1
|
Jia M, Fu Z, Ye C, Xu W, Liu J, Wu C, Yan H. Targeting MTHFD2 alters metabolic homeostasis and synergizes with bortezomib to inhibit multiple myeloma. Cell Death Discov 2025; 11:201. [PMID: 40280919 PMCID: PMC12032361 DOI: 10.1038/s41420-025-02498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. While recent therapies have significantly improved survival in MM patients, drug resistance and refractory phenomenon underscores the urgent need of new therapeutic targets. Methylenetetrahydrofolate dehydrogenase 2(MTHFD2) has been widely reported as a potential and promising anti-cancer target, but its role and underlying mechanisms remain unclear in MM. We aimed to investigate the biologic function and mechanisms of MTHFD2 in MM. First, we demonstrated that MTHFD2 is overexpressed in MM and associated with poor prognosis. We then illustrated that targeting MTHFD2 exhibits anti-MM effects in vitro and in vivo. Mechanistically, targeting MTHFD2 inhibited glycolysis and mitochondrial respiration in MM cells. For the nonmetabolic function of MTHFD2, we found that MTHFD2 knockdown affected the unfolded protein response (UPR) via decreasing expression of the splice form of X-box binding protein 1 (XBP1s). Importantly, the level of MTHFD2 in MM cells was associated with sensitivity of bortezomib, and targeting MTHFD2 synergizes with bortezomib against MM in vitro and in vivo. In summary, our innovative findings suggest that MTHFD2 is a promising target for MM, targeting it alters metabolic homeostasis of MM and synergizes with bortezomib to inhibit MM.
Collapse
Affiliation(s)
- Mingyuan Jia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjing Ye
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Xu
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyu Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Chen L, Zhang L, Zhao Y, He M, Wu H, Wang J, Chen Z, Zhao Y, Shen F, Zhang X. Impact of DNA methylation on digestive and metabolic gene expression in red pandas (Ailurus fulgens) during the transition from milk to bamboo diet. BMC Genomics 2025; 26:404. [PMID: 40275147 PMCID: PMC12023452 DOI: 10.1186/s12864-025-11606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND DNA methylation plays a crucial role in species development and environmental adaptation. In mammals, there are significant dietary changes from infancy to adulthood. Notably, the red panda transitions from milk consumption as juveniles to a bamboo-based diet as adults, with significant alterations in food characteristics and nutritional content. However, the regulatory role of DNA methylation in this process remains unclear. In this study, we investigate the regulatory role of DNA methylation on the expression of digestive and metabolic genes in the liver and pancreas during the red panda's dietary transition from suckling stage to adulthood. RESULTS Our findings reveal significant differences in DNA methylation patterns before and after dietary transition, highlighting the specific alterations in the methylation profiles of genes involved in lipid, carbohydrate, and amino acid metabolism. We found that perilipin-4 (PLIN4) is hypomethylated and highly expressed in the liver of adult red pandas, facilitating lipid droplet formation and storage, crucial for adapting to the low-fat content in bamboo. In contrast, genes like lipoprotein lipase (LPL), crucial for lipid breakdown, exhibited hypermethylated with low-expression patterns, reflecting a reduced lipid metabolism capacity in adults. Carbohydrate metabolism-related genes like ADH4 and FAM3C are hypomethylated and highly expressed in adults, enhancing glycogen production and glucose utilization. Genes involved in protein metabolism like CTSZ and GLDC, exhibit hypomethylated with high-expression and hypermethylated with low-expression patterns in the pancreas of adults, respectively, contributing to protein metabolism balance post-weaning. CONCLUSION This study reveals the regulatory role of DNA methylation in the dietary transition of red pandas from milk to bamboo and provides methylation evidence for the molecular regulation of adaptive expression of digestive and metabolic genes in red pandas with specialized diets.
Collapse
Affiliation(s)
- Lei Chen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Liang Zhang
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, China
| | - Yanni Zhao
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Dujiangyan, 611800, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Dujiangyan, 611800, China
| | - Jingheng Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Zhoulong Chen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yongqi Zhao
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Chalkley MBL, Guerin LN, Iyer T, Mallahan S, Nelson S, Sahin M, Hodges E, Ess KC, Ihrie RA. Human TSC2 mutant cells exhibit aberrations in early neurodevelopment accompanied by changes in the DNA Methylome. Hum Mol Genet 2025; 34:684-698. [PMID: 39877967 PMCID: PMC11973902 DOI: 10.1093/hmg/ddae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1). While TSC neurological phenotypes are well-documented, it is not yet known how early in neural development TSC1/2-mutant cells diverge from the typical developmental trajectory. Another outstanding question is the contribution of homozygous-mutant cells to disease phenotypes and whether phenotypes are also present in the heterozygous-mutant populations that comprise the vast majority of cells in patients. Using TSC patient-derived isogenic induced pluripotent stem cells (iPSCs) with defined genetic changes, we observed aberrant early neurodevelopment in vitro, including misexpression of key proteins associated with lineage commitment and premature electrical activity. These alterations in differentiation were coincident with hundreds of differentially methylated DNA regions, including loci associated with key genes in neurodevelopment. Collectively, these data suggest that mutation or loss of TSC2 affects gene regulation and expression at earlier timepoints than previously appreciated, with implications for whether and how prenatal treatment should be pursued.
Collapse
Affiliation(s)
- Mary-Bronwen L Chalkley
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
| | - Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
| | - Tenhir Iyer
- Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, Tennessee, 37232, United States of America
| | - Samantha Mallahan
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
| | - Sydney Nelson
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, United States of America
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Kevin C Ess
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, Tennessee, 37232, United States of America
- Department of Pediatrics - Neurology, University of Colorado Anschutz Medical Campus, 13123 E. 16th Ave., Aurora, Colorado, 80045, United States of America
| | - Rebecca A Ihrie
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Ave, Nashville, TN, 37232, USA
- Department of Pediatrics - Neurology, University of Colorado Anschutz Medical Campus, 13123 E. 16th Ave., Aurora, Colorado, 80045, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, Tennessee, 37232, United States of America
| |
Collapse
|
4
|
Matsuda S, Nakashima M, Fukumoto A, Suga N. N6-Methyladenosine Modification in the Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2025; 17:1158. [PMID: 40218916 PMCID: PMC11990428 DOI: 10.3390/nu17071158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Epigenetics of N6-methyladenine (m6A) modification may play a key role during the regulation of various diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). The m6A modification has been shown to be accomplished via the exploitation of several players such as methyltransferases, demethylases, and/or methylation-binding molecules. Significantly, the m6A methylation can regulate the key eukaryotic transcriptome by affecting the subcellular localization, splicing, export, stability, translation, and decay of those RNAs. An increasing amount of data has designated that the m6A modification of RNAs can also modulate the expression of autophagy-related genes, which could also control the autophagy in hepatocytes. Oxidative stress with reactive oxygen species (ROS) can induce m6A RNA methylation, which might be associated with the regulation of mitochondrial autophagy (mitophagy) and/or the development of MASLD. Therefore, both autophagy and the m6A modification could play important roles in regulating the pathogenesis of MASLD. Comprehending the relationship between m6A and mitophagy may be helpful for the development of future therapeutic strategies against MASLD. This review would advance the understanding of the regulatory mechanisms of m6A RNA modification, focusing on the impact of mitochondrial dysregulation and mitophagy in the liver with MASLD.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | | | | | | |
Collapse
|
5
|
Sönmez G, Yağcı Gurbanov T. Structural features of DNA and their potential contribution to blind mole rat (Nannospalax xanthodon) longevity. Biogerontology 2025; 26:78. [PMID: 40131556 PMCID: PMC11937196 DOI: 10.1007/s10522-025-10221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Recent research has shifted the focus from the genetic code of DNA to its structural variations, which significantly impact cancer, genetic diseases, and gene regulation. Structural changes, such as the transition from B-DNA to A-DNA, influence DNA stability and flexibility and are affected by factors like DNA methylation and sugar puckering. This study is the first to investigate the relationship between DNA conformational changes and lifespan in two rodent species. The analysis focused on long-lived Nannospalax xanthodon and shorter-lived Rattus rattus, utilizing infrared spectroscopy and principal component analysis (PCA) to examine liver DNA. Results indicated that transition from B-form to A- and Z-forms were more prevalent in N. xanthodon than in R. rattus. However, the dominant DNA conformations in both species are in B-form. Additionally, N-type sugar puckers (C3-endo conformation), associated with these DNA forms, were more prominent in N. xanthodon. In contrast, S-type sugar puckers (C2-endo conformation), characteristic of B-DNA, were found at lower levels in N. xanthodon. Furthermore, the variations in methylation-specific structural modifications of nucleobases were quantitatively assessed among these species. The study proposes a significant connection between the long lifespan of N. xanthodon, which live underground, and their unique DNA structure, offering insights into how different DNA forms, as well as the conformations of their backbone and sugar-base components, may affect longevity, highlighting potential research avenues regarding the biomolecular aspects of aging.
Collapse
Affiliation(s)
- Gamzenur Sönmez
- Department of Molecular Biology, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Türkiye
| | - Tuba Yağcı Gurbanov
- Department of Molecular Biology, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Türkiye.
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Şeyh Edebali University, Bilecik, Türkiye.
| |
Collapse
|
6
|
Zhang L, Peng Y, Huang S, Zhong L. Integrative analysis of DNA methylation and gene expression in skin cutaneous melanoma by bioinformatic approaches. Arch Dermatol Res 2025; 317:545. [PMID: 40067504 PMCID: PMC11897118 DOI: 10.1007/s00403-025-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/15/2025]
Abstract
Skin cutaneous melanoma represents a significant threat among skin cancers. Investigating key methylated genes with prognostic implications remains an area ripe for exploration in this field. This study aims to identify survival-associated methylated genes and their specific methylation sites in skin cutaneous melanoma through integrated bioinformatic analysis. Utilizing data from the Cancer Genome Atlas database, gene methylation and expression files were analyzed. The results indicate that patients with skin cutaneous melanoma exhibiting high expression of hypomethylated HHEX experience better outcomes compared to those with low expression of hypermethylated HHEX. Furthermore, fifteen methylation sites within HHEX were found to significantly correlate with its expression levels. Expression of HHEX demonstrated a downward trend across pathological stages I-IV. The identified driven gene, HHEX, likely plays a crucial role in the survival of skin cutaneous melanoma patients. These findings provide new epigenetic insights and potential targets for early prognosis prediction in skin cutaneous melanoma.
Collapse
Affiliation(s)
- Liming Zhang
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuchuan Peng
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shan Huang
- Department of Otolaryngology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liang Zhong
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
7
|
Chen N, Zhang J, Yin C, Liao Y, Song L, Hu T, Pan X. Abnormal methylation of Mill1 gene regulates osteogenic differentiation involved in various phenotypes of skeletal fluorosis in rats and methionine intervention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117519. [PMID: 39674021 DOI: 10.1016/j.ecoenv.2024.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Excessive fluoride intake can lead to skeletal fluorosis. Nutritional differences in the same fluoride-exposed environment result in osteosclerosis, osteoporosis, and osteomalacia. DNA methylation has been found to be involved in skeletal fluorosis and is influenced by environment and nutrition. In a previous study, we screened eight genes with differential methylation associated with various phenotypes of skeletal fluorosis. By combining gene functions, Mill1 gene was selected for subsequent experiments. First, we found that the Mill1 gene was hypomethylated and upregulated in osteosclerosis skeletal fluorosis, whereas it was hypermethylated and downregulated in osteoporosis/osteomalacia skeletal fluorosis. Similar results were obtained in the cell experiments. Subsequently, we validated the regulation of Mill1 gene methylation using DNMT1 and TET2 enzyme inhibitors. Furthermore, we knockdown and overexpression experiments confirmed its downregulation inhibited osteogenic differentiation, whereas osteogenic differentiation was promoted by its overexpression. These findings imply that abnormal methylation of the Mill1 gene triggered by fluoride under diverse nutritional conditions, regulates its expression and participates in osteogenic differentiation, potentially resulting in various phenotypes of skeletal fluorosis. Eventually, we use methionine for interventions both in vivo and in vitro. The results indicated that under normal nutrition and fluoride exposure followed by methionine intervention, the methylation levels of the Mill1 gene increased, whereas its high expression and enhanced osteogenic differentiation were restrained. This study offers a theoretical foundation for understanding the mechanism behind the various phenotypes of skeletal fluorosis through the perspective of DNA methylation and for employing nutrients to intervene in skeletal fluorosis.
