1
|
Khan M, Verma L. Crosstalk between signaling pathways (Rho/ROCK, TGF-β and Wnt/β-Catenin Pathways/ PI3K-AKT-mTOR) in Cataract: A Mechanistic Exploration and therapeutic strategy. Gene 2025; 947:149338. [PMID: 39965745 DOI: 10.1016/j.gene.2025.149338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Cataract are a leading cause of visual impairment that is characterized by clouding or lens opacification of the healthy clear lens of the eye or its capsule. It can be classified based on their etiology and clinical presentation such as congenital, age-related, and secondary cataracts. Clinically, it may be further classified as a cortical or nuclear cataract. Cortical cataracts are responsible for opacification of the lens cortex, while nuclear cataracts cause age-related degeneration of the lens nucleus. This review aims to explore the molecular mechanism associated with various signaling pathways underlying cataract formation. Additionally, explore the potential therapeutic strategies for the management of cataracts. A comprehensive literature search was performed utilizing different keywords such as cataract, pathogenesis, signaling pathways, therapeutic approaches, RNA therapeutics, and surgery. Electronic databases such as PubMed, Google Scholar, Springer Link, and Web of Science were used for the literature search. The cataract formation is responsible for protein aggregation, primarily of γ-crystallin, and causes disruptions in signaling pathways. Key pathways include Rho/ROCK, TGF-β, Wnt/β-catenin, NF-κB, and PI3K-AKT-mTOR. Signaling pathways governing lens epithelial cell differentiation and epithelial-to-mesenchymal transition (EMT) are essential for maintaining lens transparency. Disruptions in these pathways, often caused by genetic mutations in genes like MIP, TDRD7, PAX6, FOXE3, HSF4, MAF, and PITX3 lead to cataract formation. While surgical intervention remains the primary treatment, pharmacological therapies and emerging RNA-based strategies offer promising strategies for the prevention and management of cataracts. A deeper understanding of the underlying molecular mechanisms is essential to develop innovative therapeutic strategies and improve the quality of life for individuals affected by cataracts.
Collapse
Affiliation(s)
- Meraj Khan
- Faculty of Pharmaceutical Sciences, Sagar Institute of Research & Technology-Pharmacy, Sanjeev Agrawal Global Educational University, Bhopal, Madhya.Pradesh 462022, India.
| | - Lokesh Verma
- Faculty of Pharmaceutical Sciences, Sagar Institute of Research & Technology-Pharmacy, Sanjeev Agrawal Global Educational University, Bhopal, Madhya.Pradesh 462022, India.
| |
Collapse
|
2
|
Notting F, Cheng Y, Marinkovic M, van Bolhuis H, Notting I. Bilateral simultaneous cataract surgery and intraocular lens implantation in an adult female chimpanzee (Pan troglodytes) inducing monovision. Vet Ophthalmol 2025; 28:457-464. [PMID: 37170718 PMCID: PMC11911982 DOI: 10.1111/vop.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cataract is the major cause of visual impairment in humans. Phacoemulsification with intraocular lens (IOL) implantation is the standard technique for cataract treatment with a high success rate. In a few cases, the surgical cataract procedure and lens implantation have been applied in non-human primates. CASE DESCRIPTION A +/- 40-year-old female chimpanzee (Pan troglodytes) in captivity was diagnosed with mature cataract optical density (OD) and posterior subcapsular cataract combined with cortical opacities OS after ophthalmic examination. To restore vision and facilitate far- and near sight, phacoemulsification OU with +22.5 diopter (D) IOL implantation OD and + 24 D OS were performed. Despite complicated surgery OD due to posterior capsular rupture, the outcome was successful during 1-year follow-up. The chimpanzee regained adequate vision, normal behavior, and was successfully re-introduced to her group of chimpanzees. CONCLUSION This is the first case report of a simultaneous bilateral cataract surgery with IOL implantations in both eyes, targeting emmetropia OS and near vision OD resulting in monovision, in a chimpanzee. Vision was restored without postoperative complications.
Collapse
Affiliation(s)
- F. Notting
- Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Y. Cheng
- Department of OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
| | - M. Marinkovic
- Department of OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
| | - H. van Bolhuis
- Department of OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
- AAP, Animal Advocacy and ProtectionAlmereThe Netherlands
| | - I. Notting
- Department of OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
3
|
Geng W, Li P, Zhang G, Zhong R, Xu L, Kang L, Liu X, Wu M, Ji M, Guan H. Targeted Activation of OGG1 Inhibits Paraptosis in Lens Epithelial Cells of Early Age-Related Cortical Cataract. Invest Ophthalmol Vis Sci 2025; 66:29. [PMID: 39804629 PMCID: PMC11734758 DOI: 10.1167/iovs.66.1.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies. Methods Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy. Cell death-associated protein markers were quantified via Western blot analysis, including those for paraptosis (ALIX, GRP78), apoptosis (cleaved caspase 3 and caspase 9), pyroptosis (N-GSDMD), and ferroptosis (GPX4). Intracellular vesicle-organelle colocalization was assessed through immunofluorescence. OGG1 protein expression and activity were evaluated through multiple methods, including Western blot, laser micro-irradiation, and immunofluorescence. The therapeutic potential of the OGG1 activator TH10785 on paraptosis was investigated using an ex vivo rat lens model. Results Morphologic changes revealed significant endoplasmic reticulum (ER) swelling in ARCC patient LECs, with no characteristic apoptotic features. Paraptosis-related proteins exhibited significant alterations, while other cell death pathway markers (apoptosis, pyroptosis, and ferroptosis) remained unchanged. In the reactive oxygen species-induced paraptosis model, vesicular structures showed exclusive colocalization with ER-specific fluorescence. Elevated levels of the DNA damage marker 7,8-dihydro-8-oxoguanine were observed concurrent with decreased OGG1 activity. The OGG1 activator TH10785 showed efficacy in suppressing LECs paraptosis in ex vivo rat lens cultures. Conclusions Paraptosis was identified in the LECs of patients with early ARCC. TH10785 activates OGG1 to suppress paraptosis in LECs, suggesting a novel therapeutic approach for early ARCC intervention.
Collapse
Affiliation(s)
- Wenjing Geng
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Renhao Zhong
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Linhui Xu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xi Liu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Wu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Ni Y, Liu L, Jiang F, Wu M, Qin Y. JAG1/Notch Pathway Inhibition Induces Ferroptosis and Promotes Cataractogenesis. Int J Mol Sci 2025; 26:307. [PMID: 39796164 PMCID: PMC11719987 DOI: 10.3390/ijms26010307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression. RNA sequencing of anterior lens capsule samples from ARC patients revealed a significant downregulation of Notch signaling, coupled with an upregulation of ferroptosis-related genes. Notch1 expression decreased, while ferroptosis markers increased in an age-dependent manner. In vitro, upregulation of Notch signaling alleviated ferroptosis by decreasing ferritin heavy chain 1 (FTH1) and p53 levels while enhancing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11). Conversely, inhibition of Notch signaling exacerbated ferroptosis, as evidenced by reduced Nrf2, GPX4, and SLC7A11 expression. These findings suggest that downregulation of Notch signaling promotes ferroptosis in LECs by impairing the Nrf2/GPX4 antioxidant pathway, thereby contributing to ARC development. This study offers new insights into ARC pathogenesis and highlights the Notch signaling pathway as a potential therapeutic target for preventing or mitigating ARC progression.
Collapse
Affiliation(s)
- Yan Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Liangping Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Fanying Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Yingyan Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| |
Collapse
|
5
|
Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed Pharmacother 2024; 181:117641. [PMID: 39541789 DOI: 10.1016/j.biopha.2024.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia). Poorly managed diabetes can lead to complications affecting multiple organ systems. Antioxidants play a crucial role in reducing oxidative stress caused by reactive oxygen species (ROS), primarily triggered by uncontrolled high blood sugar levels in diabetes. Antioxidants like vitamin C, E, selenium, and alpha-lipoic acid, when used as supplements, have shown promise in reducing oxidative stress markers and improving antioxidant status in laboratory and animal studies and diabetic patients. Antioxidant supplementation may help reduce the risk of diabetic complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Additionally, antioxidants also have anti-inflammatory properties, which could be beneficial in reducing inflammation associated with diabetes. Antioxidant supplementation has been shown to enhance endothelial function, insulin sensitivity, and glucose metabolism, thereby aiding in glycemic control and overall diabetic management. Combining antioxidants with certain medications may have therapeutic benefits, such as effectively neutralizing free radicals and enhancing the regulation of antioxidant defense systems. This review presents an update on diabetes, the sources of free radical generation, the body's natural defense mechanisms, the clinical evidence regarding using antioxidants in managing diabetic complications, and the potential new therapeutic approaches. Overall, antioxidant supplementation may offer some benefits in managing diabetic complications. However, further studies are needed to understand the mechanisms of action, determine the optimal supplementation, explore potential interactions with other medications, and conduct long-term studies to establish the possible use of antioxidants for optimal benefits in diabetes care.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada.
| | - Aldeam Facey
- Mona Academy of Sport, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix Omoruyi
- University of Rochester Medical Center, Department of Ophthalmology, Rochester, NY, USA.
| | - Shada Mohansingh
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix O Omoruyi
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA; Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA.
