits are via the modulation of nitric oxide, angiotensin-converting enzymes, phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt), oxidative stress, apoptosis and inflammatory pathways. Furthermore, the anti-inflammatory effects of momordicine I are pivotal. Momordicine I might reduce inflammation through the following mechanisms: inhibiting pro-inflammatory cytokines, reducing adhesion molecules expression, suppressing NF-κB activation, modulating the Nrf2 pathway and suppressing c-Met/STAT3 pathway. However, its therapeutic use requires the careful consideration of potential side effects, contraindications, and drug interactions. Future research should focus on elucidating the precise mechanisms of momordicine I, validating its efficacy and safety through clinical trials, and exploring its pharmacokinetics. If proven effective, momordicine I could considerably affect clinical cardiology by acting as a novel adjunct or alternative therapy for cardiovascular diseases. To date, no review article has been published on the role of bitter-melon bioactive metabolites in cardiovascular prevention and therapy. The present work constitutes a comprehensive, up-to-date review of the literature, which highlights the promising therapeutic potential of momordicine I on the cardiovascular system and discusses future research recommendations.
Collapse
Affiliation(s)
- Pai-Feng Kao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-F.K.); (J.-C.L.)
| | - Chun-Han Cheng
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan;
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung City 404333, Taiwan;
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-F.K.); (J.-C.L.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11002, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11002, Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-F.K.); (J.-C.L.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11002, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11002, Taiwan
| |
Collapse
|
2
|
Shen Y, Zhao M, Zhao P, Meng L, Zhang Y, Zhang G, Taishi Y, Sun L. Molecular mechanisms and therapeutic potential of lithium in Alzheimer's disease: repurposing an old class of drugs. Front Pharmacol 2024; 15:1408462. [PMID: 39055498 PMCID: PMC11269163 DOI: 10.3389/fphar.2024.1408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Alsenani F. Unraveling potential neuroprotective mechanisms of herbal medicine for Alzheimer's diseases through comprehensive molecular docking analyses. Saudi J Biol Sci 2024; 31:103998. [PMID: 38681227 PMCID: PMC11053229 DOI: 10.1016/j.sjbs.2024.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024] Open
Abstract
Alzheimer's disease (AD) continues to be a worldwide health concern, demanding innovative therapeutic approaches. This study investigates the neuroprotective potential of herbal compounds by scrutinizing their interactions with Beta-Secretase-1 (BACE1). Through comprehensive molecular docking analyses, three compounds, Masticadienonic acid (ΔG: -9.6 kcal/mol), Hederagenin (ΔG: -9.3 kcal/mol), and Anthocyanins (ΔG: -8.1 kcal/mol), emerge as promising BACE1 ligands, displaying low binding energies and strong affinities. ADME parameter predictions, drug-likeness assessments, and toxicity analyses reveal favorable pharmacokinetic profiles for these compounds. Notably, Masticadienonic Acid exhibits optimal drug-likeness (-3.3736) and negligible toxicity concerns. Hederagenin (drug-likeness: -5.3272) and Anthocyanins (drug-likeness: -6.2041) also demonstrate promising safety profiles. Furthermore, pharmacophore modeling elucidates the compounds' unique interaction landscapes within BACE1's active site. Masticadienonic acid showcases seven hydrophobic interactions and a hydrogen bond acceptor interaction with Thr232. Hederagenin exhibits a specific hydrogen bond acceptor interaction with Trp76, emphasizing its selective binding. Anthocyanins reveal a multifaceted engagement, combining hydrophobic contacts and hydrogen bond interactions with key residues. In conclusion, Masticadienonic acid, Hederagenin, and Anthocyanins stand out as promising candidates for further experimental validation, presenting a synergistic balance of efficacy and safety in combating AD through BACE1 inhibition.