Collapse
Affiliation(s)
- Niannian Chen
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Jing Zhang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Congyu Yin
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yudan Liao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Lei Song
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Ting Hu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Xueli Pan
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
8
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
9
|
Meng Y, Meng Y, Li L, Li Y, He J, Shan Y. The role of DNA methylation in placental development and its implications for preeclampsia. Front Cell Dev Biol 2024; 12:1494072. [PMID: 39691449 PMCID: PMC11649665 DOI: 10.3389/fcell.2024.1494072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Preeclampsia (PE) is a prevalent and multifaceted pregnancy disorder, characterized by high blood pressure, edema, proteinuria, and systemic organ dysfunction. It remains one of the leading causes of pregnancy complications, yet its exact origins and pathophysiological mechanisms are not fully understood. Currently, the only definitive treatment is delivery, often requiring preterm termination of pregnancy, which increases neonatal and maternal morbidity and mortality rates, particularly in severe cases. This highlights the urgent need for further research to elucidate its underlying mechanisms and develop targeted interventions. PE is thought to result from a combination of factors, including inflammatory cytokines, trophoblast dysfunction, and environmental influences, which may trigger epigenetic changes, particularly DNA methylation. The placenta, a vital organ for fetal and maternal exchange, plays a central role in the onset of PE. Increasing evidence suggests a strong association between DNA methylation, placental function, and the development of PE. This review focuses on the impact of DNA methylation on placental development and its contribution to PE pathophysiology. It aims to clarify the epigenetic processes essential for normal placental development and explore potential epigenetic biomarkers and therapeutic targets for PE. Such insights could lead to the development of novel preventive and therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Yizi Meng
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yimei Meng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Li
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yuan Li
- Department of General Gynecology I, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Brinkman MT, Crofts S, Green H. The use of nutrigenomics and nutritional biomarkers with standard care of long-term recurrent metastatic rectal cancer: a case report. Front Oncol 2024; 14:1451675. [PMID: 39687889 PMCID: PMC11646835 DOI: 10.3389/fonc.2024.1451675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Distant metastases following standard treatment for locally advanced rectal cancer (LARC) are typically associated with poor disease-free survival. We report on a 52-year-old Australian male of Dutch ancestry with no family history of colorectal cancer or significant medical history who experienced bleeding per rectum for several months prior to a colonoscopy in July 2010. He was subsequently diagnosed with Stage IIb LARC. Case presentation Despite treatment with curative intent, a distant recurrence to his left lung was detected in May 2012, upstaging him to Stage IV rectal cancer. He had repeated distant metastatic recurrences over the next 8 years, and treatment included multiple surgeries, chemotherapies, radiation treatments, a "watch and wait" period of 20 months, and personalised dietary management. Genetic and nutrigenomic testing identified that the case had KRAS and MTHFR mutations. As part of his dietary management, the case also had his levels of folate, vitamin B12, and vitamin D regularly monitored because of his genetic predisposition and history of deficiency for these key nutrients. Apart from changes in his CEA levels, sudden increases in the patient's folate levels, inconsistent with dietary exposures preceded detection of each new distant recurrence, with significant decreases in the levels at the next follow-up measurement. Conclusion A multimodal approach to this patient's management appeared to contribute to his long-term survival of nearly 10 years from the initial diagnosis. Multidisciplinary management, including the use of additional biomarkers, may enhance survival rates in other similar cases with advanced disease resistant to differing therapies, and with potentially poor prognosis.
Collapse
Affiliation(s)
- Maree T. Brinkman
- Department of Clinical Studies and Nutritional Epidemiology, Nutrition Biomed Research Institute, Melbourne, VIC, Australia
| | | | | |
Collapse
|
11
|
Jahan I, Islam MA, Harun-Ur-Rashid M, Sultana GNN. Cancer prevention at the microscopic level with the potent power of micronutrients. Heliyon 2024; 10:e39680. [PMID: 39553634 PMCID: PMC11564030 DOI: 10.1016/j.heliyon.2024.e39680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, necessitating ongoing exploration of effective prevention strategies. Micronutrients, vital for maintaining cellular health, offer promising avenues for cancer prevention. This review delineates the critical roles of micronutrients in cancer prevention, elucidating their mechanisms at the cellular level. Focusing on essential vitamins and minerals like Vitamins A, C, D, E, selenium, and zinc, we explore their profound effects on fundamental cellular processes such as DNA repair, oxidative stress regulation, cellular proliferation, and immune surveillance. These nutrients, characterized by their antioxidative, anti-inflammatory, and immune-enhancing properties, have shown potential in reducing the risk of cancer. The article synthesizes outcomes from a broad spectrum of clinical trials, epidemiological studies, and systematic reviews to evaluate the efficacy of micronutrients in thwarting cancer development. This critical analysis explores significant trials, addresses controversies in nutrient efficacy, and highlights the implications for clinical practice and public health policy. The review underscores the importance of integrating nutritional strategies into comprehensive cancer prevention frameworks and suggests directions for future research to optimize the preventive potentials of micronutrients.
Collapse
Affiliation(s)
- Israt Jahan
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Aminul Islam
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Dhaka, 1230, Bangladesh
| | - Gazi Nurun Nahar Sultana
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
12
|
Zhang L, Peng Y, Kong Y, Zhang X, Li Z, Jia H. The unique presentation of the relationship between red blood cell folate and appendicular skeletal muscle mass: a cross-sectional study. Sci Rep 2024; 14:27263. [PMID: 39516506 PMCID: PMC11549303 DOI: 10.1038/s41598-024-76693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The overconsumption of folic acid has been associated with deleterious health effects; however, the extant body of research on this matter remains controversial. The principal objective of our investigation was to scrutinize the correlation between red blood cell (RBC) folate levels and appendicular skeletal muscle mass (ASM) among adult individuals. A total of 4117 adults aged over 20 years were included. The weighted prevalence of low muscle mass status (LMMS) was 14.50%. The correlation between RBC folate and ASM showed an inverted U-shaped curve. When the RBC folate concentration is below 500 nmol/L, ASM increases with increasing RBC folate concentration. However, when the RBC folate level exceeds 500 nmol/L, ASM decreases with increased RBC folate level. After correcting multiple confounding factors, a positive correlation was found between RBC folate and LMMS (p < 0.001). Compared with the RBC folate first quartile, the multivariable-adjusted ORs and 95% CIs of the second quartile, third quartile, and highest quartile were 1.08(0.81-1.44), 1.06(0.79-1.43), and 1.96(1.47-2.61), respectively. Our research suggested that excessive levels of RBC folate may be associated with an increased risk of LMMS in adults. Thus, being more cautious when considering folic acid supplementation is recommended.
Collapse
Affiliation(s)
- Liangchuan Zhang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China
| | - Yating Peng
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China
| | - Yuan Kong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China
| | - Xue Zhang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China
| | - Zetian Li
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China
| | - Hong Jia
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China.
- Science and Technology Department, Southwest Medical University, Luzhou City, 646000, Sichuan Province, China.
| |
Collapse
|
13
|
Zhang L, Chen L, Jiang Y, Jin G, Yang J, Sun H, Liang J, Lv G, Yang Q, Yi S, Chen G, Liu W, Ou J, Yang Y. Cross-species metabolomic profiling reveals phosphocholine-mediated liver protection from cold and ischemia/reperfusion. Am J Transplant 2024; 24:1979-1993. [PMID: 38878865 DOI: 10.1016/j.ajt.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Cold and ischemia/reperfusion (IR)-associated injuries are seemingly inevitable during liver transplantation and hepatectomy. Because Syrian hamsters demonstrate intrinsic tolerance to transplantation-like stimuli, cross-species comparative metabolomic analyses were conducted with hamster, rat, and donor liver samples to seek hepatic cold and IR-adaptive mechanisms. Lower hepatic phosphocholine contents were found in recipients with early graft-dysfunction and with virus-caused cirrhosis or high model for end-stage liver disease scores (≥30). Choline/phosphocholine deficiency in cultured human THLE-2 hepatocytes and animal models weakened hepatocellular cold tolerance and recovery of glutathione and ATP production, which was rescued by phosphocholine supplements. Among the biological processes impacted by choline/phosphocholine deficiency, 3 lipid-related metabolic processes were downregulated, whereas phosphocholine elevated the expression of genes in methylation processes. Consistently, in THLE-2, phosphocholine enhanced the overall RNA m6A methylation, among which the transcript stability of fatty acid desaturase 6 (FADS6) was improved. FADS6 functioned as a key phosphocholine effector in the production of polyunsaturated fatty acids, which may facilitate the hepatocellular recovery of energy and redox homeostasis. Thus, our study reveals the choline-phosphocholine metabolism and its downstream FADS6 functions in hepatic adaptation to cold and IR, which may inspire new strategies to monitor donor liver quality and improve recipient recovery from the liver transplantation process.
Collapse
Affiliation(s)
- Lele Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Jiang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinghong Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haobin Sun
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinliang Liang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Rostampoor Z, Afrashteh S, Mohammadianpanah M, Ghaem H, Zeegers MP, Fararouei M. Lifestyle, dietary pattern and colorectal cancer: a case-control study. BMC Nutr 2024; 10:138. [PMID: 39420424 PMCID: PMC11488227 DOI: 10.1186/s40795-024-00950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND In Iran, not only the incidence of colorectal cancer (CRC) is increasing but also the age of patients at diagnosis is alarmingly dropping. We need urgent actions to better understand the epidemiology of CRC and the contributing factors for such pattern in Iranian population. The aim of our study was to determine the potential contribution of lifestyle, including dietary pattern, to CRC in a large Iranian province. METHODS A hospital based case-control study was performed on 572 participants (275 cases and 297 controls). Patients in the case group were newly diagnosed with CRC in a referral hospital and patients in the control group were selected from those patients with non-malignancy diseases who were admitted to the same hospital. Control group was frequency matched to the case group for gender and age. RESULTS Based on the results of multivariable logistic regression analysis, direct associations were observed between usual pattern of defecation (OR> 3rd /every day =4.74, 95% CI: 1.78-12.59), chicken consumption (ORsometimes or always/occasionally = 6.33, 95% CI:3.23-12.43), family history of CRC (ORyes/no =5.79, 95% CI: 2.72-12.31), and alcohol consumption (ORyes/no =6.03, 95% CI: 2.14-16.98) with the odds of CRC among the study population. On the other hand, taking multivitamins (ORyes/no=0.09, 95% CI:0.04-0.20), consumption of coffee (ORalways/occasionally =0.29, 95% CI: 0.12-0.69), taking vitamins D supplement (ORyes/no =0.38,95% CI:0.22-0.66), and consumption of garlic (ORsometimes/occasionally =0.53,95% CI: 0.30-0.95) significantly reduced the odds of CRC. CONCLUSIONS We revealed potentially significant effects of several lifestyle related factors with CRC risk in Iranian population. More studies are required to understand the mechanism of action of the associated factors in developing CRC.