| |
Collapse
|
6
|
Bian J, Dai W, Liu D. Treatment evaluation of small incision cataract extraction combined with Huoxue Huayu Tang. Asian J Surg 2024:S1015-9584(24)02295-4. [PMID: 39448305 DOI: 10.1016/j.asjsur.2024.09.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Affiliation(s)
- Junjie Bian
- Department of Ophthalmology, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Weijia Dai
- Department of Ophthalmology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Dachuan Liu
- Department of Ophthalmology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Yasir M, Park J, Han ET, Han JH, Park WS, Chun W. Investigating the Inhibitory Potential of Flavonoids against Aldose Reductase: Insights from Molecular Docking, Dynamics Simulations, and gmx_MMPBSA Analysis. Curr Issues Mol Biol 2024; 46:11503-11518. [PMID: 39451563 PMCID: PMC11506312 DOI: 10.3390/cimb46100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, with aldose reductase playing a critical role in the pathophysiology of diabetic complications. This study aimed to investigate the efficacy of flavonoid compounds as potential aldose reductase inhibitors using a combination of molecular docking and molecular dynamics (MD) simulations. The three-dimensional structures of representative flavonoid compounds were obtained from PubChem, minimized, and docked against aldose reductase using Discovery Studio's CDocker module. The top 10 compounds Daidzein, Quercetin, Kaempferol, Butin, Genistein, Sterubin, Baicalein, Pulchellidin, Wogonin, and Biochanin_A were selected based on their lowest docking energy values for further analysis. Subsequent MD simulations over 100 ns revealed that Daidzein and Quercetin maintained the highest stability, forming multiple conventional hydrogen bonds and strong hydrophobic interactions, consistent with their favorable interaction energies and stable RMSD values. Comparative analysis of hydrogen bond interactions and RMSD profiles underscored the ligand stability. MMPBSA analysis further confirmed the significant binding affinities of Daidzein and Quercetin, highlighting their potential as aldose reductase inhibitors. This study highlights the potential of flavonoids as aldose reductase inhibitors, offering insights into their binding interactions and stability, which could contribute to developing novel therapeutics for DM complications.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
8
|
Tong Y, Wang G, Riquelme MA, Du Y, Quan Y, Fu J, Gu S, Jiang JX. Mechano-activated connexin hemichannels and glutathione transport protect lens fiber cells against oxidative insults. Redox Biol 2024; 73:103216. [PMID: 38820983 PMCID: PMC11170479 DOI: 10.1016/j.redox.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Long-lived lens fiber cells require a robust cellular protective function against oxidative insults to maintain their hemostasis and viability; however, the underlying mechanism is largely obscure. In this study, we unveiled a new mechanism that protects lens fiber cells against oxidative stress-induced cell death. We found that mechano-activated connexin (Cx) hemichannels (HCs) mediate the transport of glutathione (GSH) into chick embryonic fibroblasts (CEF) and primary lens fiber cells, resulting in a decrease in the accumulation of intracellular reactive oxygen species induced by both H2O2 and ultraviolet B, providing protection to lens fiber cells against cell apoptosis and necrosis. Furthermore, HCs formed by both homomeric Cx50 or Cx46 and heteromeric Cx50/Cx46 were mechanosensitive and could transport GSH into CEF cells. Notably, mechano-activated Cx50 HCs exhibited a greater capacity to transport GSH than Cx46 HCs. Consistently, the deficiency of Cx50 in single lens fiber cells led to a higher level of oxidative stress. Additionally, outer cortical short lens fiber cells expressing full length Cxs demonstrated greater resistance to oxidative injury compared to central core long lens fibers. Taken together, our results suggest that the activation of Cx HCs by interstitial fluid flow in cultured epithelial cells and isolated fiber cells shows that HCs can serve as a pathway for moving GSH across the cell membrane to offer protection against oxidative stress.
Collapse
Affiliation(s)
- Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA; Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Guangyan Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA; Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yu Du
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jialing Fu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
9
|
Yasir M, Park J, Chun W. Discovery of Novel Aldose Reductase Inhibitors via the Integration of Ligand-Based and Structure-Based Virtual Screening with Experimental Validation. ACS OMEGA 2024; 9:20338-20349. [PMID: 38737046 PMCID: PMC11079907 DOI: 10.1021/acsomega.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Aldose reductase plays a central role in diabetes mellitus (DM) associated complications by converting glucose to sorbitol, resulting in a harmful increase of reactive oxygen species (ROS) in various tissues, such as the heart, vasculature, neurons, eyes, and kidneys. We employed a comprehensive approach, integrating both ligand- and structure-based virtual screening followed by experimental validation. Initially, candidate compounds were extracted from extensive drug and chemical libraries using the DeepChem's GraphConvMol algorithm, leveraging its capacity for robust molecular feature representation. Subsequent refinement employed molecular docking and molecular dynamics (MD) simulations, which are crucial for understanding compound-receptor interactions and dynamic behavior in a simulated physiological environment. Finally, the candidate compounds were subjected to experimental validation of their biological activity using an aldose reductase inhibitor screening kit. The comprehensive approach led to the identification of a promising compound, demonstrating significant potential as an aldose reductase inhibitor. This comprehensive approach not only yields a potential therapeutic intervention for DM-related complications but also establishes an integrated protocol for drug development, setting a new benchmark in the field.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| |
Collapse
|
10
|
He T, Zhou J, Wen Y, Liu Q, Zhi W, Yang W, He S, Ouyang L, Xia X, Zhou Z. Identification of spontaneous age-related cataract in Microtus fortis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:553-561. [PMID: 39019784 PMCID: PMC11255186 DOI: 10.11817/j.issn.1672-7347.2024.230534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 07/19/2024]
Abstract
OBJECTIVES Age-related cataract is the most common type of adult cataract and a leading cause of blindness. Currently, there are few reports on the establishment of animal models for age-related cataract. During the experimental breeding of Microtus fortis (M. fortis), we first observed that M. fortis aged 12 to 15 months could naturally develop cataracts. This study aims to explore the possibility of developing them as an animal model for age-related cataract via identifing and analyzing spontaneous cataract in M. fortis. METHODS The 12-month-old healthy M. fortis were served as a control group and 12-month-old cataractous M. fortis were served as an experimental group. The lens transparency was observed using the slit-lamp biomicroscope. Hematoxylin and eosin staining was used to detect pathological changes in the lens. Biochemical detection methods were applied to detect blood routine, blood glucose levels, the serum activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in both groups. Finally, real-time RT-PCR was used to detect the transcription levels of cataract-related genes in the lens of 2 groups. RESULTS Compared with the control group, the lens of cataract M. fortis showed severely visible opacity, the structure of lens was destroyed seriously, and some pathological damage, such as swelling, degeneration/necrosis, calcification, hyperplasia, and fiber liquefaction were found in lens epithelial cells (LECs). The fibrous structure was disorganized and irregularly distributed with morgagnian globules (MGs) aggregated in the degenerated lens fibers. There was no statistically significant difference in blood glucose levels between the experimental and control groups (P>0.05). However, white blood cell (WBC) count (P<0.05), lymphocyte count (P<0.01), and lymphocyte ratio (P<0.05) were significantly decreased, while neutrophil percentage (P<0.05) and monocyte ratio (P<0.01) were significantly increased. The serum activities of SOD and GSH-Px (both P<0.05) were both reduced. The mRNAs of cataract-related genes, including CRYAA, CRYBA1, CRYBB3, Bsfp1, GJA3, CRYBA2, MIP, HspB1, DNase2B, and GJA8, were significantly downregultaed in the lenses of the experimental group (all P<0.05). CONCLUSIONS There are significant differences in lens pathological changes, peroxidase levels, and cataract-related gene expression between cataract and healthy M. fortis. The developed cataract spontaneously in M. fortis is closely related to age, the cataract M. fortis might be an ideal animal model for the research of age-related cataract.
Collapse
Affiliation(s)
- Tianqiong He
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013.
| | - Junkang Zhou
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Yixin Wen
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Qian Liu
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Wenling Zhi
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Wenhao Yang
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Shuangyan He
- Laboratory Animal Center, AIER Eye Hospital, Changsha 410015
| | - Lingxuan Ouyang
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha 410008
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhijun Zhou
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013.
| |
Collapse
|
11
|
Kim JM, Choi YJ. Myopia and Nutrient Associations with Age-Related Eye Diseases in Korean Adults: A Cross-Sectional KNHANES Study. Nutrients 2024; 16:1276. [PMID: 38732522 PMCID: PMC11085160 DOI: 10.3390/nu16091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
This study assessed the prevalence of myopia, cataracts, glaucoma, and macular degeneration among Koreans over 40, utilizing data from the 7th Korea National Health and Nutrition Examination Survey (KNHANES VII, 2018). We analyzed 204,973 adults (44% men, 56% women; mean age 58.70 ± 10.75 years), exploring the association between myopia and these eye diseases through multivariate logistic regression, adjusting for confounders and calculating adjusted odds ratios (ORs) with 95% confidence intervals (CIs). Results showed a myopia prevalence of 44.6%, cataracts at 19.4%, macular degeneration at 16.2%, and glaucoma at 2.3%, with significant differences across ages and genders. A potential link was found between myopia and an increased risk of cataracts and macular degeneration, but not with glaucoma. Additionally, a higher dietary intake of carbohydrates, polyunsaturated and n-6 fatty acids, vitamins, and minerals correlated with lower risks of these diseases, underscoring the importance of the diet in managing and preventing age-related eye conditions. These findings highlight the need for dietary considerations in public health strategies and confirm myopia as a significant risk factor for specific eye diseases in the aging Korean population.