Collapse
Affiliation(s)
- Faisal Alsenani
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
4
|
Laczkó Zöld E, Toth LM, Farczadi L, Ştefănescu R. Polyphenolic profile and antioxidant properties of Momordica charantia L. 'Enaja' cultivar grown in Romania. Nat Prod Res 2024; 38:1060-1066. [PMID: 37211778 DOI: 10.1080/14786419.2023.2213805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
This is the first study describing phenolics of Momordica charantia L. 'Enaja' cultivar (bitter melon) produced in Romania. Total polyphenol content, total tannin content, total flavonoid content, and antioxidant activity of bitter melon stems and leaves, young fruits, and ripe fruits grown in Romania were analysed, along with fruits imported from India. The UPLC-DAD analysis led to the identification of (+)-catechin, (-)-epicatechin, luteolin-3',7-di-O-glucoside, luteolin-7-O-glucoside and vanillic acid. (-)-Epicatechin (859 µg/g) and (+)-catechin (1677 µg/g) were the most abundant compounds in stems and leaves, while in the ripe fruits, luteolin-7-O-glucoside (310 µg/g) was the main phenolic. Stems and leaves were the most active for capturing free DPPH radicals (IC50 = 216.9 ± 11.91 µg/ml); the scavenging activity strongly correlated with the flavonoid content (r = 0.8806, r2 = 0.7754). Momordica charantia fruits from Romania, both young and ripe, are a source of polyphenols as valuable as those imported from India.
Collapse
Affiliation(s)
- Eszter Laczkó Zöld
- Department of Pharmacognosy and Phytotherapy, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Mureș, Romania
| | - Larisa Melinda Toth
- Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Mureș, Romania
| | - Lenard Farczadi
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Mureș, Romania
| | - Ruxandra Ştefănescu
- Department of Pharmacognosy and Phytotherapy, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Mureș, Romania
| |
Collapse
|
5
|
Suswidiantoro V, Azmi NU, Lukmanto D, Saputri FC, Mun'im A, Jusuf AA. The neuroprotective potential of turmeric rhizome and bitter melon on aspartame-induced spatial memory impairment in rats. Heliyon 2023; 9:e21693. [PMID: 38027700 PMCID: PMC10665738 DOI: 10.1016/j.heliyon.2023.e21693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Aspartame is widely used artificial sweetener. However, chronic exposure to aspartame led to spatial memory impairment and elevated oxidative stress in the brain. Extract of turmeric rhizome (Curcuma longa) (TUR) and extract of bitter melon (Momordica charantia) (BM) is known to have antioxidant activity. The present study was aimed to examine the neuroprotective potential of TUR and BM extracts, either as single or as combination, against the effects of aspartame in the brain. Here, Sprague-Dawley rats fed with aspartame (40 mg/kg BW) for 28 days were compared with rats fed with extract and aspartame. To assess neuroprotective potential, rats were given extract 7 days before and during aspartame treatment. Spatial memory was assessed with Morris water maze test followed with H&E staining of hippocampal region. Brain lipid peroxidation and enzymatic activity of malondialdehyde (MDA), glutathione peroxidase (GPx), and Acetylcholinesterase (AChE) were measured to probe status of oxidative stress in the brain. Aspartame-treated rats demonstrated spatial memory impairment and reduced number of hippocampal cells and elevated levels of MDA, downregulated activity of GPx and elevated activity of AChE. In contrast, animals received both aspartame and extract demonstrated better spatial memory function, higher number of hippocampal areas, increased GPX activity, reduced MDA levels, and decreased AChE activity were observed in the brain of extract-treated rats. Taken together, our results suggest that extract of TUR rhizome and BM fruit exhibit antioxidant activity which may contribute to the neuroprotective effects against aspartame-induced memory impairment in rats.