Collapse
Affiliation(s)
- Zahra Rostampoor
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Afrashteh
- Department of Biostatistics and Epidemiology, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Haleh Ghaem
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maurice P Zeegers
- NUTRIM School of Translation Research in Metabolism, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Mohammad Fararouei
- HIV/AIDs Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Chen F, Qian WB, Chen ZH, Qian J, Luo C. T cell exhaustion methylation signature drives differential immune responses in glioblastoma. Discov Oncol 2024; 15:530. [PMID: 39377985 PMCID: PMC11461406 DOI: 10.1007/s12672-024-01412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Methylation-related signatures play crucial roles in tumorigenesis and progression. However, their roles in the immune response in primary glioblastoma (GBM) remains unclear. METHODS We analyzed the differential expression of specific members of T cell exhaustion-related pathways in GBM from the perspective of T cell exhaustion. We further screened for significantly negatively correlated methylation sites as candidate methylation markers for T cell exhaustion. Using consensus clustering, we divided the samples into two categories with significant differences in overall survival (OS). We then performed univariate and multivariate Cox regression analyses to construct the T Cell Exhaustion Methylation (TEXM) signature. Finally, we confirmed that this signature served as an independent prognostic factor, and further characterized it in terms of drug resistance and immunotherapy. RESULTS We identified 95 significantly differentially expressed T cell exhaustion-related genes and 51 methylation markers associated with T cell exhaustion. The cancer samples were classified according to methylation site markers, thus indicating two subtypes with significant differences in OS: subtype A and subtype B. Tumor scores, stromal scores, tumor purity, and ESTIMATE scores all showed significant differences between subtypes (P < 0.05). Univariate Cox regression analysis identified five methylation sites significantly associated with OS, and multivariate Cox regression analysis was used to construct the TEXM signature model by using these five methylation sites. Significant differences in OS were found between the groups with high and low TEXM signature scores, on the basis of calculation of the TEXM signature scores of tumor samples and using the median score to divide them into high and low score groups. Survival analysis revealed that the high score group had poorer OS and DFS than the low score group in the validation set. Notably, we observed a significant difference in drug sensitivity between the high and low TEXM signature score groups, with the high score group showing higher drug resistance and poorer prognosis. The tumor immune state, as predicted with Tracking Tumor Immunophenotype (TIP), revealed significant differences in antitumor immune scores between the high and low TEXM signature score groups. Finally, we identified 43 significantly differentially regulated metabolism-associated biological processes. CONCLUSION The epigenetic methylation-related TEXM signature plays a key role in driving differential immune responses in GBM.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xinchun Road, Shanghai, 200065, China
| | - Wen-Bo Qian
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xinchun Road, Shanghai, 200065, China
| | - Zhen-Hua Chen
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jun Qian
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xinchun Road, Shanghai, 200065, China.
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xinchun Road, Shanghai, 200065, China.
| |
Collapse
|
16
|
Chen S, He T, Chen J, Wen D, Wang C, Huang W, Yang Z, Yang M, Li M, Huang S, Huang Z, Zhu H. Betaine delays age-related muscle loss by mitigating Mss51-induced impairment in mitochondrial respiration via Yin Yang1. J Cachexia Sarcopenia Muscle 2024; 15:2104-2117. [PMID: 39187977 PMCID: PMC11446699 DOI: 10.1002/jcsm.13558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/18/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the hallmarks of aging and a leading contributor to sarcopenia. Nutrients are essential for improving mitochondrial function and skeletal muscle health during the aging process. Betaine is a nutrient with potential muscle-preserving properties. However, whether and how betaine could regulate the mitochondria function in aging muscle are poorly understood. We aimed to explore the molecular target and underlying mechanism of betaine in attenuating the age-related mitochondrial dysfunction in skeletal muscle. METHODS Young mice (YOU, 2 months), old mice (OLD, 15 months), and old mice with betaine treatment (BET, 15 months) were fed for 12 weeks. The effects of betaine on muscle mass, strength, function, and subcellular structure of muscle fibres were assessed. RNA sequencing (RNA-seq) was conducted to identify the molecular target of betaine. The impacts of betaine on mitochondrial-related molecules, superoxide accumulation, and oxidative respiration were examined using western blotting (WB), immunofluorescence (IF) and seahorse assay. The underlying mechanism of betaine regulation on the molecular target to maintain mitochondrial function was investigated by luciferase reporter assay, chromatin immunoprecipitation and electrophoretic mobility shift assay. Adenoassociated virus transfection, succinate dehydrogenase staining (SDH), and energy expenditure assessment were performed on 20-month-old mice for validating the mechanism in vivo. RESULTS Betaine intervention demonstrated anti-aging effects on the muscle mass (P = 0.017), strength (P = 0.010), and running distance (P = 0.013). Mitochondrial-related markers (ATP5a, Sdha, and Uqcrc2) were 1.1- to 1.5-fold higher in BET than OLD (all P ≤ 0.036) with less wasted mitochondrial vacuoles accumulating in sarcomere. Bioinformatic analysis from RNA-seq displayed pathways related to mitochondrial respiration activity was higher enriched in BET group (NES = -0.87, FDR = 0.10). The quantitative real time PCR (qRT-PCR) revealed betaine significantly reduced the expression of a novel mitochondrial regulator, Mss51 (-24.9%, P = 0.002). In C2C12 cells, betaine restored the Mss51-mediated suppression in mitochondrial respiration proteins (all P ≤ 0.041), attenuated oxygen consumption impairment, and superoxide accumulation (by 20.7%, P = 0.001). Mechanically, betaine attenuated aging-induced repression in Yy1 mRNA expression (BET vs. OLD: 2.06 vs. 1.02, P = 0.009). Yy1 transcriptionally suppressed Mss51 mRNA expression both in vitro and in vivo. This contributed to the preservation of mitochondrial respiration, improvement for energy expenditure (P = 0.008), and delay of muscle loss during aging process. CONCLUSIONS Altogether, betaine transcriptionally represses Mss51 via Yy1, improving age-related mitochondrial respiration in skeletal muscle. These findings suggest betaine holds promise as a dietary supplement to delay skeletal muscle degeneration and improve age-related mitochondrial diseases.
Collapse
Affiliation(s)
- Si Chen
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Tongtong He
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Jiedong Chen
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Dongsheng Wen
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chen Wang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Wenge Huang
- Center of Experimental AnimalsSun Yat‐sen UniversityGuangzhouChina
| | - Zhijun Yang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Mengtao Yang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Mengchu Li
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Siyu Huang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Zihui Huang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Huilian Zhu
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
17
|
Ma S, Liu J, Zhao Y, Wang Y, Zhao R. In ovo betaine injection improves breast muscle growth in newly hatched goslings through FXR/IGF-2 pathway. Poult Sci 2024; 103:104075. [PMID: 39094501 PMCID: PMC11345595 DOI: 10.1016/j.psj.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Betaine has been shown to enhance growth performance and increase breast muscle yield in ducks and broilers through various mechanisms, including the modification of DNA methylation. However, the impact of in ovo betaine injection on muscle growth in newly hatched goslings remains unclear. In this study, fifty eggs were injected with saline or betaine at 7.5 mg/egg prior to incubation, and the subsequent effects on breast muscle growth in the newly hatched goslings were investigated. Betaine significantly increased (P < 0.05) the hatch weight, breast muscle weight, and breast muscle index, accompanied by an augmentation in muscle bundle cross-sectional area. Concurrently, betaine significantly upregulated (P < 0.05) the expression levels of myogenic regulatory factors, including myogenin (MyoG) and paired box 7 (Pax7) both mRNA and protein, while downregulating (P < 0.05) the mRNA and protein levels of myostatin (MSTN). Histological analysis revealed a higher abundance of proliferating cell nuclear antigen (PCNA) and Pax7 immune-positive cells in the breast muscle of the betaine group, consistent with elevated PCNA and Pax7 mRNA and protein levels. Additionally, significantly increased (P < 0.05) contents of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) were observed in the breast muscle of the betaine group, so was mRNA expression of IGF-1, IGF-2, and insulin-like growth factor 1 receptor (IGF-1R). Betaine also significantly in8creased (P < 0.05) global DNA methylation of the breast muscle, accompanied by enhanced mRNA and protein levels of methionine cycle and DNA methylation-related enzymes, Interestingly, the promoter regions of IGF-1, IGF-2, and IGF-1R genes were significantly hypomethylated (P < 0.05). Moreover, in ovo betaine injection significantly upregulated (P < 0.05) the protein level of farnesoid X receptor (FXR) in breast muscle and FXR binding to the promoter of IGF-2 gene. These findings suggest that in ovo betaine injection promotes breast muscle growth during embryonic development in goslings through the FXR-mediated IGF-2 pathway, ultimately improving hatch weight and breast muscle weight.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
18
|
dos Santos PVBE, Brasil ADA, Milone LTV, Chalfun G, Saide SCADO, Salú MDS, de Oliveira MBG, Robaina JR, Lima-Setta F, Rodrigues-Santos G, de Magalhães-Barbosa MC, da Cunha AJLA, Prata-Barbosa A. Impact of prematurity on LINE-1 promoter methylation. Epigenomics 2024; 16:1253-1264. [PMID: 39297700 PMCID: PMC11486321 DOI: 10.1080/17501911.2024.2397329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Aim: Promoter methylation of LINE-1 may be affected by prematurity, but there is little evidence in the literature.Materials & methods: Blood from premature and full-term neonates on days 0, 5, 30 and 90 was analyzed for DNA methylation percentage in a promoter region of the LINE-1, after bisulfite conversion and pyrosequencing.Results: Premature infants, as a whole, showed significantly lower methylation percentage at birth, but this difference diminished over time. However, the subgroup of extremely premature (<28 weeks gestational age) had higher methylation percentages, similar to full-term newborns.Conclusion: This research underscores the critical role of prematurity on the methylation pattern of LINE-1. These findings underline the complexity of epigenetic regulation in prematurity and emphasize the need for further studies.
Collapse
Affiliation(s)
- Paulo Victor Barbosa Eleutério dos Santos
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Martagão Gesteira Institute of Childcare & Pediatrics (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Aline de Araújo Brasil
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Leo Travassos Vieira Milone
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Genetics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Georgia Chalfun
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Department of Neonatology, Maternity School, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil
| | - Stephanie Cristina Alves de Oliveira Saide
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Genetics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Margarida dos Santos Salú
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | | | | | - Fernanda Lima-Setta
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Gustavo Rodrigues-Santos
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | | | - Antônio José Ledo Alves da Cunha
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Martagão Gesteira Institute of Childcare & Pediatrics (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Martagão Gesteira Institute of Childcare & Pediatrics (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
20
|
Zhao N, Liu F, Dong W, Yu J, Halverson LJ, Xie B. Quantitative proteomics insights into Chlamydomonas reinhardtii thermal tolerance enhancement by a mutualistic interaction with Sinorhizobium meliloti. Microbiol Spectr 2024; 12:e0021924. [PMID: 39012118 DOI: 10.1128/spectrum.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Interactions between photosynthetic microalgae and bacteria impact the physiology of both partners, which influence the fitness and ecological trajectories of each partner in an environmental context-dependent manner. Thermal tolerance of Chlamydomonas reinhardtii can be enhanced through a mutualistic interaction with vitamin B12 (cobalamin)-producing Sinorhizobium meliloti. Here, we used label-free quantitative proteomics to reveal the metabolic networks altered by the interaction under normal and high temperatures. We created a scenario where the growth of Sinorhizobium requires carbon provided by Chlamydomonas for growth in co-cultures, and survival of Chlamydomonas under high temperatures relies on cobalamin and possibly other metabolites produced by Sinorhizobium. Differential abundance analysis identified proteins produced by each partner in co-cultures compared to mono-cultures at each temperature. Proteins involved in cobalamin production by Sinorhizobium increased in the presence of Chlamydomonas under elevated temperatures, whereas in Chlamydomonas, there was an increase in cobalamin-dependent methionine synthase and certain proteins associated with methylation reactions. Co-cultivation and heat stress strongly modulated the central metabolism of both partners as well as various transporters that could facilitate nutrient cross-utilization. Co-cultivation modulated expression of various components of two- or one-component signal transduction systems, transcriptional activators/regulators, or sigma factors, suggesting complex regulatory networks modulate the interaction in a temperature-dependent manner. Notably, heat and general stress-response and antioxidant proteins were upregulated in co-cultures, suggesting that the interaction is inherently stressful to each partner despite the benefits of mutualism. Our results shed insight into the metabolic tradeoffs required for mutualism and how metabolic networks are modulated by elevated temperature. IMPORTANCE Photosynthetic microalgae are key primary producers in aquatic ecosystems, playing an important role in the global carbon cycle. Nearly every alga lives in association with a diverse community of microorganisms that influence each other and their metabolic activities or survival. One chemical produced by bacteria that influence algae is vitamin B12, an enzyme cofactor used for a variety of metabolic functions. The alga Chlamydomonas reinhardtii benefits from vitamin B12 produced by Sinorhizobium meliloti by producing the amino acid methionine under high temperatures which are required for Chlamydomonas thermotolerance. Yet, our understanding of this interaction under normal and stressful temperatures is poor. Here, we used quantitative proteomics to identify differentially expressed proteins to reveal metabolic adjustments made by Chlamydomonas and Sinorhizobium that could facilitate this mutualism. These findings will enhance our understanding of how photosynthetic algae and their associated microbiomes will respond as global temperatures increase.