Collapse
Affiliation(s)
- Jeong-Mee Kim
- Department of Visual Optics, Far East University, Eumseong 27601, Republic of Korea;
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
12
|
Zhang M, Zhang R, Zhao X, Ma Z, Xin J, Xu S, Guo D. The role of oxidative stress in the pathogenesis of ocular diseases: an overview. Mol Biol Rep 2024; 51:454. [PMID: 38536516 DOI: 10.1007/s11033-024-09425-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 02/06/2025]
Abstract
Dysregulation of oxidative stress serves as a pivotal predisposing or exacerbating factor in the intricate development of numerous pathological processes and diseases. In recent years, substantial evidence has illuminated the crucial role of reactive oxygen species (ROS) in many fundamental cellular functions, including proliferation, inflammation, apoptosis, and gene expression. Notably, producing free radicals within ROS profoundly impacts a wide range of biomolecules, such as proteins and DNA, instigating cellular damage and impairing vital cellular functions. Consequently, oxidative stress emerges as a closely intertwined factor across diverse disease spectra. Remarkably, the pathogenesis of several eye diseases, including age-related macular degeneration, glaucoma, and diabetic retinopathy, manifests an intrinsic association with oxidative stress. In this comprehensive review, we briefly summarize the recent progress in elucidating the intricate role of oxidative stress in the development of ophthalmic diseases, shedding light on potential therapeutic avenues and future research directions.
Collapse
Affiliation(s)
- Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Xiaoyue Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, No. 48#. Yingxiongshan Road, Jinan, 250002, China.
| |
Collapse
|
13
|
Shu X, Liu Y, He F, Gong Y, Li J. A bibliometric and visualized analysis of the pathogenesis of cataracts from 1999 to 2023. Heliyon 2024; 10:e26044. [PMID: 38390089 PMCID: PMC10881887 DOI: 10.1016/j.heliyon.2024.e26044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Research on the pathogenesis of cataracts is ongoing and the number of publications on this topic is increasing annually. This study offers an overview of the research status, popular topics, and scholarly tendencies in the field of cataract pathogenesis over recent decades,which helps to guide future research directions, and optimize resource allocation. In the present study, we performed a bibliometric analysis of cataract pathogenesis. Publications from January 1, 1999, to December 20, 2023, were collected from the Web of Science Core Collection (WoSCC), and the extracted data were quantified and analyzed. We analyzed and presented the data using Microsoft Excel, VOSviewer, CiteSpace, and Python. In all, 4006 articles were evaluated based on various characteristics, including publication year, authors, countries, institutions, journals, citations, and keywords. This study utilized VOSviewer to conduct visualized analysis, including co-authorship, co-citation, co-occurrence, and network visualization. The CiteSpace software was used to identify keywords with significant bursts of activity. The number of annual global publications climbed from 76 to 277 between 1999 and 2023, a 264.47% rise. Experimental Eye Research published the most manuscripts (178 publications), whereas Investigative Ophthalmology & Visual Science received the most citations (6675 citations). The most influential and productive country, institution, and author were the United States (1244 publications, 54,456 citations), University of California system (136 publications, 5401 citations), and Yao Ke (49 publications, 838 citations), respectively. The top 100 ranked keywords are divided into four clusters through co-occurrence analysis: (1) secondary cataracts, (2) oxidative stress, (3) gene mutations and protein abnormalities, and (4) alteration of biological processes in lens epithelial cells. Further discussions on the four subtopics outline the research topics and trends. In conclusion, the specific mechanism of cataract formation remains a popular topic for future research and should be explored in greater depth.
Collapse
Affiliation(s)
- Xinjie Shu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yingying Liu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Fanfan He
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yu Gong
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Jiawen Li
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| |
Collapse
|
14
|
Hu N, Jin FY, Gao MM, Liu LJ, Wang JH, Yang BF, Li CL. Baicalein improves Na 2SeO 3 induced cataract by enhancing the antioxidant capacity of juvenile Sprague Dawley Rat. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117433. [PMID: 37979815 DOI: 10.1016/j.jep.2023.117433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baicalein (BAI) is the crucial flavonoid component in Scutellaria baicalensis Georgi, possessing biological functions such as anti-oxidant, anti-apoptotic, and anti-inflammatory. However, there is limited intensive pharmacological and mechanistic research on the therapeutic effects of BAI for cataract treatment. AIM OF THE STUDY This study aimed to investigate the effects and mechanisms of BAI on Na2SeO3-induced cataract in juvenile rats. MATERIALS AND METHODS The cataract model was established by a single subcutaneous injection of 3.46 mg/kg Na2SeO3 on the back of 10-day-old rats. The BAI (25 mg/kg, 50 mg/kg, 100 mg/kg) was administered to the 8-day-old rats and continued until they reached 30 days of age, and the opacity of the lens was observed using a slit lamp microscope every 3 days. Pathological changes in the lens were observed using hematoxylin-eosin (HE) staining to investigate the effects of BAI on Na2SeO3-induced cataract in rats. The levels of antioxidant substances in rat serum and the lens, as well as the levels of soluble and insoluble proteins in rat lens, were measured by the reagent kit. Furthermore, the mechanism of BAI on Na2SeO3-induced cataract rats was analyzed by network pharmacology, molecular docking, and Western blot. RESULTS BAI significantly increased the content of soluble proteins in the lens, mitigated the dense opacity of rat lens and reduced the damage to lens epithelial cells, reduced the levels of malondialdehyde (MDA) in rat serum and lens, increased the levels of total superoxide dismutase (T-SOD) and Glutathione peroxidase (GSH-PX). The improvement effects of BAI on Na2SeO3-induced cataract may related to the mitogen-activated protein kinase (MAPK) and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways. CONCLUSION In conclusion, this study demonstrated that BAI could mitigate the dense opacity of rat lens in Na2SeO3-induced cataract rats, which may be achieved through the MAPK signaling pathway and the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Nan Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Fang-Yin Jin
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Miao-Miao Gao
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Lian-Jie Liu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jin-Hui Wang
- Department of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Bao-Feng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; Department of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Chun-Li Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
15
|
Khil NHS, Sharma S, Sharma PK, Alam MA. Neoteric Role of Quercetin in Visual Disorders. Curr Drug Res Rev 2024; 16:164-174. [PMID: 37608659 DOI: 10.2174/2589977515666230822114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Flavonoids are a family of secondary metabolites found in plants and fungi that exhibit strong antioxidant properties and low toxicity, making them potential candidates for medicinal use. Quercetin, a flavonoid present in various plant-based foods, has gained attention for its numerous biological benefits, including anti-inflammatory, anti-fibrosis, and antioxidant properties. The ocular surface research community has recently focused on quercetin's therapeutic potential for managing ocular diseases, such as dry eye, keratoconus, corneal inflammation, and neovascularization. In this paper, we discuss the role of quercetin for ocular disease prevention, highlighting its fundamental characteristics, common biological properties, and recent applications. By reviewing the latest research conducted in the last 10 years which was focused on novel herbal formulations for ocular diseases, we aim to provide insights into the role of quercetin in managing ocular diseases and offer perspectives on its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Noor Hassan Sulaiman Khil
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
16
|
Tian X, Wei J. Sestrin 2 protects human lens epithelial cells from oxidative stress and apoptosis induced by hydrogen peroxide by regulating the mTOR/Nrf2 pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241234741. [PMID: 38379215 PMCID: PMC10880533 DOI: 10.1177/03946320241234741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE We aimed to explore the effect and potential mechanism of Sestrin 2 (SESN2) in human lens epithelial cells (HLECs). METHODS To mimic the oxidative stress environment, SAR01/04 cells were treated with 200 μM hydrogen peroxide (H2O2) for 24 h. Cell viability and apoptosis were checked by cell counting kit-8 and flow cytometry. Western blot was taken to check the protein changes of SESN2, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, ribosomal protein S6 kinase B1 (p70S6K), p-p70S6K, and nuclear factor erythroid 2-related factor 2 (Nrf2). Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and reactive oxygen species (ROS) were detected via the corresponding reagent kit. The levels of interleukin (IL)-1β, IL-18, and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay. RESULTS SESN2 was down-regulated in cataract lens tissue and up-regulated in SAR01/04 cells treated with H2O2. Under treatment of H2O2, up-regulation of SESN2 improved cell viability, enhanced the activity of SOD and CAT, inhibited cell apoptosis, and reduced the levels of MDA, ROS, IL-1β, IL-18, and TNF-α, while down-regulation of SESN2 caused the contrary effects. Further bioinformatics analysis suggested that SESN2 regulated the mTOR signaling pathway. Treatment of H2O2 inhibited p-mTOR and p-p70S6K protein expression, while overexpression of SESN2 increased p-mTOR and p-p70S6K protein expression in the H2O2 group and down-regulation of SESN2 further decreased p-mTOR and p-p70S6K protein expression in the H2O2 group. Additionally, H2O2 increased Nrf2 protein expression, and overexpression of SESN2 further increased Nrf2 protein expression in the H2O2 group. Importantly, rapamycin (an inhibitor of mTOR signaling pathway) and knockdown of Nrf2 reversed the promotive effects of SESN2 on cell viability and the inhibitive effects of SESN2 on cell apoptosis, oxidative stress, and inflammatory reaction. CONCLUSION SESN2 protected HLECs damage induced by H2O2, which was related to the activation of mTOR/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Ophthalmology, Jinan Aier Eye Hospital, Jinan, China
| | - Jie Wei
- Department of Ophthalmology, No. 960 Hospital of PLA Joint Logistic Support Force, Jinan, China
| |
Collapse
|
17
|
Ramezani A, Sabbaghi H, Katibeh M, Ahmadieh H, Kheiri B, Yaseri M, Moradian S, Alizadeh Y, Soltani Moghadam R, Medghalchi A, Etemad K, Behboudi H. Prevalence of cataract and its contributing factors in Iranian elderly population: the Gilan eye study. Int Ophthalmol 2023; 43:4503-4514. [PMID: 37584824 DOI: 10.1007/s10792-023-02851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE To report the prevalence and the associated factors leading to cataract among the Iranian population living in Gilan Province, Iran. METHODS This population-based cross-sectional study was performed from June to November 2014 on 2,975 residents aged ≥ 50 years old living in urban and rural regions of the Gilan Province in Iran. A representative sample of residents in the province was recruited into the study through door-to-door visiting, and baseline data were collected by questionnaire. All participants were referred to the medical center for comprehensive ophthalmic examination, laboratory tests, and blood pressure measurement. RESULTS Among the population, 2,588 (86.99%) subjects were eligible to be included in this study, categorized either into the cataract or the non-cataract group. The mean age of participants was 62.59 ± 8.92 years, and 57.5% were female. Higher prevalence of cataract was found in individuals of older ages (odds ratio (OR) = 1.13; 95% confidence interval (CI) = 1.10 to 1.16; P < 0.001) and a history of previous ocular surgery (OR = 5.78; 95% CI = 2.28 to 14.63; P < 0.001). At the same time, a lower prevalence of cataract was seen in patients exposed to sunlight for more than 4 h per day (OR = 0.49; 95% CI = 0.32 to 0.73; P = 0.001). CONCLUSION Cataract affects 50.50% of the study population, especially those over 80. The mildest form of cataract, grade zero, is the most common. Surgery for cataract has good outcomes. The risk of cataract is higher for those older or who have had eye surgeries. People not affected by cataract tend to be exposed to more sunlight.