Collapse
Affiliation(s)
- Vicko Suswidiantoro
- Laboratory of Pharmacology, Pharmacy Department, Universitas Aisyah Pringsewu, 35372, Lampung, Indonesia
| | - Nuriza Ulul Azmi
- Laboratory of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Donny Lukmanto
- Laboratory of Advanced Vision Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Fadlina Chany Saputri
- Laboratory of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, West Java, 16424, Indonesia
| | - Abdul Mun'im
- Laboratory of Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
| | - Ahmad Aulia Jusuf
- Laboratory of Histology, Faculty of Medicine, Universitas Indonesia, Kampus UI Salemba, Jakarta, 10440, Indonesia
| |
Collapse
|
6
|
Tandoro Y, Chen BK, Ali A, Wang CK. Review of Phytochemical Potency as a Natural Anti- Helicobacter pylori and Neuroprotective Agent. Molecules 2023; 28:7150. [PMID: 37894629 PMCID: PMC10609179 DOI: 10.3390/molecules28207150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Phytochemicals are plant secondary metabolites that show health benefits for humans due to their bioactivity. There is a huge variety of phytochemicals that have already been identified, and these compounds can act as antimicrobial and neuroprotection agents. Due to their anti-microbial activity and neuroprotection, several phytochemicals might have the potency to be used as natural therapeutic agents, especially for Helicobacter pylori infection and neurodegenerative disease, which have become a global health concern nowadays. According to previous research, there are some connections between H. pylori infection and neurodegenerative diseases, especially Alzheimer's disease. Hence, this comprehensive review examines different kinds of phytochemicals from natural sources as potential therapeutic agents to reduce H. pylori infection and improve neurodegenerative disease. An additional large-scale study is needed to establish the connection between H. pylori infection and neurodegenerative disease and how phytochemicals could improve this condition.
Collapse
Affiliation(s)
- Yohanes Tandoro
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
- Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya, Surabaya 60265, Indonesia
| | - Bo-Kai Chen
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Asif Ali
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| |
Collapse
|
7
|
Gayathry KS, John JA. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractBitter gourd is a tropical wine grown mainly in India, China and South East Asia. The plant is cultivated mainly for its fruit part which is edible. Bitter gourd is unaccepted widely due to its bitter taste. Nevertheless, the fruit is a source of several key nutrients. The plant, as a whole contains, more than 60 phyto-medicines that are active against more than 30 diseases, including cancer and diabetes. Currently, the incorporation of the bioactive compounds isolated from bitter gourd into functional foods and beverages finds a new horizon. Nanoencapsulation and novel green extraction methods can be employed to improve the yield and quality of extracted compounds and their stability while incorporation into food products. The present review is an attempt to throw light to nutritional aspects, various bioactive compounds present and important nutraceutical properties of the bitter gourd plant in detail.
Graphical Abstract
Collapse
|
8
|
Islam F, Khadija JF, Harun-Or-Rashid M, Rahaman MS, Nafady MH, Islam MR, Akter A, Emran TB, Wilairatana P, Mubarak MS. Bioactive Compounds and Their Derivatives: An Insight into Prospective Phytotherapeutic Approach against Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5100904. [PMID: 35450410 PMCID: PMC9017558 DOI: 10.1155/2022/5100904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative brain disorder that causes cellular response alterations, such as impaired cholinergic mechanism, amyloid-beta (Aβ) AD aggregation, neuroinflammation, and several other pathways. AD is still the most prevalent form of dementia and affects many individuals across the globe. The exact cause of the disorder is obscure. There are yet no effective medications for halting, preventing, or curing AD's progress. Plenty of natural products are isolated from several sources and analyzed in preclinical and clinical settings for neuroprotective effects in preventing and treating AD. In addition, natural products and their derivatives have been promising in treating and preventing AD. Natural bioactive compounds play an active modulatory role in the pathological molecular mechanisms of AD development. This review focuses on natural products from plant sources and their derivatives that have demonstrated neuroprotective activities and maybe promising to treat and prevent AD. In addition, this article summarizes the literature pertaining to natural products as agents in the treatment of AD. Rapid metabolism, nonspecific targeting, low solubility, lack of BBB permeability, and limited bioavailability are shortcomings of most bioactive molecules in treating AD. We can use nanotechnology and nanocarriers based on different types of approaches.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jannatul Fardous Khadija
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
9
|