Collapse
Affiliation(s)
- Na Zhao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Fei Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Wenxiu Dong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Jie Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Larry J Halverson
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Bo Xie
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
21
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
22
|
Zong Y, Zhu A, Liu P, Fu P, Li Y, Chen S, Gao X. Pan-cancer analysis of the disulfidptosis-related gene RPN1 and its potential biological function and prognostic significance in gliomas. Heliyon 2024; 10:e31875. [PMID: 38845861 PMCID: PMC11154626 DOI: 10.1016/j.heliyon.2024.e31875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background Numerous studies have shown a strong correlation between disulfidptosis and various cancers. However, the expression and function of RPN1, a crucial gene in disulfidptosis, remain unclear in the context of cancer. Methods Gene expression and clinical information on lung adenocarcinoma were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. RPN1 expression was analyzed using the Timer2.0 and the Human Protein Atlas (HPA) databases. Prognostic significance was assessed using Cox regression analysis and Kaplan-Meier curves. Genetic mutations and methylation levels were examined using the cBioPortal and UALCAN platforms, respectively. The relationship between RPN1 and tumor mutation burden (TMB) and microsatellite instability (MSI) across different cancer types was analyzed using the Spearman correlation coefficient. The relationship between RPN1 and immune cell infiltration was analyzed using the Timer2.0 database, whereas variations in drug sensitivity were explored using the CellMiner database. Receiver operating characteristic curves validated RPN1's diagnostic potential in glioma, and its correlation with immune checkpoint inhibitors (ICIs) was assessed using Spearman's correlation coefficient. Single-sample gene set enrichment analysis elucidated a link between RPN1 and immune cells and pathways. In addition, a nomogram based on RPN1 was developed to predict patient prognosis. The functional impact of RPN1 on glioma cells was confirmed using scratch and Transwell assays. Result RPN1 was aberrantly expressed in various cancers and affected patient prognosis. The main mutation type of RPN1 in the cancer was amplified. RPN1 exhibited a positive correlation with myeloid-derived suppressor cells, neutrophils, and macrophages, and a negative correlation with CD8+ T cells and hematopoietic stem cells. RPN1 expression was associated with TMB and MSI in various cancers. The expression of RPN1 affected drug sensitivity in cancer cells. RPN1 was positively correlated with multiple ICIs in gliomas. RPN1 also affected immune cell infiltration into the tumor microenvironment. RPN1 was an independent prognostic factor for gliomas, and the nomogram demonstrated excellent predictive performance. Interference with RPN1 expression reduces the migratory and invasive ability of glioma cells. Conclusion RPN1 exerts multifaceted effects on different stages of cancer, including immune infiltration, prognosis, and treatment outcomes. RPN1 expression affects the prognosis and immune microenvironment infiltration in patients with glioma, making RPN1 a potential target for the treatment of glioma.
Collapse
Affiliation(s)
- Yan Zong
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ankang Zhu
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Peipei Liu
- Anhui BioX-Vision Biological Technology Co., Ltd., Anhui, China
| | - Peiji Fu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yinuo Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuai Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xingcai Gao
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Rogers PC, Cheng J, Lim A, Potts JE. Feasibility study of micronutrient status and body mass index of newly diagnosed pediatric oncology patients: Research commentary. Pediatr Blood Cancer 2024; 71:e30936. [PMID: 38462770 DOI: 10.1002/pbc.30936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
We conducted a feasibility study to evaluate micronutrients and body mass index (BMI). Fat soluble vitamins A, D, E and trace elements copper (Cu), selenium (Se), and zinc (Zn) levels were evaluated. Weight, height, BMI, and Z-scores were recorded. Side effects or specific adverse events were documented. No patient had a Z-score for height, weight, or BMI of less than 2 SD or greater than 2 SD. Ninety percent of patients had one or more micronutrient levels below normal. These results suggest that micronutrient abnormalities are common despite no obvious evidence of malnutrition. Side effects of chemotherapy may be exacerbated by micronutrient depletion.
Collapse
Affiliation(s)
- Paul C Rogers
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey Cheng
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alecia Lim
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| | - James E Potts
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Feng B, Zheng J, Cai Y, Han Y, Han Y, Wu J, Feng J, Zheng K. An Epigenetic Manifestation of Alzheimer's Disease: DNA Methylation. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:365-374. [PMID: 38863055 PMCID: PMC11190457 DOI: 10.62641/aep.v52i3.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Alzheimer's disease (AD), the most common form of dementia, has a complex pathogenesis. The number of AD patients has increased in recent years due to population aging, while a trend toward a younger age of onset has arisen, imposing a substantial burden on society and families, and garnering extensive attention. DNA methylation has recently been revealed to play an important role in AD onset and progression. DNA methylation is a critical mechanism regulating gene expression, and alterations in this mechanism dysregulate gene expression and disrupt important pathways, including oxidative stress responses, inflammatory reactions, and protein degradation processes, eventually resulting in disease. Studies have revealed widespread changes in AD patients' DNA methylation in the peripheral blood and brain tissues, affecting multiple signaling pathways and severely impacting neuronal cell and synaptic functions. This review summarizes the role of DNA methylation in the pathogenesis of AD, aiming to provide a theoretical basis for its early prevention and treatment.
Collapse
Affiliation(s)
- Boyi Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
- Shenzhen Guangming District People's Hospital, 518107 Shenzhen, Guangdong, China
| | - Junli Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Ying Cai
- Public Health Service Center, Bao'an District, 518100 Shenzhen, Guangdong, China
| | - Yaguang Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Yanhua Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Jiaqi Wu
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Jun Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Kai Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| |
Collapse
|
25
|
Zhang C, Liu Z, Sun K, Zhao J, Huang H, Zhang C. Association of serum folic acid levels in response to fasting blood glucose in early pregnancy with the risk of gestational diabetes mellitus: A retrospective cohort study. Nutrition 2024; 122:112383. [PMID: 38422754 DOI: 10.1016/j.nut.2024.112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE With increasingly prevalent folic acid consumption in early pregnancy, concerns about its potentially negative effect on maternal metabolism have been raised. Recent findings regarding folic acid levels in the first trimester and the risk of gestational diabetes mellitus have been inconclusive. The aim of this study was to investigate the association of folic acid status in early pregnancy with gestational diabetes mellitus as well as examine whether glucose levels can be modulated by folic acid status during the same first trimester. METHODS This was a retrospective cohort study based on 27 128 Chinese pregnant women who registered during their first prenatal visit from January 2015 to December 2019. Serum folic acid and fasting blood glucose concentrations were measured during the 9th to 13th gestational weeks. Binary logistic regression was applied to estimate the odds ratios of gestational diabetes mellitus by using the serum folic acid levels quartiles with adjustment for major confounders. To investigate the potential effect of modifying key risk factors for gestational diabetes mellitus, we established subgroups, in which analyses were stratified by age (<25, 25-29, 30-34, and ≥35 y), parity (nulliparous and parous), prepregnancy body mass index (< 18.5, 18.5-23.9, and ≥ 24 kg/m2), and family history of diabetes (yes and no). RESULTS The positive association between maternal folate concentrations and fasting blood glucose was observed: the risk for hyperglycemia was higher in those in the middle (Q3) and higher (Q4) quartiles compared with those in Q1 and Q2. A higher risk for gestational diabetes mellitus was found in hyperglycemia of early pregnant women with high folate concentrations (Q3: odds ratio = 5.63; 95% CI, 4.56-6.95, and Q4: odds ratio = 5.57; 95% CI, 4.68-6.64) compared with normal fasting glucose mothers with folate concentrations in Q1 and Q2 after accounting for multiple covariables. Similar patterns were observed for different subgroups. Restricted cubic spline plots had a positive correlation of serum folic acid level with fasting blood glucose concentration as well as risk of gestational diabetes mellitus in a nonlinear pattern, with 32.5 nmol/L as the cutoff point for folic acid level. CONCLUSIONS Our findings underscore the importance of maintaining an appropriate folic acid concentration for preserving a lower risk of gestational diabetes mellitus, especially in women with relatively higher blood glucose in early pregnancy. Additionally, folic acid concentration > 32.5 nmol/L may be considered a risk factor for gestational diabetes mellitus. This research suggested that folic acid levels should be monitored during the first trimester from the first prenatal checkup to prevent adverse effects of excessive folic acid intake.
Collapse
Affiliation(s)
- Chenjie Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaonan Liu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine
| | - Kuan Sun
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine
| | - Junfei Zhao
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Chen Zhang
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Danieli MG, Casciaro M, Paladini A, Bartolucci M, Sordoni M, Shoenfeld Y, Gangemi S. Exposome: Epigenetics and autoimmune diseases. Autoimmun Rev 2024; 23:103584. [PMID: 39097180 DOI: 10.1016/j.autrev.2024.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Systemic autoimmune diseases are complex conditions characterized by an immune system dysregulation and an aberrant activation against self-antigens, leading to tissue and organ damage. Even though genetic predisposition plays a role, it cannot fully explain the onset of these diseases, highlighting the significant impact of non-heritable influences such as environment, hormones and infections. The exposome represents all those factors, ranging from chemical pollutants and dietary components to psychological stressors and infectious agents. Epigenetics, which studies changes in gene expression without altering the DNA sequence, is a crucial link between exposome and the development of autoimmune diseases. Key epigenetic mechanisms include DNA methylation, histone modifications, and non-coding RNAs. These epigenetic modifications could provide a potential piece of the puzzle in understanding systemic autoimmune diseases and their connection with the exposome. In this work we have collected the most important and recent evidence in epigenetic changes linked to systemic autoimmune diseases (systemic lupus erythematosus, idiopathic inflammatory myopathies, ANCA-associated vasculitis, and rheumatoid arthritis), emphasizing the roles these changes may play in disease pathogenesis, their potential as diagnostic biomarkers and their prospective in the development of targeted therapies.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- SOS Immunologia delle Malattie Rare e dei Trapianti, AOU delle Marche & Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Marco Casciaro
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Alberto Paladini
- PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Martina Bartolucci
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Martina Sordoni
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; Reichman University, Herzelia 46101, Israel.
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
27
|
Teng C, Song X, Fan C, Man S, Hu Y, Hou Y, Xin T. Breast cancer clinical outcomes and tumor immune microenvironment: cross-dialogue of multiple epigenetic modification profiles. Aging (Albany NY) 2024; 16:8998-9022. [PMID: 38796789 PMCID: PMC11164499 DOI: 10.18632/aging.205853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024]
Abstract
The discovery of RNA methylation alterations associated with cancer holds promise for their utilization as potential biomarkers in cancer diagnosis, prognosis, and prediction. RNA methylation has been found to impact the immunological microenvironment of tumors, but the specific role of methylation-related genes (MRGs), particularly in breast cancer (BC), the most common cancer among women globally, within the tumor microenvironment remains unknown. In this study, we obtained data from TCGA and GEO databases to investigate the expression patterns of MRGs in both genomic and transcriptional domains in BC. By analyzing the data, we identified two distinct genetic groupings that were correlated with clinicopathological characteristics, prognosis, degree of TME cell infiltration, and other abnormalities in MRGs among patients. Subsequently, an MRG model was developed to predict overall survival (OS) and its accuracy was evaluated in BC patients. Additionally, a highly precise nomogram was created to enhance the practical usability of the MRG model. In low-risk groups, we observed lower TBM values and higher TIDE scores. We further explored how MRGs influence a patient's prognosis, clinically significant characteristics, response to therapy, and the TME. These risk signatures have the potential to improve treatment strategies for BC patients and could be applied in future clinical settings. Moreover, they may also be utilized to determine prognosis and biological features in these patients.