Collapse
Affiliation(s)
- Amirreza Ramezani
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak Street, Tehran, 198353-5511, Iran
| | - Hamideh Sabbaghi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Katibeh
- Center for Global Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Kheiri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Siamak Moradian
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Alizadeh
- Department of Ophthalmology, Guilan University of Medical Sciences, Namjoo Avenue, Rasht, Gilan, Iran
| | - Reza Soltani Moghadam
- Department of Ophthalmology, Guilan University of Medical Sciences, Namjoo Avenue, Rasht, Gilan, Iran
| | - Abdolreza Medghalchi
- Department of Ophthalmology, Guilan University of Medical Sciences, Namjoo Avenue, Rasht, Gilan, Iran
| | - Koorosh Etemad
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Behboudi
- Department of Ophthalmology, Guilan University of Medical Sciences, Namjoo Avenue, Rasht, Gilan, Iran.
| |
Collapse
|
18
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
19
|
Zhang K, Di G, Li B, Ge H, Bai Y, Bian W, Wang D, Chen P. AQP5 deficiency promotes the senescence of lens epithelial cells through mitochondrial dysfunction. Biochem Biophys Res Commun 2023; 680:184-193. [PMID: 37742347 DOI: 10.1016/j.bbrc.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Cataract is lens opacity, which is a common blinding eye disease worldwide. Aquaporin 5 (AQP5) is expressed in the human and mouse lenses. This study aimed to investigate the underlying mechanisms of AQP5 in the senescence of lens epithelial cells (LECs). Primary LECs were isolated and cultured from Aqp5+/+ and Aqp5-/- mice. Western blot or immunofluorescence staining of p16, Ki67, MitoSOX, JC-1 and phalloidin was used in the experiments to evaluate the changes in the primary LECs. The primary Aqp5-/- LECs showed increased p16 expression and mitochondrial reactive oxygen species, decreased mitochondrial membrane potential and activity, and cytoskeletal disorders. When the cells were pretreated with Mito-TEMPO, the Aqp5-/- mice showed decreased p16 expression, reduced mitochondrial dysfunction and cytoskeletal disorders. Our results revealed that AQP5 deficiency promotes the senescence of primary LECs through mitochondrial dysfunction. This provides a new perspective for the treatment of cataracts by regulating AQP5 expression.
Collapse
Affiliation(s)
- Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Bin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Huanhuan Ge
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Wenhan Bian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Dianqiang Wang
- Qingdao Aier Eye Hospital, Qingdao, Shandong Province, 266400, China.
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| |
Collapse
|
20
|
Zhang X, Liu B, Lal K, Liu H, Tran M, Zhou M, Ezugwu C, Gao X, Dang T, Au ML, Brown E, Wu H, Liao Y. Antioxidant System and Endoplasmic Reticulum Stress in Cataracts. Cell Mol Neurobiol 2023; 43:4041-4058. [PMID: 37874455 PMCID: PMC10842247 DOI: 10.1007/s10571-023-01427-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
The primary underlying contributor for cataract, a leading cause of vision impairment and blindness worldwide, is oxidative stress. Oxidative stress triggers protein damage, cell apoptosis, and subsequent cataract formation. The nuclear factor-erythroid 2-related factor 2 (Nrf2) serves as a principal redox transcriptional factor in the lens, offering a line of defense against oxidative stress. In response to oxidative challenges, Nrf2 dissociates from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), moves to the nucleus, and binds to the antioxidant response element (ARE) to activate the Nrf2-dependent antioxidant system. In parallel, oxidative stress also induces endoplasmic reticulum stress (ERS). Reactive oxygen species (ROS), generated during oxidative stress, can directly damage proteins, causing them to misfold. Initially, the unfolded protein response (UPR) activates to mitigate excessive misfolded proteins. Yet, under persistent or severe stress, the failure to rectify protein misfolding leads to an accumulation of these aberrant proteins, pushing the UPR towards an apoptotic pathway, further contributing to cataractogenesis. Importantly, there is a dynamic interaction between the Nrf2 antioxidant system and the ERS/UPR mechanism in the lens. This interplay, where ERS/UPR can modulate Nrf2 expression and vice versa, holds potential therapeutic implications for cataract prevention and treatment. This review explores the intricate crosstalk between these systems, aiming to illuminate strategies for future advancements in cataract prevention and intervention. The Nrf2-dependent antioxidant system communicates and cross-talks with the ERS/UPR pathway. Both mechanisms are proposed to play pivotal roles in the onset of cataract formation.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingqing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kevin Lal
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haihua Liu
- Peking University First Hospital, Beijing, China
| | - Myhoa Tran
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Manyu Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chimdindu Ezugwu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xin Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Terry Dang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - My-Lien Au
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Erica Brown
- School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Yan Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
21
|
De Piano M, Cacciamani A, Balzamino BO, Scarinci F, Cosimi P, Cafiero C, Ripandelli G, Micera A. Biomarker Signature in Aqueous Humor Mirrors Lens Epithelial Cell Activation: New Biomolecular Aspects from Cataractogenic Myopia. Biomolecules 2023; 13:1328. [PMID: 37759728 PMCID: PMC10526747 DOI: 10.3390/biom13091328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory, vasculogenic, and profibrogenic factors have been previously reported in vitreous (VH) and aqueous (AH) humors in myopic patients who underwent cataract surgery. In light of this, we selected some mediators for AH and anterior-capsule-bearing lens epithelial cell (AC/LEC) analysis, and AH expression was correlated with LEC activation (epithelial-mesenchymal transition and EMT differentiation) and axial length (AL) elongation. In this study, AH (97; 41M/56F) and AC/LEC samples (78; 35M/43F) were collected from 102 patients who underwent surgery, and biosamples were grouped according to AL elongation. Biomolecular analyses were carried out for AH and LECs, while microscopical analyses were restricted to whole flattened AC/LECs. The results showed increased levels of interleukin (IL)-6, IL-8, and angiopoietin-2 (ANG)-2 and decreased levels of vascular endothelium growth factor (VEGF)-A were detected in AH depending on AL elongation. LECs showed EMT differentiation as confirmed by the expression of smooth muscle actin (α-SMA) and transforming growth factor (TGF)-βR1/TGFβ isoforms. A differential expression of IL-6R/IL-6, IL-8R/IL-8, and VEGF-R1/VEGF was observed in the LECs, and this expression correlated with AL elongation. The higher VEGF-A and lower VEGF-D transcript expressions were detected in highly myopic LECs, while no significant changes were monitored for VEGF-R transcripts. In conclusion, these findings provide a strong link between the AH protein signature and the EMT phenotype. Furthermore, the low VEGF-A/ANG-2 and the high VEGF-A/VEGF-D ratios in myopic AH might suggest a specific inflammatory and profibrogenic pattern in high myopia. The highly myopic AH profile might be a potential candidate for rating anterior chamber inflammation and predicting retinal distress at the time of cataract surgery.
Collapse
Affiliation(s)
- Maria De Piano
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (M.D.P.); (B.O.B.)
| | - Andrea Cacciamani
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (M.D.P.); (B.O.B.)
| | - Fabio Scarinci
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Pamela Cosimi
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Concetta Cafiero
- Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy;
| | - Guido Ripandelli
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (M.D.P.); (B.O.B.)
| |
Collapse
|
22
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
23
|
Ma DY, Liu JX, Wang LD, Zhi XY, Luo L, Zhao JY, Qin Y. GSK-3β-dependent Nrf2 antioxidant response modulates ferroptosis of lens epithelial cells in age-related cataract. Free Radic Biol Med 2023; 204:161-176. [PMID: 37156294 DOI: 10.1016/j.freeradbiomed.2023.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Oxidative stress-induced lens epithelial cells (LECs) death plays a pivotal role in age-related cataract (ARC) with severe visual impairment, in which ferroptosis is gradually receiving numerous attention resulting from lipid peroxide accumulation and reactive oxygen species (ROS) overproduction. However, the essential pathogenic factors and the targeted medical strategies still remain skeptical and indistinct. In this work, by transmission electron microscopy (TEM) analysis, the major pathological courses in the LECs of ARC patients have been identified as ferroptosis, which was manifested with remarkable mitochondrial alterations, and similar results were found in aged mice (24-month-old). Furthermore, the primary pathological processes in the NaIO3-induced mice and HLE-B3 cell model have also been verified to be ferroptosis with an irreplaceable function of Nrf2, proved by the increased sensitivity to ferroptosis when Nrf2 was blocked in Nrf2-KO mice and si-Nrf2-treated HLE-B3 cells. Importantly, it has been found that an increased expression of GSK-3β was indicated in low-Nrf2-expressed tissues and cells. Subsequently, the contributions of abnormal GSK-3β expression to NaIO3-induced mice and HLE-B3 cell model were further evaluated, inhibition of GSK-3β utilizing SB216763 significantly alleviated LECs ferroptosis with less iron accumulation and ROS generation, as well as reversed expression alterations of ferroptosis markers, including GPX4, SLC7A11, SLC40A1, FTH1 and TfR1, in vitro and in vivo. Collectively, our findings conclude that targeting GSK-3β/Nrf2 balance might be a promising therapeutic strategy to mitigate LECs ferroptosis and thus probably delay the pathogenesis and development of ARC.