Liang L, Zeng T, Zhao Y, Lu R, Guo B, Xie R, Tang W, Zhang L, Mao Z, Yang X, Wu S, Wang Y, Zhang H. Melatonin pretreatment alleviates the long-term synaptic toxicity and dysmyelination induced by neonatal Sevoflurane exposure via MT1 receptor-mediated Wnt signaling modulation. J Pineal Res 2021; 71:e12771. [PMID: 34585785 PMCID: PMC9285571 DOI: 10.1111/jpi.12771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022]
Abstract
Sevoflurane (Sev) is one of the most widely used pediatric anesthetics. The major concern of neonatal repeated application of Sev is its potential long-term impairment of cognition and learning/memory, for which there still lacks effective treatment. At the cellular level, Sev exerts toxic effects in multiple aspects, making it difficult for effective interference. Melatonin is a pineal hormone regulated by and feedbacks to biological rhythm at physiological condition. Recent studies have revealed significant neuroprotective effects of exogenous melatonin or its agonists under various pathological conditions. Whether melatonin could prevent the long-term toxicity of Sev remains elusive. Here, we report that neonatal repeated Sev exposure up-regulated MT1 receptor in hippocampal neurons and oligodendrocytes. Pretreatment with melatonin significantly alleviated Sev-induced synaptic deficiency, dysmyelination, and long-term learning impairment. Both MT1-shRNA and MT1 knockout effectively blocked the protective effects of melatonin on synaptic development, myelination, and behavior performance. Interestingly, long-lasting suppression of Wnt signaling, instead of cAMP/PKA signaling, was observed in hippocampal neurons and oligodendrocytes after neonatal Sev exposure. Pharmacologically activating Wnt signaling rescued both the long-term synaptic deficits and dysmyelination induced by Sev. Further analysis showed that MT1 receptor co-expressed well with β-catenin and Axin2 and bound to β-catenin by its C-terminal. Melatonin pretreatment effectively rescued Sev-induced Wnt suppression. Wnt signaling inhibitor XAV939 significantly compromised the protective effects of melatonin. Taken together, our data demonstrated a beneficial effect of melatonin pretreatment on the long-term synaptic impairment and dysmyelination induced by neonatal Sev exposure, and a novel MT1 receptor-mediated interaction between melatonin and canonical Wnt signaling, indicating that melatonin may be clinically applied for improving the safety of pediatric Sev anesthesia.
Collapse
Affiliation(s)
- Lirong Liang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Tian Zeng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Youyi Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Rui Lu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Baolin Guo
- Department of Neurobiology and Institute of NeurosciencesSchool of Basic MedicineFourth Military Medical UniversityXi’anChina
| | - Rougang Xie
- Department of Neurobiology and Institute of NeurosciencesSchool of Basic MedicineFourth Military Medical UniversityXi’anChina
| | - Wenjing Tang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Li Zhang
- Department of AnatomyInstitute of Basic Medical ScienceXi’an Medical UniversityXi’anChina
| | - Zirui Mao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Xinyu Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| | - Shengxi Wu
- Department of Neurobiology and Institute of NeurosciencesSchool of Basic MedicineFourth Military Medical UniversityXi’anChina
| | - Yazhou Wang
- Department of Neurobiology and Institute of NeurosciencesSchool of Basic MedicineFourth Military Medical UniversityXi’anChina
| | - Hui Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering ResearchDepartment of AnethesiologyCenter for Dental Materials and Advanced ManufactureSchool of StomatologyFourth Military Medical UniversityXi’anChina
| |
Collapse
|
10
|
Neumann NR, Thompson DC, Vasiliou V. AMPK activators for the prevention and treatment of neurodegenerative diseases. Expert Opin Drug Metab Toxicol 2021; 17:1199-1210. [PMID: 34632898 DOI: 10.1080/17425255.2021.1991308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION As the global population ages at an unprecedented rate, the burden of neurodegenerative diseases is expected to grow. Given the profound impact illness like dementia exert on individuals and society writ large, researchers, physicians, and scientific organizations have called for increased investigation into their treatment and prevention. Both metformin and aspirin have been associated with improved cognitive outcomes. These agents are related in their ability to stimulate AMP kinase (AMPK). Momordica charantia, another AMPK activator, is a component of traditional medicines and a novel agent for the treatment of cancer. It is also being evaluated as a nootropic agent. AREAS COVERED This article is a comprehensive review which examines the role of AMPK activation in neuroprotection and the role that AMPK activators may have in the management of dementia and cognitive impairment. It evaluates the interaction of metformin, aspirin, and Momordica charantia, with AMPK, and reviews the literature characterizing these agents' impact on neurodegeneration. EXPERT OPINION We suggest that AMPK activators should be considered for the treatment and prevention of neurodegenerative diseases. We identify multiple areas of future investigation which may have a profound impact on patients worldwide.