Collapse
Affiliation(s)
- Chong Teng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaowei Song
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengjuan Fan
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Siqi Man
- Oncology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuanyuan Hu
- Oncology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yifei Hou
- School of Nursing, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tao Xin
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
28
|
Tian S, Chen M. Global research progress of gut microbiota and epigenetics: bibliometrics and visualized analysis. Front Immunol 2024; 15:1412640. [PMID: 38803501 PMCID: PMC11128553 DOI: 10.3389/fimmu.2024.1412640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Gut microbiota is an important factor affecting host health. With the further study of the mechanism of gut microbiota, significant progress has been made in the study of the link between gut microbiota and epigenetics. This study visualizes the body of knowledge and research priorities between the gut microbiota and epigenetics through bibliometrics. METHODS Publications related to gut microbiota and epigenetics were searched in the Web of Science Core Collection (WoSCC) database. Vosviewer 1.6.17 and CiteSpace 6.1.R2 were used for bibliometric analysis. RESULTS WoSCC includes 460 articles from 71 countries. The number of publications on gut microbiota and epigenetics has increased each year since 2011. The USA, PEOPLES R CHINA, and ITALY are at the center of this field of research. The University of California System, Harvard University, and the University of London are the main research institutions. Li, X, Yu, Q, Zhang, S X are the top authors in this research field. We found that current research hotspots and frontiers include short-chain fatty acids (SCFA) play an important role in gut microbiota and epigenetic mechanisms, gut microbiota and epigenetics play an important role in host obesity, diet, and metabolism. Gut microbiota and epigenetics are closely related to colorectal cancer, breast cancer, and inflammatory bowel disease. At the same time, we found that gut microbiota regulates epigenetics through the gut-brain axis and has an impact on psychiatric diseases. Therefore, probiotics can regulate gut microbiota, improve lifestyle, and reduce the occurrence and development of diseases. CONCLUSION This is the first comprehensive and in-depth bibliometric study of trends and developments in the field of gut microbiota and epigenetics research. This study helps to guide the direction of research scholars in their current field of study.
Collapse
Affiliation(s)
- Siyu Tian
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Min Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
Faienza MF, Urbano F, Anaclerio F, Moscogiuri LA, Konstantinidou F, Stuppia L, Gatta V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr Issues Mol Biol 2024; 46:4358-4378. [PMID: 38785533 PMCID: PMC11119222 DOI: 10.3390/cimb46050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Alterations in a mother's metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring's childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal nutrition and lifestyle, intrauterine environment, epigenetic modifications, and early postnatal factors. Several studies have indicated that the fetal bowel begins to colonize before birth and that, during birth and nursing, the gut microbiota continues to change. The mother's gut microbiota is primarily transferred to the fetus through maternal nutrition and the environment. In this way, it is able to impact the establishment of the early fetal and neonatal microbiome, resulting in epigenetic signatures that can possibly predispose the offspring to the development of obesity in later life. However, antioxidants and exercise in the mother have been shown to improve the offspring's metabolism, with improvements in leptin, triglycerides, adiponectin, and insulin resistance, as well as in the fetal birth weight through epigenetic mechanisms. Therefore, in this extensive literature review, we aimed to investigate the relationship between maternal diet, epigenetics, and gut microbiota in order to expand on current knowledge and identify novel potential preventative strategies for lowering the risk of obesity in children and adults.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (F.U.); (L.A.M.)
| | - Federico Anaclerio
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
30
|
Su X, Liu J, Tu Z, Ji Q, Li J, Liu F. DNMT3A promotes glioma growth and malignancy via TNF-α/NF-κB signaling pathway. Transl Cancer Res 2024; 13:1786-1806. [PMID: 38737693 PMCID: PMC11082822 DOI: 10.21037/tcr-23-1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/22/2024] [Indexed: 05/14/2024]
Abstract
Background DNMT3A is the main molecule responsible for DNA methylation in cells. DNMT3A affects the progression of inflammation, degenerative diseases, and malignant tumors, and exhibits significant aberrantly expression in tumor tissues. Methods Transcriptome data and relevant clinical information were downloaded from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) datasets. Differential expression analysis and prognostic analysis were conducted based on above statistics. We constructed a clinical prognostic model and identified DNMT3A as an independent prognostic factor to accurately predict patient prognosis. Differential gene enrichment analysis revealed that DNMT3A affects the progression of glioma through multiple pathways, among which the tumor necrosis factor-α (TNF-α)/nuclear factor-kappa B (NF-κB) pathway shows a strong correlation. Immunological analysis also revealed a certain correlation between DNMT3A and tumor immunity. We demonstrated through gene editing that DNMT3A can affect the release of TNF-α in cells, thereby affecting the progression of glioma. Functional experiments have also demonstrated that DNMT3A plays a crucial role in tumors. Results RNA-sequencing and survival analyses of lower-grade glioma (LGG) patients in TCGA, CGGA, and GEO cohorts showed that high DNMT3A expression correlated with poor prognosis of LGG patients. Univariate and multivariate Cox regression analyses showed that DNMT3A expression was an independent prognostic indicator in LGG. The prognosis prediction nomogram with age, World Health Organization (WHO) grading, and DNMT3A expression showed reliable performance in predicting the 1-, 3-, and 5-year overall survival (OS) of LGG patients. Functional enrichment analysis, gene set enrichment analysis (GSEA), and ESTIMATE algorithm analyses showed that DNMT3A expression was associated with the tumor infiltration of immune cells and predicted response to immunotherapy in two immunotherapy cohorts of pan-cancer patients. Furthermore, short hairpin RNA (shRNA)-mediated knockdown of DNMT3A in the LGG cell lines suppressed proliferation, migration, and invasion of LGG cells by downregulating the TNF-α/NF-κB signaling pathway. Conclusions Our data showed that DNMT3A was a potential prognostic biomarker in glioma. DNMT3A promoted proliferation and malignancy of LGG cells through the TNF-α/NF-κB signaling pathway. DNMT3A is a promising therapeutic target for treating patients with LGG.
Collapse
Affiliation(s)
- Xiaoyan Su
- Department of Pathology, the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Junzhe Liu
- Department of Neurosurgery, the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Zewei Tu
- Department of Neurosurgery, the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Qiankun Ji
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fanrong Liu
- Department of Pathology, the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Agudelo MC, Agudelo S, Lorincz A, Ramírez AT, Castañeda KM, Garcés-Palacio I, Zea AH, Piyathilake C, Sanchez GI. Folate deficiency modifies the risk of CIN3+ associated with DNA methylation levels: a nested case-control study from the ASCUS-COL trial. Eur J Nutr 2024; 63:563-572. [PMID: 38129362 PMCID: PMC10899296 DOI: 10.1007/s00394-023-03289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE To our knowledge, there are very few studies evaluating if the levels of folate modify the risk of cervical intraepithelial neoplasia grade 2 and higher (CIN2+ and CIN3+) associated with the levels of HPV genome methylation, two cofactors related to single carbon metabolism and independently associated with cervical cancer in previous studies. We conducted a case-control study nested in a three-arm randomized clinical pragmatic trial (ASCUS-COL trial) to evaluate the risk of CIN3+ associated with methylation levels according to serum folate concentrations. METHODS Cases (n = 155) were women with histologically confirmed CIN2+ (113 CIN2, 38 CIN3, and 4 SCC) and controls were age and follow-up time at diagnosis-matched women with histologically confirmed ≤ CIN1 (n = 155), selected from the 1122 hrHPV + women of this trial. The concentrations of serum folate were determined by the radioimmunoassay SimulTRAC-SNB-VitaminB12/Folate-RIAKit and the methylation levels by the S5 classifier. Stepwise logistic regression models were used to estimate the association between folate or methylation levels and CIN2+ or CIN3+. The joint effect of folate levels and methylation on the risk of CIN3+ was estimated using combinations of categorical stratifications. RESULTS Folate levels were significantly lower in women with CIN3+ than in other diagnostic groups (p = 0.019). The risk of CIN3+ was eight times higher (OR 8.9, 95% CI 3.4-24.9) in women with folate deficiency and high methylation levels than in women with normal folate and high methylation levels (OR 1.4, 95% CI 0.4-4.6). CONCLUSION High methylation and deficient folate independently increased the risk of CIN3+ while deficient folate combined with high methylation was associated with a substantially elevated risk of CIN3+.
Collapse
Affiliation(s)
- María C Agudelo
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
| | - Samuel Agudelo
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
| | - Attila Lorincz
- Centre for Cancer Prevention, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Arianis Tatiana Ramírez
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
- Postdoctoral Fellow at the Prevention and Implementation Group, International Agency for Research On Cancer/World Health Organization, Lyon, France
| | - Kelly Melisa Castañeda
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
| | - Isabel Garcés-Palacio
- Epidemiology Group, School of Public Health, Universidad de Antioquia, Medellín, Colombia
| | - Arnold H Zea
- Stanley S. Scott Cancer Center, Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, USA
| | - Chandrika Piyathilake
- Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, USA
| | - Gloria Ines Sanchez
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia.
| |
Collapse
|
32
|
Han L, Li Z, Zhang P, Sheng M, Wang W, Sun Y, Sun D. LncRNA PCAT6 is a predictor of poor prognosis of colorectal cancer. J Gastrointest Oncol 2024; 15:190-202. [PMID: 38482211 PMCID: PMC10932681 DOI: 10.21037/jgo-23-910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND The long non-coding RNA (lncRNA) prostate cancer-associated transcript 6 (PCAT6) has been studied in many cancers, yet its relationship with colorectal cancer (CRC) remains poorly defined. Here, we conducted an analysis of The Cancer Genome Atlas (TCGA) database to better clarify the role of PCAT6 in this cancer type. METHODS Wilcoxon rank-sum tests were utilized to assess relative levels of PCAT6 in CRC tumors and normal tissues, while logistic regression analyses were utilized to compare the relationships between PCAT6 levels and clinicopathological findings. Kaplan-Meier curves and Cox regression analyses were used to gauge correlations between PCAT6 and patient survival outcomes, while the biological roles of this lncRNA were investigated via a gene set enrichment analysis (GSEA) approach. The expression level of PCAT6 in CRC cell lines was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS PCAT6 levels were significantly correlated with CRC patient lymph node metastasis (N) stage [odds ratio (OR) =1.8 for N1 & N2 vs. N0], lymphatic invasion [OR =1.9 for yes vs. no), distant metastasis (M stage) (OR =2.1 for M1 vs. M0), carcinoembryonic antigen (CEA) level (OR =1.9 for >5 vs. ≤5), perineural invasion (OR =1.9 for yes vs. no), pathologic stage (OR =1.9 for stage III/IV vs. stage I/II), and neoplasm type (OR =2.1 for rectal adenocarcinoma vs. colon adenocarcinoma) (all P<0.05). CRC patients expressing higher PCAT6 levels exhibited poorer survival outcomes than those expressing low levels of this lncRNA (P=0.017), and in univariate analyses, higher PCAT6 levels were linked to worse overall survival [hazard ratio (HR) =1.540; 95% confidence interval (CI): 1.079-2.199; P=0.017], with this relationship also being preserved in a multivariate analysis (HR =6.892; 95% CI: 1.713-27.727, P=0.007). GSEA revealed high PCAT6 expression to be linked to differential DNA methylation enrichment, with high PCAT6 levels being associated with changes in base excision repair, cellular senescence, G2/M DNA damage checkpoint, chromatin-modifying enzyme, and gene silencing by RNA activity. The high expression of lncRNA PCAT6 in CRC cell lines was demonstrated by PCR experiments. CONCLUSIONS PCAT6 represents a promising prognostic biomarker of poor CRC patient survival outcomes, with DNA methylation and RNA-mediated gene silencing being potentially promising mechanistic pathways whereby this lncRNA may shape patient outcomes.