Collapse
Affiliation(s)
- Dong-Yue Ma
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jin-Xia Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Lu-di Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Xin-Yu Zhi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Li Luo
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jiang-Yue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Yu Qin
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| |
Collapse
|
24
|
Mulpuri L, Sridhar J, Goyal H, Tonk R. The relationship between dietary patterns and ophthalmic disease. Curr Opin Ophthalmol 2023; 34:189-194. [PMID: 36866844 DOI: 10.1097/icu.0000000000000943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
PURPOSE OF REVIEW There is a rising interest in the impact of diet on the pathogenesis of common ophthalmic conditions. The purpose of this review is to summarize the potential preventive and therapeutic power of dietary interventions described in recent basic science and epidemiological literature. RECENT FINDINGS Basic science investigations have elucidated a variety of mechanisms by which diet may impact ophthalmic disease, particularly through its action on chronic oxidative stress, inflammation and macular pigmentation. Epidemiologic investigations have shown the real-world influence of diet on the incidence and progression of a number of ophthalmic diseases, particularly cataract, age-related macular degeneration (AMD) and diabetic retinopathy. A large observational cohort study found a 20% reduction in the incidence of cataract among vegetarians compared with nonvegetarians. Two recent systematic reviews found that higher adherence to Mediterranean dietary patterns was associated with a decreased risk of progression of AMD to later stages. Finally, large meta-analyses found that patients following plant-based and Mediterranean diets had significant reductions of mean haemoglobin A1c scores and incidence of diabetic retinopathy as compared with controls. SUMMARY There is a significant and growing body of evidence that Mediterranean diet and plant-based diets - those that maximize fruits, vegetables, legumes, whole grains and nuts; and that minimize animal products and processed foods - help prevent vision loss from cataract, AMD and diabetic retinopathy. These diets may hold benefits for other ophthalmic conditions, as well. Nevertheless, there is a need for further randomized, controlled and longitudinal studies in this area.
Collapse
Affiliation(s)
- Lakshman Mulpuri
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine
| | - Himani Goyal
- NYU Langone Medical Center, NYU Grossman School of Medicine
| | - Rahul Tonk
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine
| |
Collapse
|
25
|
Mrugacz M, Pony-Uram M, Bryl A, Zorena K. Current Approach to the Pathogenesis of Diabetic Cataracts. Int J Mol Sci 2023; 24:ijms24076317. [PMID: 37047290 PMCID: PMC10094546 DOI: 10.3390/ijms24076317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Cataracts remain the first or second leading cause of blindness in all world regions. In the diabetic population, cataracts not only have a 3–5 times higher incidence than in the healthy population but also affect people at a younger age. In patients with type 1 diabetes, cataracts occur on average 20 years earlier than in the non-diabetic population. In addition, the risk of developing cataracts increases with the duration of diabetes and poor metabolic control. A better understanding of the mechanisms leading to the formation of diabetic cataracts enables more effective treatment and a holistic approach to the patient.
Collapse
|
26
|
Du Y, Tong Y, Quan Y, Wang G, Cheng H, Gu S, Jiang JX. Protein kinase A activation alleviates cataract formation via increased gap junction intercellular communication. iScience 2023; 26:106114. [PMID: 36852280 PMCID: PMC9958365 DOI: 10.1016/j.isci.2023.106114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/09/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Cataract is the leading cause of blindness worldwide. Here, we reported a potential, effective therapeutic mean for cataract prevention and treatment. Gap junction communication, an important mechanism in maintaining lens transparency, is increased by protein kinase A (PKA). We found that PKA activation reduced cataracts induced by oxidative stress, increased gap junctions/hemichannels in connexin (Cx) 50, Cx46 or Cx50 and Cx46 co-expressing cells, and decreased reactive oxygen species (ROS) levels. However, ROS reduction was shown in wild-type, Cx46 and Cx50 knockout, but not in Cx46/Cx50 double KO lens. In addition, PKA activation protects lens fiber cell death induced by oxidative stress via hemichannel-mediated glutathione transport. Connexin deletion increased lens opacity induced by oxidative stress associated with reduction of anti-oxidative stress gene expression. Together, our results suggest that PKA activation through increased connexin channels in lens fiber cell decreases ROS levels and cell death, leading to alleviated cataracts.
Collapse
Affiliation(s)
- Yu Du
- Department of Ophthalmology, Lanzhou University Second Hospital; Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730000, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guangyan Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| |
Collapse
|
27
|
m6A Modification-Association with Oxidative Stress and Implications on Eye Diseases. Antioxidants (Basel) 2023; 12:antiox12020510. [PMID: 36830067 PMCID: PMC9952187 DOI: 10.3390/antiox12020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Oxidative stress (OS) refers to a state of imbalance between oxidation and antioxidation. OS is considered to be an important factor leading to aging and a range of diseases. The eyes are highly oxygen-consuming organs. Due to its continuous exposure to ultraviolet light, the eye is particularly vulnerable to the impact of OS, leading to eye diseases such as corneal disease, cataracts, glaucoma, etc. The N6-methyladenosine (m6A) modification is the most investigated RNA post-transcriptional modification and participates in a variety of cellular biological processes. In this study, we review the role of m6A modification in oxidative stress-induced eye diseases and some therapeutic methods to provide a relatively overall understanding of m6A modification in oxidative stress-related eye diseases.
Collapse
|
28
|
Dammak A, Pastrana C, Martin-Gil A, Carpena-Torres C, Peral Cerda A, Simovart M, Alarma P, Huete-Toral F, Carracedo G. Oxidative Stress in the Anterior Ocular Diseases: Diagnostic and Treatment. Biomedicines 2023; 11:biomedicines11020292. [PMID: 36830827 PMCID: PMC9952931 DOI: 10.3390/biomedicines11020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The eye is a metabolically active structure, constantly exposed to solar radiations making its structure vulnerable to the high burden of reactive oxygen species (ROS), presenting many molecular interactions. The biomolecular cascade modification is caused especially in diseases of the ocular surface, cornea, conjunctiva, uvea, and lens. In fact, the injury in the anterior segment of the eye takes its origin from the perturbation of the pro-oxidant/antioxidant balance and leads to increased oxidative damage, especially when the first line of antioxidant defence weakens with age. Furthermore, oxidative stress is related to mitochondrial dysfunction, DNA damage, lipid peroxidation, protein modification, apoptosis, and inflammation, which are involved in anterior ocular disease progression such as dry eye, keratoconus, uveitis, and cataract. The different pathologies are interconnected through various mechanisms such as inflammation, oxidative stress making the diagnostics more relevant in early stages. The end point of the molecular pathway is the release of different antioxidant biomarkers offering the potential of predictive diagnostics of the pathology. In this review, we have analysed the oxidative stress and inflammatory processes in the front of the eye to provide a better understanding of the pathomechanism, the importance of biomarkers for the diagnosis of eye diseases, and the recent treatment of anterior ocular diseases.
Collapse
|
29
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
30
|
Castro-Castaneda CR, Altamirano-Lamarque F, Ortega-Macías AG, Santa Cruz-Pavlovich FJ, Gonzalez-De la Rosa A, Armendariz-Borunda J, Santos A, Navarro-Partida J. Nutraceuticals: A Promising Therapeutic Approach in Ophthalmology. Nutrients 2022; 14:5014. [PMID: 36501043 PMCID: PMC9740859 DOI: 10.3390/nu14235014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress represents one of the main factors driving the pathophysiology of multiple ophthalmic conditions including presbyopia, cataracts, dry eye disease (DED), glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). Currently, different studies have demonstrated the role of orally administered nutraceuticals in these diseases. For instance, they have demonstrated to improve lens accommodation in presbyopia, reduce protein aggregation in cataracts, ameliorate tear film stability, break up time, and tear production in dry eye, and participate in the avoidance of retinal neuronal damage and a decrease in intraocular pressure in glaucoma, contribute to the delayed progression of AMD, or in the prevention or treatment of neuronal death in diabetic retinopathy. In this review, we summarized the nutraceuticals which have presented a positive impact in ocular disorders, emphasizing the clinical assays. The characteristics of the different types of nutraceuticals are specified along with the nutraceutical concentration used to achieve a therapeutic outcome in ocular diseases.