Collapse
Affiliation(s)
- Natalie R Neumann
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Huang HJ, Chen JL, Liao JF, Chen YH, Chieu MW, Ke YY, Hsu CC, Tsai YC, Hsieh-Li HM. Lactobacillus plantarum PS128 prevents cognitive dysfunction in Alzheimer's disease mice by modulating propionic acid levels, glycogen synthase kinase 3 beta activity, and gliosis. BMC Complement Med Ther 2021; 21:259. [PMID: 34627204 PMCID: PMC8502419 DOI: 10.1186/s12906-021-03426-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Background According to recent evidence, psychobiotics exert beneficial effects on central nervous system-related diseases, such as mental disorders. Lactobacillus plantarum PS128 (PS128), a novel psychobiotic strain, improves motor function, depression, and anxiety behaviors. However, the psychobiotic effects and mechanisms of PS128 in Alzheimer’s disease (AD) remain to be explored. Objectives The goal of the current study was to evaluate the beneficial effects of PS128 and to further elucidate its mechanism in AD mice. Methods PS128 (1010 colony-forming unit (CFU)/ml) was administered via oral gavage (o.g.) to 6-month-old male wild-type B6 and 3 × Tg-AD mice (harboring the PS1M146V, APPswe and TauP30IL transgenes) that received an intracerebroventricular injection of streptozotocin (icv-STZ, 3 mg/kg) or vehicle (saline) for 33 days. After serial behavioral tests, fecal short-chain fatty acid levels and AD-related pathology were assessed in these mice. Results Our findings show that intracerebroventricular injection of streptozotocin accelerated cognitive dysfunction associated with increasing levels of glycogen synthase kinase 3 beta (GSK3β) activity, tau protein phosphorylation at the T231 site (pT231), amyloid-β (Aβ) deposition, amyloid-β protein precursor (AβPP), β-site AβPP-cleaving enzyme (BACE1), gliosis, fecal propionic acid (PPA) levels and cognition-related neuronal loss and decreasing postsynaptic density protein 95 (PSD95) levels in 3 × Tg-AD mice. PS128 supplementation effectively prevented the damage induced by intracerebroventricular injection of streptozotocin in 3 × Tg-AD mice. Conclusions Based on the experimental results, intracerebroventricular injection of streptozotocin accelerates the progression of AD in the 3 × Tg-AD mice, primarily by increasing the levels of gliosis, which were mediated by the propionic acid and glycogen synthase kinase 3 beta pathways. PS128 supplementation prevents damage induced by intracerebroventricular injection of streptozotocin by regulating the propionic acid levels, glycogen synthase kinase 3 beta activity, and gliosis in 3 × Tg-AD mice. Therefore, we suggest that PS128 supplementation is a potential strategy to prevent and/or delay the progression of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03426-8.
Collapse
Affiliation(s)
- Hei-Jen Huang
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Jie-Ling Chen
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Jian-Fu Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yu-Hsin Chen
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Min-Wei Chieu
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Ya-Yun Ke
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | | | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
12
|
Li SS, He SH, Xie PY, Li W, Zhang XX, Li TF, Li DF. Recent Progresses in the Treatment of Osteoporosis. Front Pharmacol 2021; 12:717065. [PMID: 34366868 PMCID: PMC8339209 DOI: 10.3389/fphar.2021.717065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by aberrant microstructure and macrostructure of bone, leading to reduced bone mass and increased risk of fragile fractures. Anti-resorptive drugs, especially, bisphosphonates, are currently the treatment of choice in most developing countries. However, they do have limitations and adverse effects, which, to some extent, helped the development of anabolic drugs such as teriparatide and romosozumab. In patients with high or very high risk for fracture, sequential or combined therapies may be considered with the initial drugs being anabolic agents. Great endeavors have been made to find next generation drugs with maximal efficacy and minimal toxicity, and improved understanding of the role of different signaling pathways and their crosstalk in the pathogenesis of OP may help achieve this goal. Our review focused on recent progress with regards to the drug development by modification of Wnt pathway, while other pathways/molecules were also discussed briefly. In addition, new observations made in recent years in bone biology were summarized and discussed for the treatment of OP.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng-Yu Xie