Collapse
Affiliation(s)
- Lin Han
- Department of General Surgery, The Armed Police Corps Hospital of Anhui, Hefei, China
| | - Zhuang Li
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Peng Zhang
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Minghui Sheng
- Department of General Surgery, The Armed Police Corps Hospital of Anhui, Hefei, China
| | - Wenfei Wang
- Department of General Surgery, The Armed Police Corps Hospital of Anhui, Hefei, China
| | - Yanjun Sun
- Department of General Surgery, The Armed Police Corps Hospital of Anhui, Hefei, China
| | - Dengqun Sun
- Department of General Surgery, The Armed Police Corps Hospital of Anhui, Hefei, China
| |
Collapse
|
33
|
Mendoza-Martínez GD, Orzuna-Orzuna JF, Roque-Jiménez JA, Gloria-Trujillo A, Martínez-García JA, Sánchez-López N, Hernández-García PA, Lee-Rangel HA. A Polyherbal Mixture with Nutraceutical Properties for Ruminants: A Meta-Analysis and Review of BioCholine Powder. Animals (Basel) 2024; 14:667. [PMID: 38473052 PMCID: PMC11154432 DOI: 10.3390/ani14050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
BioCholine Powder is a polyherbal feed additive composed of Achyrantes aspera, Trachyspermum ammi, Azadirachta indica, and Citrullus colocynthis. The objective of this study was to analyze published results that support the hypothesis that the polyherbal product BioCholine Powder has rumen bypass choline metabolites through a meta-analysis and effect size analysis (ES). Using Scopus, Web of Science, ScienceDirect, PubMed, and university dissertation databases, a systematic search was conducted for experiments published in scientific documents that evaluated the effects of BioCholine supplementation on the variables of interest. The analyzed data were extracted from twenty-one publications (fifteen scientific articles, three abstracts, and three graduate dissertations available in institutional libraries). The studies included lamb growing-finishing, lactating ewes and goats, calves, and dairy cows. The effects of BioCholine were analyzed using random effects statistical models to compare the weighted mean difference (WMD) between BioCholine-supplemented ruminants and controls (no BioCholine). Heterogeneity was explored, and three subgroup analyses were performed for doses [(4 (or 5 g/d), 8 (10 g/d)], supplementation in gestating and lactating ewes (pre- and postpartum supplementation), and blood metabolites by species and physiological state (lactating goats, calves, lambs, ewes). Supplementation with BioCholine in sheep increased the average daily lamb gain (p < 0.05), final body weight (p < 0.01), and daily milk yield (p < 0.05) without effects on intake or feed conversion. Milk yield was improved in small ruminants with BioCholine prepartum supplementation (p < 0.10). BioCholine supplementation decreased blood urea (p < 0.01) and increased levels of the liver enzymes alanine transaminase (ALT; p < 0.10) and albumin (p < 0.001). BioCholine doses over 8 g/d increased blood glucose, albumin (p < 0.10), cholesterol, total protein, and globulin (p < 0.05). The ES values of BioCholine in retained energy over the control in growing lambs were +7.15% NEm (p < 0.10) and +9.25% NEg (p < 0.10). In conclusion, adding BioCholine Powder to domestic ruminants' diets improves productive performance, blood metabolite indicators of protein metabolism, and liver health, showing its nutraceutical properties where phosphatidylcholine prevails as an alternative that can meet the choline requirements in ruminants.
Collapse
Affiliation(s)
- Germán David Mendoza-Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | | | - José Alejandro Roque-Jiménez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Ejido Nuevo León, Mexicali 21705, Mexico
| | - Adrián Gloria-Trujillo
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | - José Antonio Martínez-García
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | - Nallely Sánchez-López
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | | | - Héctor Aaron Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, S.L.P., Soledad de Graciano Sánchez 78000, Mexico;
| |
Collapse
|
34
|
Song YF, Bai ZY, Luo Z, Wang LJ, Zheng H. Choline-mediated hepatic lipid homoeostasis in yellow catfish: unravelling choline's lipotropic and methyl donor functions and significance of ire-1α signalling pathway. Br J Nutr 2024; 131:202-213. [PMID: 37642130 DOI: 10.1017/s000711452300185x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Choline plays a crucial role in hepatic lipid homeostasis by acting as a major methyl-group donor. However, despite this well-accepted fact, no study has yet explored how choline's methyl-donor function contributes to preventing hepatic lipid dysregulation. Moreover, the potential regulatory role of Ire-1α, an ER-transmembrane transducer for the unfolded protein response (UPRer), in choline-mediated hepatic lipid homeostasis remains unexplored. Thus, this study investigated the mechanism by which choline prevents hepatic lipid dysregulation, focusing on its role as a methyl-donor and the involvement of Ire-1α in this process. To this end, a model animal for lipid metabolism, yellow catfish (Pelteobagrus fulvidraco) were fed two different diets (adequate or deficient choline diets) in vivo for 10 weeks. The key findings of studies are as follows: 1. Dietary choline, upregulated selected lipolytic and fatty acid β-oxidation transcripts promoting hepatic lipid homeostasis. 2. Dietary choline ameliorated UPRer and prevented hepatic lipid dysregulation mainly through ire-1α signalling, not perk or atf-6α signalling. 3. Choline inhibited the transcriptional expression level of ire-1α by activating site-specific DNA methylations in the promoter of ire-1α. 4. Choline-mediated ire-1α methylations reduced Ire-1α/Fas interactions, thereby further inhibiting Fas activity and reducing lipid droplet deposition. These results offer a novel insight into the direct and indirect regulation of choline on lipid metabolism genes and suggests a potential crosstalk between ire-1α signalling and choline-deficiency-induced hepatic lipid dysregulation, highlighting the critical contribution of choline as a methyl-donor in maintaining hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Zhen-Yu Bai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, People's Republic of China
| | - Ling-Jiao Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Hua Zheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| |
Collapse
|
35
|
Hellbach F, Freuer D, Meisinger C, Peters A, Winkelmann J, Costeira R, Hauner H, Baumeister SE, Bell JT, Waldenberger M, Linseisen J. Usual dietary intake and change in DNA methylation over years: EWAS in KORA FF4 and KORA fit. Front Nutr 2024; 10:1295078. [PMID: 38249614 PMCID: PMC10799384 DOI: 10.3389/fnut.2023.1295078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Changes in DNA methylation can increase or suppress the expression of health-relevant genes. We investigated for the first time the relationship between habitual food consumption and changes in DNA methylation. Methods The German KORA FF4 and KORA Fit studies were used to study the change in methylation over a median follow-up of 4 years. Only subjects participating in both surveys and with available dietary and methylation data were included in the analysis (n = 465). DNA methylation was measured using the Infinium MethylationEPIC BeadChip (Illumina), resulting in 735,527 shared CpGs across both studies. Generalized estimating equation models with an interaction term of exposure and time point were used to analyze the association of 34 food groups, folic acid, and two dietary patterns with changes in DNA methylation over time. Results The results were corrected for genomic inflation. Significant interaction terms indicate different effects between both time points. We observed only a few significant associations between food intake and change in DNA methylation, except for cream and spirit consumption. The annotated genes include CLN3, PROM1, DLEU7, TLL2, and UGT1A10. Discussion We identified weak associations between food consumption and DNA methylation change. The differential results for cream and spirits, both consumed in low quantities, require replication in independent studies.
Collapse
Affiliation(s)
- Fabian Hellbach
- Department of Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
- Medical Faculty, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilian University Munich, Munich, Germany
| | - Dennis Freuer
- Department of Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Department of Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
| | - Annette Peters
- Medical Faculty, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilian University Munich, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Technical University of Munich, Institute of Human Genetics, Klinikum Rechts der Isar, Munich, Germany
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- School of Medicine, Institute of Nutritional Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian-Edgar Baumeister
- Medical Faculty, Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jakob Linseisen
- Department of Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
- Medical Faculty, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilian University Munich, Munich, Germany
| |
Collapse
|
36
|
Bou Ghanem A, Hussayni Y, Kadbey R, Ratel Y, Yehya S, Khouzami L, Ghadieh HE, Kanaan A, Azar S, Harb F. Exploring the complexities of 1C metabolism: implications in aging and neurodegenerative diseases. Front Aging Neurosci 2024; 15:1322419. [PMID: 38239489 PMCID: PMC10794399 DOI: 10.3389/fnagi.2023.1322419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
The intricate interplay of one-carbon metabolism (OCM) with various cellular processes has garnered substantial attention due to its fundamental implications in several biological processes. OCM serves as a pivotal hub for methyl group donation in vital biochemical reactions, influencing DNA methylation, protein synthesis, and redox balance. In the context of aging, OCM dysregulation can contribute to epigenetic modifications and aberrant redox states, accentuating cellular senescence and age-associated pathologies. Furthermore, OCM's intricate involvement in cancer progression is evident through its capacity to provide essential one-carbon units crucial for nucleotide synthesis and DNA methylation, thereby fueling uncontrolled cell proliferation and tumor development. In neurodegenerative disorders like Alzheimer's and Parkinson's, perturbations in OCM pathways are implicated in the dysregulation of neurotransmitter synthesis and mitochondrial dysfunction, contributing to disease pathophysiology. This review underscores the profound impact of OCM in diverse disease contexts, reinforcing the need for a comprehensive understanding of its molecular complexities to pave the way for targeted therapeutic interventions across inflammation, aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayman Bou Ghanem
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yaman Hussayni
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Raghid Kadbey
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yara Ratel
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Shereen Yehya
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Khouzami
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
37
|
Wang J, Chen Y, Xiao Z, Liu X, Liu C, Huang K, Chen H. Phase Separation of Chromatin Structure-related Biomolecules: A Driving Force for Epigenetic Regulations. Curr Protein Pept Sci 2024; 25:553-566. [PMID: 38551058 DOI: 10.2174/0113892037296216240301074253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 07/25/2024]
Abstract
Intracellularly, membrane-less organelles are formed by spontaneous fusion and fission of macro-molecules in a process called phase separation, which plays an essential role in cellular activities. In certain disease states, such as cancers and neurodegenerative diseases, aberrant phase separations take place and participate in disease progression. Chromatin structure-related proteins, based on their characteristics and upon external stimuli, phase separate to exert functions like genome assembly, transcription regulation, and signal transduction. Moreover, many chromatin structure-related proteins, such as histones, histone-modifying enzymes, DNA-modifying enzymes, and DNA methylation binding proteins, are involved in epigenetic regulations through phase separation. This review introduces phase separation and how phase separation affects epigenetics with a focus on chromatin structure-related molecules.
Collapse
Affiliation(s)
- Jiao Wang
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zixuan Xiao
- ISA Wenhua Wuhan High School, Fenglin Road, Junshan New Town, Wuhan Economics & Technological Development Zone, Wuhan, Hubei 430119, China
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengyu Liu
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
38
|
Bakulski KM, Blostein F, London SJ. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:126001. [PMID: 38048101 PMCID: PMC10695268 DOI: 10.1289/ehp12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consortium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding raised expectations for epigenome-wide association studies (EWAS) of other exposures. OBJECTIVE We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future recommendations. METHODS We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals, other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure biomarkers. RESULTS Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, dietary glycemic index, particulate matter with aerodynamic diameter < 10 μ m and < 2.5 μ m , nitrogen dioxide, mercury, cadmium, arsenic, electronic waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker creation. DISCUSSION Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic understanding of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/EHP12956.
Collapse
Affiliation(s)
| | - Freida Blostein
- University of Michigan, Ann Arbor, Michigan, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
39
|
Martín-Fernández-de-Labastida S, Alegria-Lertxundi I, de Pancorbo MM, Arroyo-Izaga M. Association between nutrient intake related to the one-carbon metabolism and colorectal cancer risk: a case-control study in the Basque Country. Eur J Nutr 2023; 62:3181-3191. [PMID: 37543963 PMCID: PMC10611602 DOI: 10.1007/s00394-023-03229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE Epidemiologic evidence for the association between methyl-donor nutrient intake and colorectal cancer (CRC) risk remains inconclusive. We aimed to examine the relationship between intake of vitamins of the B group, methionine, total choline and betaine and CRC risk, in a population from the CRC screening programme in the Basque Country. DESIGN This observational study included 308 patients with CRC and 308 age- and sex-matched subjects as controls. During recruitment, dietary, anthropometric, lifestyle, socioeconomic, demographic, and health status information was collected. Conditional logistic regression was used to estimate the odds ratios (ORs) for CRC risk. RESULTS The adjusted ORs for CRC risk decreased with higher intakes of choline and betaine (p < 0.05). After further adjustment for folate, high intake of choline and betaine remained associated with a reduced CRC risk (adjusted model for choline, OR third tertile vs first tertile = 0.45, 95% CI 0.26-0.80, p = 0.006; for betaine, OR third tertile vs first tertile = 0.27, 95% CI 0.16-0.47, p < 0.001). Regarding the other nutrients, our findings indicated a non-significant decrease in CRC risk with the high level of intake. CONCLUSIONS Our data suggest that choline and betaine intake influence CRC risk in the studied population.