Collapse
Affiliation(s)
| | | | - Alan Gabriel Ortega-Macías
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
| | | | - Alejandro Gonzalez-De la Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Department of Molecular Biology and Genomics, Institute for Molecular Biology and Gene Therapy, University of Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| |
Collapse
|
31
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
32
|
Lu A, Duan P, Xie J, Gao H, Chen M, Gong Y, Li J, Xu H. Recent progress and research trend of anti-cataract pharmacology therapy: A bibliometric analysis and literature review. Eur J Pharmacol 2022; 934:175299. [PMID: 36181780 DOI: 10.1016/j.ejphar.2022.175299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Cataract is the leading cause of blindness worldwide. Cataract phacoemulsification combined with intraocular lens implantation causes great burden to global healthcare, especially for low- and middle-income countries. Such burden would be significantly relieved if cataracts can effectively be treated or delayed by non-surgical means. Excitingly, novel drugs have been developed to treat cataracts in recent decades. For example, oxysterols are found to be able to innovatively reverse lens clouding, novel nanotechnology-loaded drugs improve anti-cataract pharmacological effect, and traditional Chinese medicine demonstrates promising therapeutic effects against cataracts. In the present review, we performed bibliometric analysis to provide an overview perspective regarding the research status, hot topics, and academic trends in the field of anti-cataract pharmacology therapy. We further reviewed the curative effects and molecular mechanisms of anti-cataract drugs such as lanosterol, metformin, resveratrol and curcumin, and prospected the possibility of their clinical application in future.
Collapse
Affiliation(s)
- Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Ping Duan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Mengmeng Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiawen Li
- Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
33
|
Chen S, Wang M, Jian R, Li H, Liu G, Zhou C, Xiong Y, Wang W. Circ_HIPK3 Inhibits H 2O 2-Induced Lens Epithelial Cell Injury in Age-Related Cataract Depending on the Regulation of miR-495-3p/HDAC4 Pathway. Biochem Genet 2022; 61:565-577. [PMID: 36002666 DOI: 10.1007/s10528-022-10266-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Age-related cataract (ARC) is one of the most common chronic diseases. Circular RNA (circ)_HIPK3 is reported to be involved in the advancement of ARC, but its molecular mechanism has not been clarified. Our study provides a new perspective on the clinical treatment of ARC. Our data showed that the expression levels of circ_HIPK3 and histone deacetylase 4 (HDAC4) were downregulated, while microRNA (miR)-495-3p level was increased in ARC tissues and H2O2-induced SRA01/04 cells. Functional experiments showed that circ_HIPK3 and HDAC4 overexpression could inhibit H2O2-induced lens epithelial cell apoptosis and fibrosis. In terms of mechanism, we found that circ_HIPK3 could sponge miR-495-3p, miR-495-3p could target HDAC4. Besides, we confirmed that circ_HIPK3 sponged miR-495-3p to positively regulate HDAC4. Additionally, miR-495-3p overexpression or HDAC4 knockdown reversed the inhibition effect of circ_HIPK3 on H2O2-induced lens epithelial cell injury. In conclusion, our data showed that circ_HIPK3 suppressed H2O2-induced lens epithelial cell injury by regulating miR-495-3p/HDAC4 axis.
Collapse
Affiliation(s)
- Sihui Chen
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Minghong Wang
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Rui Jian
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Hui Li
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Guoli Liu
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Cuiyun Zhou
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Yan Xiong
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Wenqian Wang
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China.
| |
Collapse
|
34
|
Micun Z, Falkowska M, Młynarczyk M, Kochanowicz J, Socha K, Konopińska J. Levels of Trace Elements in the Lens, Aqueous Humour, and Plasma of Cataractous Patients-A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10376. [PMID: 36012010 PMCID: PMC9408557 DOI: 10.3390/ijerph191610376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Cataracts are one of the most common causes of effective vision loss. Although most cases of cataracts are related to the ageing process, identifying modifiable risk factors can prevent their onset or progression. Many studies have suggested that micro and macroelement levels, not only in blood serum but also in the lens and aqueous humour, may affect the risk of the occurrence and severity of cataracts. This systematic review aims to summarise existing scientific reports concerning the importance of trace elements in cataractogenesis. Many authors have pointed out elevated or decreased levels of particular elements in distinct ocular compartments. However, it is not known if these alterations directly affect the increased risk of cataract occurrence. Further studies are needed to show whether changes in the levels of these elements are correlated with cataract severity and type. Such information would be useful for determining specific recommendations for micronutrient supplementation in preventing cataractogenesis.
Collapse
Affiliation(s)
- Zuzanna Micun
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Martyna Falkowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Maryla Młynarczyk
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
35
|
Richardson RB. The role of oxygen and the Goldilocks range in the development of cataracts induced by space radiation in US astronauts. Exp Eye Res 2022; 223:109192. [DOI: 10.1016/j.exer.2022.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
|
36
|
Imelda E, Idroes R, Khairan K, Lubis RR, Abas AH, Nursalim AJ, Rafi M, Tallei TE. Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants (Basel) 2022; 11:antiox11071285. [PMID: 35883773 PMCID: PMC9311900 DOI: 10.3390/antiox11071285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023] Open
Abstract
A cataract is a condition that causes 17 million people to experience blindness and is the most significant cause of vision loss, around 47.9%. The formation of cataracts is linked to both the production of reactive oxygen species (ROS) and the reduction of endogenous antioxidants. ROS are highly reactive molecules produced by oxygen. Examples of ROS include peroxides, super-oxides, and hydroxyl radicals. ROS are produced in cellular responses to xenobiotics and bacterial invasion and during mitochondrial oxidative metabolism. Excessive ROS can trigger oxidative stress that initiates the progression of eye lens opacities. ROS and other free radicals are highly reactive molecules because their outer orbitals have one or more unpaired electrons and can be neutralized by electron-donating compounds, such as antioxidants. Examples of natural antioxidant compounds are vitamin C, vitamin E, and beta-carotene. Numerous studies have demonstrated that plants contain numerous antioxidant compounds that can be used as cataract preventatives or inhibitors. Natural antioxidant extracts for cataract therapy may be investigated further in light of these findings, which show that consuming a sufficient amount of antioxidant-rich plants is an excellent approach to cataract prevention. Several other natural compounds also prevent cataracts by inhibiting aldose reductase and preventing apoptosis of the eye lens.
Collapse
Affiliation(s)
- Eva Imelda
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Ophthalmology, General Hospital Dr. Zainoel Abidin, Banda Aceh 23126, Indonesia
- Department of Ophthalmology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Correspondence:
| | - Khairan Khairan
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Rodiah Rahmawaty Lubis
- Department of Ophthalmology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia;
| | - Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (A.H.A.); (T.E.T.)
| | - Ade John Nursalim
- Department of Ophthalmology, General Hospital Prof. Dr. R. D. Kandou, Manado 955234, Indonesia;
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (A.H.A.); (T.E.T.)
| |
Collapse
|
37
|
Ruiss M, Findl O, Kronschläger M. The human lens: An antioxidant-dependent tissue revealed by the role of caffeine. Ageing Res Rev 2022; 79:101664. [PMID: 35690384 DOI: 10.1016/j.arr.2022.101664] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/01/2022]
Abstract
Cataract is the leading cause of blindness worldwide and surgery is the only option to treat the disease. Although the surgery is considered to be relatively safe, complications may occur in a subset of patients and access to ophthalmic care may be limited. Due to a growing and ageing population, an increase in cataract prevalence is expected and its management will become a socioeconomic challenge. Hence, there is a need for an alternative to cataract surgery. It is well known that oxidative stress is one of the main pathological processes leading to the generation of the disease. Antioxidant supplementation may, therefore, be a strategy to delay or to prevent the progression of cataract. Caffeine is a widely consumed high-potency antioxidant and may be of interest for the prevention of the disease. This review aims to give an overview of the anatomy and function of the lens, its antioxidant and reactive oxygen species (ROS) composition, and the role of oxidative stress in cataractogenesis. Also, the pharmacokinetics and -dynamics of caffeine will be described and the literature will be reviewed to give an overview of its anti-cataract potential and its possible role in the prevention of the disease.
Collapse
Affiliation(s)
- Manuel Ruiss
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| | - Oliver Findl
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| | - Martin Kronschläger
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| |
Collapse
|
38
|
Fan Q, Li D, Zhao Z, Jiang Y, Lu Y. Protective effect of Glutaredoxin 1 against oxidative stress in lens epithelial cells of age-related nuclear cataracts. Mol Vis 2022; 28:70-82. [PMID: 35693421 PMCID: PMC9122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/17/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Glutaredoxin 1 (Grx1) is a key antioxidant protein that catalyzes disulfide redox reactions. In this study, we investigated the expression and protective effect of Grx1 against oxidative stress in nuclear cataracts. Methods Human anterior capsule membrane samples were obtained from the eyes of cataract patients (experimental group) and non-cataractous (control group) donors. The levels of Grx1 protein and mRNA expression were investigated. The human lens epithelial (HLE) cell line SRA 01/04 was transfected with Grx1-containing plasmid or Grx1 small interfering RNA, and cultured under H2O2 treatment, mimicking oxidative stress conditions. Cell counts, clone formation, cell apoptosis, cell cycle, and levels of oxidized glutathione disulfide and cellular reactive oxygen species (ROS) were evaluated and quantified. Results Protein and mRNA transcript levels of Grx1 were significantly lower in the human anterior capsule membrane of the age-related nuclear (ARN) cataract group than in the control group. Grx1 overexpression protected HLE cells from H2O2-induced oxidative damage, including alleviating G1 phase arrest, promoting cell proliferation, reducing cell apoptosis, and decreasing intracellular ROS generation. Furthermore, extracellular-signal-regulated kinase (ERK) phosphorylation in the human anterior capsule membrane of ARN patients was higher in the experimental group than in the control group. Grx1 overexpression reduced the levels of oxidized glutathione disulfide and the phosphorylation of ERK. The administration of an ERK phosphorylation inhibitor, PD98059, induced antioxidant effects in Grx1-silenced cells. Conclusions Grx1 expression is downregulated in the human anterior capsule membrane of ARN patients, accompanied by an increase in ERK phosphorylation. Thus, Grx1 can protect HLE cells against oxidative stress.