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Xin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
DRD1 agonist A-68930 improves mitochondrial dysfunction and cognitive deficits in a streptozotocin-induced mouse model. Brain Res Bull 2021; 175:136-149. [PMID: 34284074 DOI: 10.1016/j.brainresbull.2021.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by irreversible cognitive deficits and memory dysfunction. Dopamine is the most abundant catecholaminergic neurotransmitter in the brain which regulates motivation, reward, movement, and cognition. Recently, increasing evidences have shown that dopaminergic system is disturbed in AD conditions, and pharmacological interventions targeting dopamine D1 receptor (DRD1) exhibit certain therapeutic benefits in AD models. However, the underlying link between DRD1 and AD remains elusive. This study sought to test whether the selective DRD1 agonist A-68930 could improve streptozotocin (STZ)-induced cognitive impairment in mice. Here we found that A-68930 treatment through intraperitoneal injection efficiently alleviated STZ-induced cognitive deficits in mice. Moreover, our mechanism researches revealed that the DRD1 signaling induced by A-68930 significantly rescued STZ-induced mitochondrial biogenesis deficit, mitochondrial dysfunction, Aβ overexpression, and tau phosphorylation in mice hippocampus and cortex and SH-SY5Y cells, which may be mediated through stimulating AMPK/PGC-1α pathway. This study indicates that DRD1 agonist A-68930 can improve STZ-induced cognitive deficits and mitochondrial dysfunction in vivo and in vitro, and DRD1 may represent an appropriate target candidate for AD drug development.
Collapse
|
14
|
Hsu SK, Hung CF, Yang HC, Weng JR, Wang SJ. TCD, a triterpenoid isolated from wild bitter gourd, reduces synaptosomal release of glutamate and protects against kainic acid-induced neuronal death. Food Funct 2021; 11:9858-9867. [PMID: 33089839 DOI: 10.1039/d0fo02039g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
3β,7β,25-Trihydroxycucurbita-5,23(E)-dien-19-al (TCD) is a triterpenoid isolated from wild bitter gourd that is a common tropical vegetable with neuroprotective effects. Because excessive glutamate release is a major cause of neuronal damage in various neurological disorders, the aims of this study were to examine the effect of TCD on glutamate release in vitro and to examine the effect of TCD in vivo. In rat cerebrocortical synaptosomes, TCD reduced 4-aminopyridine (4-AP)-stimulated glutamate release and Ca2+ concentration elevation, but had no effect on plasma membrane potential. TCD-mediated inhibition of 4-AP-induced glutamate release was dependent on the presence of extracellular calcium; persisted in the presence of the glutamate transporter inhibitor dl-TBOA, P/Q-type Ca2+ channel blocker ω-agatoxin IVA, and intracellular Ca2+-releasing inhibitors dantrolene and CGP37157; and was blocked by the vesicular transporter inhibitor bafilomycin A1 and the N-type Ca2+ channel blocker ω-conotoxin GVIA. Molecular docking studies have demonstrated that TCD binds to N-type Ca2+ channels. TCD-mediated inhibition of 4-AP-induced glutamate release was abolished by the Ca2+-dependent protein kinase C (PKC) inhibitor Go6976, but was unaffected by the Ca2+-independent PKC inhibitor rottlerin. Furthermore, TCD considerably reduced the phosphorylation of PKC, PKCα, and myristoylated alanine-rich C kinase substrate, a major presynaptic substrate for PKC. In a rat model of kainic acid (KA)-induced excitotoxicity, TCD pretreatment substantially attenuated KA-induced neuronal death in the CA3 hippocampal region. These results suggest that TCD inhibits synaptosomal glutamate release by suppressing N-type Ca2+ channels and PKC activity and exerts protective effects against KA-induced excitotoxicity in vivo.