Collapse
Grants
- 2011111153 Osasun Saila, Eusko Jaurlaritzako
- S-PE12UN058 Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza
- IT1633-22 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2014_1_161 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2015_2_0084 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- EP_2016_1_0098 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2017_2_0006 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- Universidad del País Vasco
Collapse
Affiliation(s)
- Silvia Martín-Fernández-de-Labastida
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Araba/Álava, Spain
| | - Iker Alegria-Lertxundi
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Araba/Álava, Spain
| | - Marian M de Pancorbo
- Department of Z. and Cellular Biology A., Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Araba/Álava, Spain
- BIOMICs Research Group, Microfluidics & BIOMICs Cluster, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Araba/Álava, Spain
- Bioaraba, BA04.03, Vitoria-Gasteiz, Araba/Álava, Spain
| | - Marta Arroyo-Izaga
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Araba/Álava, Spain.
- BIOMICs Research Group, Microfluidics & BIOMICs Cluster, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Araba/Álava, Spain.
- Bioaraba, BA04.03, Vitoria-Gasteiz, Araba/Álava, Spain.
| |
Collapse
|
40
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
41
|
D'Alessandro A, Lukens JR, Zimring JC. The role of PIMT in Alzheimer's disease pathogenesis: A novel hypothesis. Alzheimers Dement 2023; 19:5296-5302. [PMID: 37157118 DOI: 10.1002/alz.13115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
There are multiple theories of Alzheimer's disease pathogenesis. One major theory is that oxidation of amyloid beta (Aβ) promotes plaque deposition that directly contributes to pathology. A competing theory is that hypomethylation of DNA (due to altered one carbon metabolism) results in pathology through altered gene regulation. Herein, we propose a novel hypothesis involving L-isoaspartyl methyltransferase (PIMT) that unifies the Aβ and DNA hypomethylation hypotheses into a single model. Importantly, the proposed model allows bidirectional regulation of Aβ oxidation and DNA hypomethylation. The proposed hypothesis does not exclude simultaneous contributions by other mechanisms (e.g., neurofibrillary tangles). The new hypothesis is formulated to encompass oxidative stress, fibrillation, DNA hypomethylation, and metabolic perturbations in one carbon metabolism (i.e., methionine and folate cycles). In addition, deductive predictions of the hypothesis are presented both to guide empirical testing of the hypothesis and to provide candidate strategies for therapeutic intervention and/or nutritional modification. HIGHLIGHTS: PIMT repairs L-isoaspartyl groups on amyloid beta and decreases fibrillation. SAM is a common methyl donor for PIMT and DNA methyltransferases. Increased PIMT activity competes with DNA methylation and vice versa. The PIMT hypothesis bridges a gap between plaque and DNA methylation hypotheses.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - John R Lukens
- Carter Immunology Center and Center for Brain Immunology and Glia, University of Virginia Departments of Pathology and Neuroscience, Charlottesville, Virginia, USA
| | - James C Zimring
- Carter Immunology Center and Center for Brain Immunology and Glia, University of Virginia Departments of Pathology and Neuroscience, Charlottesville, Virginia, USA
| |
Collapse
|
42
|
Abstract
Unlike genetic changes, epigenetics modulates gene expression without stable modification of the genome. Even though all cells, including sperm and egg, have an epigenome pattern, most of these modifications occur during lifetime and interestingly, some of them, are reversible. Lifestyle and especially nutrients as well as diet regimens are presently gaining importance due to their ability to affect the epigenome. On the other hand, since the epigenome profoundly affects gene expression profile it can be speculated that the epigenome could modulate individual response to nutrients. Recent years have thus seen growing interest on nutrients, macronutrients ratio and diet regimens capable to affect the epigenetic pattern. In fact, while genetic alterations are mostly detrimental at the individual level, reshaping the epigenome may be a feasible strategy to positively counteract the detrimental effect of aging. Here, I review nutrient consumption and diet regimens as a possible strategy to counteract aging-driven epigenome derangement.
Collapse
Affiliation(s)
- Mario G Mirisola
- STeBiCeF Department, Università di Palermo, Building 16, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
43
|
Huang Y, Hu Q, Wei Z, Chen L, Luo Y, Li X, Li C. Influence of MTHFR polymorphism, alone or in combination with smoking and alcohol consumption, on cancer susceptibility. Open Life Sci 2023; 18:20220680. [PMID: 37772262 PMCID: PMC10523282 DOI: 10.1515/biol-2022-0680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 09/30/2023] Open
Abstract
5,10-methylenetetrahydrofolate reductase (MTHFR) mutations play a significant role in various types of cancers, serving as crucial regulators of folate levels in this process. Several studies have examined the effects of smoking and drinking on MTHFR-related cancers, yielding inconsistent results. Therefore, the objective of this study was to evaluate the magnitude of the effects of gene-smoking or gene-drinking interactions on cancer development. We conducted a comprehensive literature search in PubMed, Web of Science, CNKI, and Wan Fang databases up until May 10th, 2022, to identify relevant articles that met our inclusion criteria. The extracted data from these studies were used to calculate the overall odds ratio (OR) and corresponding 95% confidence interval (95% CI) using either a fixed-effect or random-effect model in Stata version 11.2. Stratified analyses were performed based on ethnicity, control group origin, and cancer classification to assess the risk of cancers associated with gene-smoking or gene-drinking interactions. Sensitivity analyses were conducted to investigate potential sources of heterogeneity, and publication bias was assessed using the Begg's test and Egger's test. Additionally, regression analysis was employed to explore the influence of relevant variables on heterogeneity. To evaluate the statistical correlations, analytical methods such as the false-positive report probability and the Bayesian false discovery probability were applied to assess the reliability of the findings. In our meta-analysis, a total of 47 articles were included, comprising 13,701 cases and 21,995 controls for the C677T polymorphism and 5,149 cases and 8,450 controls for the A1298C polymorphism. The results indicated a significant association between C677T polymorphism and cancer risks when combined with smoking (CT + TT vs CC, OR [95% CI] = 1.225 [1.009-1.487], p = 0.041). Stratified analysis further revealed a significant increase in liver cancer risk for individuals with the C677T when combined with smoking (liver cancer: CT + TT vs CC, OR [95% CI] = 1.564 [1.014-2.413], p = 0.043), particularly among Asian smokers (CT + TT vs CC, OR [95% CI] = 1.292 [1.007-1.658], p = 0.044). Regarding the A1298C polymorphism, an elevated risk of cancer was observed in mixed populations alone (CC + AC vs AA, OR [95% CI] = 1.609 [1.087-2.381], p = 0.018), as well as when combined with smoking (CC + AC vs AA, OR [95% CI] = 1.531 [1.127-2.080], p = 0.006). In non-drinkers, C677T polymorphism was found to be associated with esophageal cancer risk (C677T: CT + TT vs CC, OR [95% CI] = 1.544 [1.011-2.359], p = 0.044) and colon cancer risk (CC + AC vs AA, OR [95% CI] = 1.877 [1.166-3.054], p = 0.010), but there was no clear link between this polymorphism and cancer risk among drinkers. The association between the C677T polymorphism and cancer risk among smokers was found to be significant, suggesting that the combination of tobacco and the C677T polymorphism may enhance the carcinogenic process, particularly in liver cancer. However, no similar relationship was observed for the A1298C polymorphism. Interestingly, significantly increased cancer risk was observed in individuals with C677T genetic variants who were nondrinkers, but not among drinkers. These findings highlight the potential role of the C677T polymorphism in modifying cancer risk in specific contexts, such as smoking and alcohol consumption.
Collapse
Affiliation(s)
- Yonghui Huang
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guangxi Medical University, Nanning530021, P. R. China
| | - Qiurui Hu
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guangxi Medical University, Nanning530021, P. R. China
| | - Zhenxia Wei
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Guangxi Medical University, Nanning530021, P. R. China
| | - Li Chen
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guangxi Medical University, Nanning530021, P. R. China
| | - Ying Luo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, P. R. China
| | - Xiaojie Li
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guangxi Medical University, Nanning530021, P. R. China
- Medical Scientific Research Center, College of Stomatology, Guangxi Medical University, Nanning530021, P. R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, P. R. China
| | - Cuiping Li
- Medical Scientific Research Center, College of Stomatology, Guangxi Medical University, Nanning530021, P. R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, P. R. China
- Department of Experiment, The Affiliated Stomatology Hospital of Guangxi Medical University, Nanning530021, P. R. China
| |
Collapse
|
44
|
Meng ZY, Fan YC, Zhang CS, Zhang LL, Wu T, Nong MY, Wang T, Chen C, Jiang LH. EXOSC10 is a novel hepatocellular carcinoma prognostic biomarker: a comprehensive bioinformatics analysis and experiment verification. PeerJ 2023; 11:e15860. [PMID: 37701829 PMCID: PMC10494838 DOI: 10.7717/peerj.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor. There are few studies on EXOSC10 (exosome component 10) in HCC; however, the importance of EXOSC10 for HCC remains unclear. Methods In the study, the prognosis value of EXOSC10 and the immune correlation were explored by bioinformatics. The expression of EXOSC10 was verified by tissue samples from clinical patients and in vitro experiment (liver cancer cell lines HepG2, MHCC97H and Huh-7; normal human liver cell line LO2). Immunohistochemistry (IHC) was used to detect EXOSC10 protein expression in clinical tissue from HCC. Huh-7 cells with siEXOSC10 were constructed using lipofectamine 3000. Cell counting kit 8 (CCK-8) and colony formation were used to test cell proliferation. The wound healing and transwell were used to analyze the cell migration capacity. Mitochondrial membrane potential, Hoechst 33342 dye, and flow cytometer were used to detect the change in cell apoptosis, respectively. Differential expression genes (DEGs) analysis and gene set enrichment analysis (GSEA) were used to investigate the potential mechanism of EXOSC10 and were verified by western blotting. Results EXOSC10 was highly expressed in tissues from patients with HCC and was an independent prognostic factor for overall survival (OS) in HCC. Increased expression of EXOSC10 was significantly related to histological grade, T stage, and pathological stage. Multivariate analysis indicated that the high expression level of EXOSC10 was correlated with poor overall survival (OS) in HCC. GO and GSEA analysis showed enrichment of the cell cycle and p53-related signaling pathway. Immune analysis showed that EXOSC10 expression was a significant positive correlation with immune infiltration in HCC. In vitro experiments, cell proliferation and migration were inhibited by the elimination of EXOSC10. Furthermore, the elimination of EXOSC10 induced cell apoptosis, suppressed PARP, N-cadherin and Bcl-2 protein expression levels, while increasing Bax, p21, p53, p-p53, and E-cadherin protein expression levels. Conclusions EXOSC10 had a predictive value for the prognosis of HCC and may regulate the progression of HCC through the p53-related signaling pathway.