Collapse
Affiliation(s)
- Qi Fan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Dan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Zhennan Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yongxiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| |
Collapse
|
39
|
Fu J, Hu X. Simvastatin alleviates epithelial‑mesenchymal transition and oxidative stress of high glucose‑induced lens epithelial cells in vitro by inhibiting RhoA/ROCK signaling. Exp Ther Med 2022; 23:420. [PMID: 35601076 PMCID: PMC9117960 DOI: 10.3892/etm.2022.11347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 11/06/2022] Open
Abstract
Diabetic cataracts (DC) is one of the main causes of blindness among patients with diabetes mellitus. The aim of the present study was to examine the effect of simvastatin on lens epithelial cells in DC and the underlying mechanism. The viability of SRA01/04 cells treated with different concentrations of simvastatin was detected using a Cell Counting Kit-8 assay before and after high glucose (HG) treatment. The expression levels of E-cadherin, N-cadherin, Vimentin and α-smooth muscle actin (α-SMA), proteins associated with epithelial-mesenchymal transition (EMT), in addition to RhoA, Rho-associated kinases (ROCK)1 and ROCK2, proteins related to RhoA/ROCK signaling, were also measured in SRA01/04 cells treated with HG and simvastatin, with or without U46619, using western blot analysis. DCFH-DA dyes, superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) kits were used to measure the levels of oxidative stress parameters in SRA01/04 cells treated with HG and simvastatin with or without U46619. The cell viability of SRA01/04 cells treated with simvastatin was found to be significantly elevated after HG treatment. The protein expression levels of E-cadherin were increased but those of N-cadherin, Vimentin and α-SMA decreased after HG and simvastatin treatment, and this was reversed by U46619. The levels of SOD and GSH-GSSG were found to be increased whereas reactive oxygen species levels were decreased, effects that were reversed by U46619. Additionally, the protein expression levels of RhoA, ROCK1 and ROCK2 were markedly decreased. These findings provided evidence that simvastatin increased HG-induced SRA01/04 cell viability and exerted inhibitory effects on EMT and oxidative stress that occurs during DC.
Collapse
Affiliation(s)
- Jianming Fu
- Department of Ophthalmology, The Second People's Hospital of Yueqing, Wenzhou, Zhejiang 325608, P.R. China
| | - Xiaojie Hu
- Department of Ophthalmology, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
40
|
Schey KL, Gletten RB, O’Neale CVT, Wang Z, Petrova RS, Donaldson PJ. Lens Aquaporins in Health and Disease: Location is Everything! Front Physiol 2022; 13:882550. [PMID: 35514349 PMCID: PMC9062079 DOI: 10.3389/fphys.2022.882550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023] Open
Abstract
Cataract and presbyopia are the leading cause of vision loss and impaired vision, respectively, worldwide. Changes in lens biochemistry and physiology with age are responsible for vision impairment, yet the specific molecular changes that underpin such changes are not entirely understood. In order to preserve transparency over decades of life, the lens establishes and maintains a microcirculation system (MCS) that, through spatially localized ion pumps, induces circulation of water and nutrients into (influx) and metabolites out of (outflow and efflux) the lens. Aquaporins (AQPs) are predicted to play important roles in the establishment and maintenance of local and global water flow throughout the lens. This review discusses the structure and function of lens AQPs and, importantly, their spatial localization that is likely key to proper water flow through the MCS. Moreover, age-related changes are detailed and their predicted effects on the MCS are discussed leading to an updated MCS model. Lastly, the potential therapeutic targeting of AQPs for prevention or treatment of cataract and presbyopia is discussed.
Collapse
Affiliation(s)
- Kevin L. Schey
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States,*Correspondence: Kevin L. Schey,
| | - Romell B. Gletten
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Carla V. T. O’Neale
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Zhen Wang
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Rosica S. Petrova
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
DNMT1-Mediated DNA Methylation Targets CDKN2B to Promote the Repair of Retinal Ganglion Cells in Streptozotocin-Induced Mongolian Gerbils during Diabetic Retinopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9212116. [PMID: 35295199 PMCID: PMC8920618 DOI: 10.1155/2022/9212116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Objective DNA methylation played a vital role in the progression of diabetic retinopathy. In this study, we aimed to explore the role of DNA cytosine-5-methyltransferase 1 (DNMT1) in the development of early diabetic retinopathy and its potential underlying mechanism. Methods Eight-week-old healthy Mongolian gerbils were used to establish type 1 diabetes using streptozotocin (STZ). Alteration of weight, fasting blood glucose, density of RGCs (Tuj1-labeled), and H&E-stained retinal cross sections were applied to evaluate the diabetic retinopathy mouse model. The global DNA methylation level of the retina at different time points after STZ injection was measured using the global methylation assay. Western blot was used to detect the protein expression of DNMT1, DNA methyltransferase 3A (DNMT3A), and 3B (DNMT3B). Quantitative reverse transcription-polymerase chain reactions (qRT-PCR) and western blot were used to determine the expression of CDKN2B. Cell proliferation and cell cycle were evaluated by the MTS assay and flow cytometry. Results STZ injection caused the increased global DNA methylation level, which reached a maximum at 6 weeks after injection. Moreover, STZ injection caused the damage of RGCs. At 6 weeks after STZ injection, the expression levels of DNMT1 and DNMT3B were significantly increased in the STZ group. DNMT1-induced DNA hypermethylation inhibited the expression of CDKN2B (a negative regulator of cell cycle). DNMT1-mediated DNA methylation facilitated RGC proliferation via regulating the expression of CDKN2B. Conclusion DNMT1-mediated DNA methylation played an important role in STZ-induced diabetic retinopathy via modulating CDKN2B expression.
Collapse
|
42
|
Affiliation(s)
- Roy Quinlan
- Biomedical Sciences, Department of Biosciences, The University of Durham, Upper Mountjoy Science Site, Durham, DH1 3LE, UK.
| | - Frank Giblin
- Biomedical Sciences Emeritus, Eye Research Institute, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
43
|
Yeh LJ, Shen TC, Sun KT, Lin CL, Hsia NY. Periodontitis and Subsequent Risk of Cataract: Results From Real-World Practice. Front Med (Lausanne) 2022; 9:721119. [PMID: 35186985 PMCID: PMC8854348 DOI: 10.3389/fmed.2022.721119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background Periodontitis can lead to systemic inflammation and oxidative stress, contributing to the development of various diseases. Periodontitis could also be associated with several ocular diseases. Methods We conducted a retrospective population-based cohort study using the National Health Insurance Research Database of Taiwan to evaluate the risk of cataract in people with and without periodontitis. We established a periodontitis cohort and a non-periodontitis cohort, which included 359,254 individuals between 2000 and 2012. Age, gender, and enrolled year were matched. All participants were monitored until the end of 2013. Cox proportional hazard models were applied to estimate hazard ratios (HRs) and confidence intervals (CIs). Results Patients with periodontitis had a significantly higher risk to develop cataract than those without periodontitis [10.7 vs. 7.91 per 1,000 person-years, crude HR = 1.35 (95% CI = 1.32–1.39), and adjusted HR = 1.33 (95% CI = 1.30–1.36)]. The significant levels remained the same after stratifying by age, gender, presence of comorbidity, and use of corticosteroid. In addition, we found that diabetes mellitus and hyperlipidemia had a synergistic effect in the interaction of periodontitis and cataract development. Conclusion Patients with periodontitis have a higher risk of cataract development than those without periodontitis. Such patients may request frequent ocular health check-up. Further studies should be performed to confirm the association and to understand the mechanisms.
Collapse
Affiliation(s)
- Li-Jen Yeh
- Department of Craniofacial Orthodontics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Craniofacial and Dental Science, Chang Gung University, Taoyuan, Taiwan
| | - Te-Chun Shen
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuo-Ting Sun
- Department of Pediatric Dentistry, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Ning-Yi Hsia
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Ning-Yi Hsia
| |
Collapse
|
44
|
Giannone AA, Li L, Sellitto C, White TW. Physiological Mechanisms Regulating Lens Transport. Front Physiol 2022; 12:818649. [PMID: 35002784 PMCID: PMC8735835 DOI: 10.3389/fphys.2021.818649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
The transparency and refractive properties of the lens are maintained by the cellular physiology provided by an internal microcirculation system that utilizes spatial differences in ion channels, transporters and gap junctions to establish standing electrochemical and hydrostatic pressure gradients that drive the transport of ions, water and nutrients through this avascular tissue. Aging has negative effects on lens transport, degrading ion and water homeostasis, and producing changes in lens water content. This alters the properties of the lens, causing changes in optical quality and accommodative amplitude that initially result in presbyopia in middle age and ultimately manifest as cataract in the elderly. Recent advances have highlighted that the lens hydrostatic pressure gradient responds to tension transmitted to the lens through the Zonules of Zinn through a mechanism utilizing mechanosensitive channels, multiple sodium transporters respond to changes in hydrostatic pressure to restore equilibrium, and that connexin hemichannels and diverse intracellular signaling cascades play a critical role in these responses. The mechanistic insight gained from these studies has advanced our understanding of lens transport and how it responds and adapts to different inputs both from within the lens, and from surrounding ocular structures.