Collapse
Affiliation(s)
- Szu Kai Hsu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | | | | | | | | |
Collapse
|
15
|
Chen X, Drew J, Berney W, Lei W. Neuroprotective Natural Products for Alzheimer's Disease. Cells 2021; 10:1309. [PMID: 34070275 PMCID: PMC8225186 DOI: 10.3390/cells10061309] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the number one neurovegetative disease, but its treatment options are relatively few and ineffective. In efforts to discover new strategies for AD therapy, natural products have aroused interest in the research community and in the pharmaceutical industry for their neuroprotective activity, targeting different pathological mechanisms associated with AD. A wide variety of natural products from different origins have been evaluated preclinically and clinically for their neuroprotective mechanisms in preventing and attenuating the multifactorial pathologies of AD. This review mainly focuses on the possible neuroprotective mechanisms from natural products that may be beneficial in AD treatment and the natural product mixtures or extracts from different sources that have demonstrated neuroprotective activity in preclinical and/or clinical studies. It is believed that natural product mixtures or extracts containing multiple bioactive compounds that can work additively or synergistically to exhibit multiple neuroprotective mechanisms might be an effective approach in AD drug discovery.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Joshua Drew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wren Berney
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325, USA
| |
Collapse
|
16
|
Grape seed proanthocyanidins ameliorate neuronal oxidative damage by inhibiting GSK-3β-dependent mitochondrial permeability transition pore opening in an experimental model of sporadic Alzheimer's disease. Aging (Albany NY) 2020; 11:4107-4124. [PMID: 31232699 PMCID: PMC6628984 DOI: 10.18632/aging.102041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria-associated oxidative stress plays a crucial role in Alzheimer’s disease (AD). Grape seed proanthocyanidins (GSPs) have been reported to prevent oxidative stress. In this study, we investigated the underlying mechanisms of GSPs in protecting neurons against oxidative injury in an experimental model of sporadic AD. Primary mouse cortical neurons were subjected to streptozotocin (STZ) to mimic neuronal oxidative damage in vitro, and mice were subjected to intracerebroventricular (ICV) injection of STZ as an in vivo sporadic AD model. GSPs not only significantly ameliorated neuron loss and mitochondrial dysfunction in mouse cortical neurons pretreated of STZ, but also reduced cognitive impairments, apoptosis and mitochondrial oxidative stress in the cerebral cortex and hippocampus of sporadic AD mice. Moreover, GSPs increased phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), Akt and glycogen synthase kinase 3β (GSK-3β) at its Ser9. Notably, GSPs inhibited STZ-induced mitochondrial permeability transition pore (mPTP) opening via enhancing phosphorylated GSK-3β (p-GSK-3β) binds to adenine nucleotide translocator (ANT), thereby reducing the formation of the complex ANT-cyclophilin D (CypD). In conclusion, GSPs ameliorate neuronal oxidative damage and cognitive impairment by inhibiting GSK-3β-dependent mPTP opening in AD. Our study provides new insights into that GSPs may be a new therapeutic candidate for treatment of AD.
Collapse
|
17
|
Potential Biomarkers of Peripheral and Central Fatigue in High-Intensity Trained Athletes at High-Temperature: A Pilot Study with Momordica charantia (Bitter Melon). J Immunol Res 2020; 2020:4768390. [PMID: 32587872 PMCID: PMC7298321 DOI: 10.1155/2020/4768390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022] Open
Abstract
Among potent dietary supplements, Momordica charantia, commonly called bitter melon, has various biological effects, such as antioxidant and anti-inflammatory effects, and improves energy metabolism and fatigue recovery. However, it is unknown whether Momordica charantia extract (MCE) induces antifatigue effects during exercise training in high-temperature environments. This study aimed at investigating the efficacy of MCE by examining 10 male tennis players consuming 100 mL MCE/dose (6 times a day over 4 weeks) during the summer training season. Peripheral (ammonia and uric acid) and central (serotonin, dopamine, and prolactin) fatigue parameters were measured before and after MCE consumption; before, during, and after exercise; and the next morning. After consuming MCE supplements, ammonia levels were higher during and after exercise and recovered the next morning, whereas uric acid levels did not change at any time point. Serotonin levels were lower during exercise. Dopamine levels were higher, especially during exercise. Prolactin levels were lower at all time points, especially during and after exercise. Although high-intensity training in a hot environment causes accumulation of fatigue-related metabolites, our results indicate that 4 weeks of MCE intake positively influenced fatigue parameters, suggesting that MCE can efficiently combat fatigue.