Collapse
Affiliation(s)
- Zhi-Yong Meng
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
- First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Yu-Chun Fan
- Medical College, Guangxi University, Nanning, China
| | - Chao-Sheng Zhang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
| | - Lin-Li Zhang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
| | - Tong Wu
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
| | - Min-Yu Nong
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
| | - Tian Wang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
| | - Chuang Chen
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Li-He Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
- Medical College, Guangxi University, Nanning, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province,Taizhou, Zhejiang, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province (Zunyi Medical University), Guizhou, China
| |
Collapse
|
45
|
Liu D, Aziz NA, Landstra EN, Breteler MMB. The lipidomic correlates of epigenetic aging across the adult lifespan: A population-based study. Aging Cell 2023; 22:e13934. [PMID: 37496173 PMCID: PMC10497837 DOI: 10.1111/acel.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
Lipid signaling is involved in longevity regulation, but which specific lipid molecular species affect human biological aging remains largely unknown. We investigated the relation between complex lipids and DNA methylation-based metrics of biological aging among 4181 participants (mean age 55.1 years (range 30.0-95.0)) from the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. The absolute concentration of 14 lipid classes, covering 964 molecular species and 267 fatty acid composites, was measured by Metabolon Complex Lipid Panel. DNA methylation-based metrics of biological aging (AgeAccelPheno and AgeAccelGrim) were calculated based on published algorithms. Epigenome-wide association analyses (EWAS) of biological aging-associated lipids and pathway analysis were performed to gain biological insights into the mechanisms underlying the effects of lipidomics on biological aging. We found that higher levels of molecular species belonging to neutral lipids, phosphatidylethanolamines, phosphatidylinositols, and dihydroceramides were associated with faster biological aging, whereas higher levels of lysophosphatidylcholine, hexosylceramide, and lactosylceramide species were associated with slower biological aging. Ceramide, phosphatidylcholine, and lysophosphatidylethanolamine species with odd-numbered fatty acid tail lengths were associated with slower biological aging, whereas those with even-numbered chain lengths were associated with faster biological aging. EWAS combined with functional pathway analysis revealed several complex lipids associated with biological aging as important regulators of known longevity and aging-related pathways.
Collapse
Affiliation(s)
- Dan Liu
- Population Health SciencesGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - N. Ahmad Aziz
- Population Health SciencesGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Neurology, Faculty of MedicineUniversity of BonnBonnGermany
| | - Elvire Nadieh Landstra
- Population Health SciencesGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Monique M. B. Breteler
- Population Health SciencesGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of MedicineUniversity of BonnBonnGermany
| |
Collapse
|
46
|
Rossi M, Khalifeh M, Fiori F, Parpinel M, Serraino D, Pelucchi C, Negri E, Giacosa A, Crispo A, Collatuzzo G, Hannun Y, Luberto C, La Vecchia C, Boffetta P. Dietary choline and sphingomyelin choline moiety intake and risk of colorectal cancer: a case-control study. Eur J Clin Nutr 2023; 77:905-910. [PMID: 37479807 PMCID: PMC11749154 DOI: 10.1038/s41430-023-01298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
INTRODUCTION Phospholipids are possible favorable agents for colorectal cancer (CRC). Choline has been inversely related to CRC risk but findings are inconsistent. We assessed the effect of dietary sphingomyelin (SM) choline moiety and total choline intake on risk of CRC. METHOD This analysis is based on a multicenter case-control study conducted between 1992 and 1996 in Italy. A total of 6107 subjects were enrolled, including 1225 colon cancer cases, 728 rectal cancer cases and 4154 hospital-based controls. We applied data on the composition of foods in terms of SM choline moiety and choline intake on dietary information collected through a validated food-frequency questionnaire. Odds ratio (OR) for energy-adjusted tertiles of SM choline moiety and choline were estimated through logistic regression models adjusted for sex, age, center, education, alcohol consumption, body mass index, family history of CRC, and physical activity. RESULTS Choline was inversely related to CRC risk (OR for the highest versus the lowest tertile: 0.85; 95% confidence interval [CI]: 0.73-0.99), with a significant trend in risk. The OR for an increment of one standard deviation of energy-adjusted choline intake was 0.93 (95% CI: 0.88-0.98). The association was consistent in colon and rectal cancer and also across colon subsites. SM choline moiety was not associated with CRC risk (OR for the highest versus the lowest tertile: 0.96, 95% CI 0.84-1.11). CONCLUSION This study shows an inverse association between choline intake and CRC but not with SM choline moiety.
Collapse
Affiliation(s)
- Marta Rossi
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Malak Khalifeh
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Federica Fiori
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Diego Serraino
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico, National Cancer Institute IRCCS, 33108, Aviano, Italy
| | - Claudio Pelucchi
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Eva Negri
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Università di Bologna, 40126, Bologna, Italy
| | - Attilio Giacosa
- Department of Gastroenterology and Clinical Nutrition, Policlinico di Monza, 20900, Monza, Italy
| | - Anna Crispo
- Epidemiology and Biostatistics Unit, Istituto Nazionale dei Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | | | - Yusuf Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Università di Bologna, 40126, Bologna, Italy.
| |
Collapse
|
47
|
Li Q, Cheng Y, Chen W, Wang Y, Dai R, Yang X. Pan-cancer analysis of the PDE4DIP gene with potential prognostic and immunotherapeutic values in multiple cancers including acute myeloid leukemia. Open Med (Wars) 2023; 18:20230782. [PMID: 37663233 PMCID: PMC10473463 DOI: 10.1515/med-2023-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Phosphodiesterase 4D interacting protein (PDE4DIP) interacts with cAMP-specific phosphodiesterase 4D and its abnormal expression promotes the development of hematological malignancies, breast cancer, and pineal cell carcinoma. However, there is currently no systematic pan-cancer analysis of the association between PDE4DIP and various cancers. Thus, this study aimed to elucidate the potential functions of PDE4DIP in various cancers. Based on the multiple public databases and online websites, we conducted comprehensive analyses for PDE4DIP in various cancers, including differential expression, prognosis, genetic variation, DNA methylation, and immunity. We thoroughly analyzed the specific role of PDE4DIP in acute myeloid leukemia (LAML). The results indicated that there were differences in PDE4DIP expression in cancers, and in kidney chromophobe, LAML, pheochromocytoma and paraganglioma, thymoma, and uveal melanoma, PDE4DIP had potential prognostic value. PDE4DIP expression was also correlated with genetic variation, DNA methylation, immune cell infiltration, and immune-related genes in cancers. Functional enrichment analysis showed that PDE4DIP was mainly related to immune-related pathways in cancers, and in LAML, PDE4DIP was mainly related to immunoglobulin complexes, T-cell receptor complexes, and immune response regulatory signaling pathways. Our study systematically revealed for the first time the potential prognostic and immunotherapeutic value of PDE4DIP in various cancers, including LAML.
Collapse
Affiliation(s)
- Qi Li
- Department of Blood Transfusion, The First People’s Hospital of Yunnan Province – The Affiliated Hospital of Kunming University of Science and Technology, 650032Kunming, Yunnan, China
| | - Yujing Cheng
- Department of Blood Transfusion, The First People’s Hospital of Yunnan Province – The Affiliated Hospital of Kunming University of Science and Technology, 650032Kunming, Yunnan, China
| | - Wanlu Chen
- Department of Blood Transfusion, The First People’s Hospital of Yunnan Province – The Affiliated Hospital of Kunming University of Science and Technology, 650032Kunming, Yunnan, China
| | - Ying Wang
- Department of Blood Transfusion, The First People’s Hospital of Yunnan Province – The Affiliated Hospital of Kunming University of Science and Technology, 650032Kunming, Yunnan, China
| | - Run Dai
- Department of Blood Transfusion, The First People’s Hospital of Yunnan Province – The Affiliated Hospital of Kunming University of Science and Technology, 650032Kunming, Yunnan, China
| | - Xin Yang
- Department of Blood Transfusion, The First People’s Hospital of Yunnan Province – The Affiliated Hospital of Kunming University of Science and Technology, 650032Kunming, Yunnan, China
| |
Collapse
|
48
|
Liu F, Zhou H, Peng Y, Qiao Y, Wang P, Si C, Wang X, Gong J, Chen K, Song F. Plasma One-Carbon Metabolism-Related Micronutrients and the Risk of Breast Cancer: Involvement of DNA Methylation. Nutrients 2023; 15:3621. [PMID: 37630812 PMCID: PMC10458034 DOI: 10.3390/nu15163621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Findings of epidemiologic studies focusing on the association between one-carbon metabolism-related micronutrients and breast cancer risk, along with the involvement of DNA methylation, have been inconsistent and incomprehensive. We conducted a case-control study in China including 107 paired participants and comprehensively detected 12 plasma one-carbon metabolism-related micronutrients. Genomic DNA methylation was measured using an 850 K chip and differential methylation probes (DMPs) were identified. Multivariate logistic regression was performed to estimate the associations between plasma micronutrients and the odds of breast cancer. The mediation of selected DMPs in micronutrient breast cancer associations was examined using mediation analyses. An inverse association of plasma folate, methionine cycling-related micronutrients (methionine, S-adenosylmethionine, and S-adenosylhomocysteine), and all micronutrients in the choline metabolism and enzymatic factor groups, and a positive association of methionine cycling-related cysteine with breast cancer risk were observed. Nine micronutrients (methionine, cysteine, SAM, folate, choline, betaine, P5P, vitamins B2, and B12) were related to global or probe-specific methylation levels (p < 0.05). The selected DMPs mediated the micronutrient breast cancer associations with an average mediation proportion of 36.43%. This study depicted comprehensive associations between circulating one-carbon metabolism-related micronutrients and breast cancer risk mediated by DNA methylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China; (F.L.); (H.Z.); (Y.P.); (Y.Q.); (P.W.); (C.S.); (X.W.); (J.G.)
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China; (F.L.); (H.Z.); (Y.P.); (Y.Q.); (P.W.); (C.S.); (X.W.); (J.G.)
| |
Collapse
|
49
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Epigenetic Aberrations in Major Psychiatric Diseases Related to Diet and Gut Microbiome Alterations. Genes (Basel) 2023; 14:1506. [PMID: 37510410 PMCID: PMC10379841 DOI: 10.3390/genes14071506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Nutrition and metabolism modify epigenetic signatures like histone acetylation and DNA methylation. Histone acetylation and DNA methylation in the central nervous system (CNS) can be altered by bioactive nutrients and gut microbiome via the gut-brain axis, which in turn modulate neuronal activity and behavior. Notably, the gut microbiome, with more than 1000 bacterial species, collectively contains almost three million functional genes whose products interact with millions of human epigenetic marks and 30,000 genes in a dynamic manner. However, genetic makeup shapes gut microbiome composition, food/nutrient metabolism, and epigenetic landscape, as well. Here, we first discuss the effect of changes in the microbial structure and composition in shaping specific epigenetic alterations in the brain and their role in the onset and progression of major mental disorders. Afterward, potential interactions among maternal diet/environmental factors, nutrition, and gastrointestinal microbiome, and their roles in accelerating or delaying the onset of severe mental illnesses via epigenetic changes will be discussed. We also provide an overview of the association between the gut microbiome, oxidative stress, and inflammation through epigenetic mechanisms. Finally, we present some underlying mechanisms involved in mediating the influence of the gut microbiome and probiotics on mental health via epigenetic modifications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02218, USA
| |
Collapse
|
50
|
Patel P, Selvaraju V, Babu JR, Geetha T. Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children. Nutrients 2023; 15:2840. [PMID: 37447167 DOI: 10.3390/nu15132840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The occurrence of obesity stems from both genetic and external influences. Despite thorough research and attempts to address it through various means such as dietary changes, physical activity, education, and medications, a lasting solution to this widespread problem remains elusive. Nutrients play a crucial role in various cellular processes, including the regulation of gene expression. One of the mechanisms by which nutrients can affect gene expression is through DNA methylation. This modification can alter the accessibility of DNA to transcription factors and other regulatory proteins, thereby influencing gene expression. Nutrients such as folate and vitamin B12 are involved in the one-carbon metabolism pathway, which provides the methyl groups necessary for DNA methylation. Studies have shown that the inadequate intake of these nutrients can lead to alterations in DNA methylation patterns. For this study, we aim to understand the differences in the association of the dietary intake between normal weight and overweight/obese children and between European American and African American children with the DNA methylation of the three genes NRF1, FTO, and LEPR. The research discovered a significant association between the nutritional intake of 6-10-years-old children, particularly the methyl donors present in their diet, and the methylation of the NRF1, FTO, and LEPR genes. Additionally, the study emphasizes the significance of considering health inequalities, particularly family income and maternal education, when investigating the epigenetic impact of methyl donors in diet and gene methylation.
Collapse
Affiliation(s)
- Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|