Collapse
Affiliation(s)
- Adrienne A Giannone
- Master of Science Program, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Leping Li
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Caterina Sellitto
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Thomas W White
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
45
|
Caban M, Lewandowska U. Inhibiting effects of polyphenols on angiogenesis and epithelial-mesenchymal transition in anterior segment eye diseases. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
46
|
Xu J, Li D, Lu Y, Zheng TY. Aβ monomers protect lens epithelial cells against oxidative stress by upregulating CDC25B. Free Radic Biol Med 2021; 175:161-170. [PMID: 34478836 DOI: 10.1016/j.freeradbiomed.2021.08.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022]
Abstract
Our previous studies showed high β-amyloid (Aβ) expression levels in the nuclei of the lens epithelial cells (LECs) of healthy subjects and revealed that Aβ monomers could protect LECs from oxidative damage. Here, we further explored the mechanism by which Aβ monomers act as transcription factors to regulate the oxidative stress of LECs through high-throughput studies. First, we compared the Aβ-binding sites in the lens epithelia (LE) of age-related cataract patients with those in the LE of healthy donors via chromatin immunoprecipitation-sequencing (ChIP-seq), and we identified comparable numbers (1648 and 1445, respectively) of Aβ peaks. Then, the KEGG tool was used for gene function enrichment analysis of these genes, which were more highly enriched in healthy LE. Combining the literature review with these KEGG analysis results, in the current study, we chose four target genes related to oxidative stress, namely, CDC25B, SOS2, CTNNA1 and Cox6a1. Then, ChIP-PCR assays, dual-luciferase reporter assays, real-time PCR and Western blotting were performed to validate the regulatory effects of Aβ on these targets. Our data suggested that Aβ monomers could upregulate the mRNA and protein expression levels of CDC25B in LECs. We also confirmed that Aβ monomers could activate the Akt/Nrf2 pathway in a CDC25B-dependent manner by knockdown experiments in cultured LECs. Furthermore, we performed functional verification of the CDC25B-mediated protective effects of Aβ monomers against oxidative stress. We observed that Aβ monomers significantly improved the antioxidant capacity (the GSH level, SOD activity and total antioxidant capacity) and decreased the oxidative stress (the ROS and MDA levels) of LECs, while CDC25B knockdown decreased the antioxidant effects of Aβ, disrupting redox homeostasis. Therefore, we propose that Aβ monomers activate the Akt/Nrf2 pathway by upregulating CDC25B expression, increase various downstream antioxidant enzyme levels, maintain peroxidation-antioxidant homeostasis in LECs, and prevent the cell damage caused by oxidative stress.
Collapse
Affiliation(s)
- Jie Xu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China
| | - Dan Li
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China
| | - Yi Lu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China.
| | - Tian-Yu Zheng
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Eye Institute, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd., Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Rd., Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Rd., Shanghai 200031, China.
| |
Collapse
|
47
|
Lim JC, Grey AC, Vaghefi E, Nye-Wood MG, Donaldson PJ. Hyperbaric oxygen as a model of lens aging in the bovine lens: The effects on lens biochemistry, physiology and optics. Exp Eye Res 2021; 212:108790. [PMID: 34648773 DOI: 10.1016/j.exer.2021.108790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
Age related nuclear (ARN) cataracts in humans take years to form and so experimental models have been developed to mimic the process in animals as a means of better understanding the etiology of nuclear cataracts in humans. A major limitation with these animal models is that many of the biochemical and physiological changes are not typical of that seen in human ARN cataract. In this review, we highlight the work of Frank Giblin and colleagues who established an in vivo animal model that replicates many of the changes observed in human ARN cataract. This model involves exposing aged guinea pigs to hyperbaric oxygen (HBO), which by causing the depletion of the antioxidant glutathione (GSH) specifically in the lens nucleus, produces oxidative changes to nuclear proteins, nuclear light scattering and a myopic shift in lens power that mimics the change that often precedes cataract development in humans. However, this model involves multiple HBO treatments per week, with sometimes up to a total of 100 treatments, spanning up to eight months, which is both costly and time consuming. To address these issues, Giblin developed an in vitro model that used rabbit lenses exposed to HBO for several hours which was subsequently shown to replicate many of the changes observed in human ARN cataract. These experiments suggest that HBO treatment of in vitro animal lenses may serve as a more economical and efficient model to study the development of cataract. Inspired by these experiments, we investigated whether exposure of young bovine lenses to HBO for 15 h could also serve as a suitable acute model of ARN cataract. We found that while this model is able to exhibit some of the biochemical and physiological changes associated with ARN cataract, the decrease in lens power we observed was more characteristic of the hyperopic shift in refraction associated with ageing. Future work will investigate whether HBO treatment to age the bovine lens in combination with an oxidative stressor such as UV light will induce refractive changes more closely associated with human ARN cataract. This will be important as developing an animal model that replicates the changes to lens biochemistry, physiology and optics observed in human ARN cataracts is urgently required to facilitate the identification and testing of anti-cataract therapies that are effective in humans.
Collapse
Affiliation(s)
- Julie C Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ehsan Vaghefi
- School of Optometry, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Mitchell G Nye-Wood
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Zhang J, Jiao J, Niu M, Gao X, Zhang G, Yu H, Yang X, Liu L. Ten Years of Knowledge of Nano-Carrier Based Drug Delivery Systems in Ophthalmology: Current Evidence, Challenges, and Future Prospective. Int J Nanomedicine 2021; 16:6497-6530. [PMID: 34588777 PMCID: PMC8473849 DOI: 10.2147/ijn.s329831] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
The complex drug delivery barrier in the eye reduces the bioavailability of many drugs, resulting in poor therapeutic effects. It is necessary to investigate new drugs through appropriate delivery routes and vehicles. Nanotechnology has utilized various nano-carriers to develop potential ocular drug delivery techniques that interact with the ocular mucosa, prolong the retention time of drugs in the eye, and increase permeability. Additionally, nano-carriers such as liposomes, nanoparticles, nano-suspensions, nano-micelles, and nano-emulsions have grown in popularity as an effective theranostic application to combat different microbial superbugs. In this review, we summarize the nano-carrier based drug delivery system developments over the last decade, particularly review the biology, methodology, approaches, and clinical applications of nano-carrier based drug delivery system in the field of ocular therapeutics. Furthermore, this review addresses upcoming challenges, and provides an outlook on potential future trends of nano-carrier-based drug delivery approaches in ophthalmology, and hopes to eventually provide successful applications for treating ocular diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, 261041, People's Republic of China
| | - Jinghua Jiao
- Department of Anesthesiology, Central Hospital, Shenyang Medical College, Shenyang, 110024, People's Republic of China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xiaotong Gao
- Department of Endocrinology and Metabolism and the Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Guisen Zhang
- Department of Retina, Inner Mongolia Chaoju Eye Hospital, Hohhot, 010050, People's Republic of China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China
| | - Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
49
|
Meng K, Fang C. Knockdown of Tripartite motif-containing 22 (TRIM22)relieved the apoptosis of lens epithelial cells by suppressing the expression of TNF receptor-associated factor 6 (TRAF6). Bioengineered 2021; 12:7213-7222. [PMID: 34558381 PMCID: PMC8806417 DOI: 10.1080/21655979.2021.1980645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cataract is a disease that causes severe visual impairment in patients. Recent studies have found that lens epithelial cell apoptosis caused by oxidative damage is the critical cause of cataract. Moreover, TRIM22 could alleviate the ubiquitination of TRAF6. The expression of TRAF6 could activate the p38/MAPK pathway and aggravate the oxidative stress induced damage of lens epithelial cells. However, whether the TRIM22 could alleviate the oxidative stress induced damage of lens epithelial cells by regulating the expression of TRAF6 and p38/MAPK pathway is unclear. In this study, we stimulated the lens epithelial cells with the H2O2 and established the TRIM22 knockdown cells. Next, proliferation of these cells was determined by CCK-8 and EdU assays. Apoptosis of these cells was detected with the TUNEL assays. Levels of ROS was explored with the DCFH-DA staining. Finally, the expression levels of TRAF6, p-p38 and p-ERK were determined with the western blotting. According to the results, we found that knockdown of TRIM22 suppressed the proliferation and relieved the H2O2 induced DNA double-strand break and apoptosis of these cells. Inhibition of TRIM22 inhibited the production of ROS in these cells. Moreover, restriction of TRIM22 induced the decreased levels of TRAF6, p-p38 and p-ERK in lens epithelial cells. We concluded that inhibition of TRIM22 relieved the apoptosis of lens epithelial cells by suppressing the expression of TRAF6, p-p38 and p-ERK.
Collapse
Affiliation(s)
- Kai Meng
- Department of Ophthalmology, Fuyang Futian Eye Hospital, Fuyang, Anhui Province, China
| | - Chengbo Fang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
50
|
Liu J, Riquelme MA, Li Z, Li Y, Tong Y, Quan Y, Pei C, Gu S, Jiang JX. Mechanosensitive collaboration between integrins and connexins allows nutrient and antioxidant transport into the lens. J Cell Biol 2021; 219:211530. [PMID: 33180092 PMCID: PMC7668387 DOI: 10.1083/jcb.202002154] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
The delivery of glucose and antioxidants is vital to maintain homeostasis and lens transparency. Here, we report a new mechanism whereby mechanically activated connexin (Cx) hemichannels serve as a transport portal for delivering glucose and glutathione (GSH). Integrin α6β1 in outer cortical lens fiber activated by fluid flow shear stress (FFSS) induced opening of hemichannels. Inhibition of α6 activation prevented hemichannel opening as well as glucose and GSH uptake. The activation of integrin β1, a heterodimeric partner of α6 in the absence of FFSS, increased Cx50 hemichannel opening. Hemichannel activation by FFSS depended on the interaction of integrin α6 and Cx50 C-terminal domain. Moreover, hemichannels in nuclear fiber were unresponsive owing to Cx50 truncation. Taken together, these results show that mechanically activated α6β1 integrin in outer cortical lens fibers leads to opening of hemichannels, which transport glucose and GSH into cortical lens fibers. This study unveils a new transport mechanism that maintains metabolic and antioxidative function of the lens.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Zhen Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yuting Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|