Collapse
|
18
|
Chung YH, Lin CW, Huang HY, Chen SL, Huang HJ, Sun YC, Lee GC, Lee-Chen GJ, Chang YC, Hsieh-Li HM. Targeting Inflammation, PHA-767491 Shows a Broad Spectrum in Protein Aggregation Diseases. J Mol Neurosci 2020; 70:1140-1152. [PMID: 32170713 DOI: 10.1007/s12031-020-01521-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Many protein aggregation diseases (PAD) affect the nervous system. Deposits of aggregated disease-specific proteins are found within or around the neuronal cells of neurodegenerative diseases. Although the main protein component is disease-specific, oligomeric aggregates are presumed to be the key agents causing the neurotoxicity. Evidence has shown that protein aggregates cause a chronic inflammatory reaction in the brain, resulting in neurodegeneration. Therefore, strategies targeting anti-inflammation could be beneficial to the therapeutics of PAD. PHA-767491 was originally identified as an inhibitor of CDC7/CDK9 and was found to reduce TDP-43 phosphorylation and prevent neurodegeneration in TDP-43 transgenic animals. We recently identified PHA-767491 as a GSK-3β inhibitor. In this study, we established mouse hippocampal primary culture with tau-hyperphosphorylation through the activation of GSK-3β using Wortmannin and GF109203X. We found that PHA-767491 significantly improved the neurite outgrowth of hippocampal primary neurons against the neurotoxicity induced by GSK-3β. We further showed that PHA-767491 had neuroprotective ability in hippocampal primary culture under oligomeric Aβ treatment. In addition, PHA-767491 attenuated the neuroinflammation in mouse cerebellar slice culture with human TBP-109Q agitation. Further study of SCA17 transgenic mice carrying human TBP-109Q showed that PHA-767491 ameliorated the gait ataxia and the inflammatory response both centrally and peripherally. Our findings suggest that PHA-767491 has a broad spectrum of activity in the treatment of different PAD and that this activity could be based on the anti-inflammation mechanism.
Collapse
Affiliation(s)
- Yu-Han Chung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Yu Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guan-Chiun Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Ching Chang
- Department of Pharmacy, Taiwan Adventist Hospital, Taipei, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
19
|
Bai J, Xu Y, Dieo Y, Sun G. Combined low-dose LiCl and LY294002 for the treatment of osteoporosis in ovariectomized rats. J Orthop Surg Res 2019; 14:177. [PMID: 31196133 PMCID: PMC6567919 DOI: 10.1186/s13018-019-1210-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To provide a low-toxicity and high-efficacy clinical treatment for osteoporosis via a novel combination of LiCl and LY294002. METHODS The protein levels of p-AKT, AKT, p-GSK3β, GSK3β, β-catenin, p-β-catenin, and NFATC1 were measured in osteoblasts and osteoclasts by Western blot. ALP activity and TRACP activity were measured using the corresponding kit. The levels of BALP, PINP, CTX, and TRACP-5b were determined in accordance with the requirements of the ELISA kits. Microstructural analysis was performed on the left distal femur using microcomputed tomography. RESULTS Treatment with the combination of LiCl and LY294002 led to a markedly increased osteoblast activity but significantly decreased osteoclast differentiation and bone absorption capacity compared with the treatment with LiCl or LY294002 alone (P < 0.01). In serum, the low-dose combination of LiCl and LY294002 significantly enhanced BALP levels (P < 0.01) and significantly decreased PINP, TRACP-5b, and CTX levels (P < 0.01) compared with the application of either drug alone. CONCLUSIONS This study indicates that drug combinations directed at multiple targets could be used for osteoporosis treatment by promoting osteoblast proliferation and inhibiting differentiation with high efficiency.
Collapse
Affiliation(s)
- Jianhai Bai
- Department of Ophthalmology, Taizhou Central Hospital (Taizhou University Hospital), 999 Donghaidadao St, Jiaojiang District, Taizhou, 318000, Zhejiang Province, China
| | - Yier Xu
- The Fourth Affiliated Hospital of Nanchang University, 133 Guangchangnan St., Xihu District, Nanchang, China
| | - Yan Dieo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Guicai Sun
- The Fourth Affiliated Hospital of Nanchang University, 133 Guangchangnan St., Xihu District, Nanchang, China.
| |
Collapse
|