1
|
Reichert CO, Levy D, Maselli LMF, da Cunha J, Gualandro SFM, Bydlowski SP. PON-1 and PON-2 Polymorphisms and PON-1 Paraoxonase Activity in People Living with HIV-1. Antioxidants (Basel) 2025; 14:209. [PMID: 40002395 PMCID: PMC11851513 DOI: 10.3390/antiox14020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Antiretroviral therapy (ART) has significantly improved the life expectancy of people living with HIV-1 (PLWH). However, prolonged ART use is linked to metabolic alterations and oxidative stress. The paraoxonase (PON) enzymes, especially PON-1 and PON-2, are critical in maintaining antioxidant balance. Their activity can be influenced by polymorphisms such as Q192R and L55M in PON-1 and A148G and S311C in PON-2. This study examines the impact of these polymorphisms on paraoxonase activity, lipid metabolism, and infection markers in PLWH under various ART regimens. This is a case-control study with 525 participants, 175 healthy controls (HC) and 350 PLWH divided into subgroups: T0 (ART-naïve, n = 48), T1 (ART with reverse transcriptase inhibitors, n = 159), and T2 (ART with protease inhibitors, n = 143). Paraoxonase activity was higher in PLWH (123.0; IQR: 62.0-168.0) compared to HC (91.0; IQR: 48.0-136.0, p < 0.001) but similar between HC and T0 (p = 0.594). T1 (125.0; IQR: 65.5-166.0) and T2 (123.0; IQR: 61.0-182.0) showed higher activity than HC (p = 0.002 and 0.003). Among 61 complete genotypes, 13 were unique to PLWH and 6 to HC (p < 0.001). L55L was more frequent in HC (49.7% vs. 36.9% in PLWH), while M55M was higher in PLWH (p = 0.004). The S311C genotype was more frequent in HC (39.2%) than PLWH (24.9%) (p = 0.003). The L55L genotype conferred 59.9% protection against HIV-1 (OR: 0.401; 95% CI: 0.228-0.704), while the M allele increased susceptibility by ~69% (OR: 1.694; 95% CI: 1.173-2.446). The M55M genotype and/or M allele may be linked to HIV-1 susceptibility. Prolonged ART use elevates PON-1 activity in PLWH.
Collapse
Affiliation(s)
- Cadiele Oliana Reichert
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil or (C.O.R.); (D.L.); (L.M.F.M.); (J.d.C.)
| | - Débora Levy
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil or (C.O.R.); (D.L.); (L.M.F.M.); (J.d.C.)
| | - Luciana Morganti Ferreira Maselli
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil or (C.O.R.); (D.L.); (L.M.F.M.); (J.d.C.)
| | - Joel da Cunha
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil or (C.O.R.); (D.L.); (L.M.F.M.); (J.d.C.)
| | - Sandra Fátima Menosi Gualandro
- Department of Hematology, Hemotherapy, and Cell Therapy, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05419-000, SP, Brazil;
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil or (C.O.R.); (D.L.); (L.M.F.M.); (J.d.C.)
- Department of Hematology, Hemotherapy, and Cell Therapy, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05419-000, SP, Brazil;
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
2
|
Arghavani H, Bilodeau JF, Rudkowska I. Association Between Circulating Fatty Acids and Blood Pressure: A Review. Curr Nutr Rep 2025; 14:15. [PMID: 39775363 DOI: 10.1007/s13668-024-00602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW High blood pressure (BP) or hypertension (HTN) remains key risk factors for cardiovascular disease (CVD). Circulating fatty acids (FAs) in the blood can affect directly cardiovascular hemodynamics and serves as building blocks for endocrine mediators modifying inflammatory processes and vascular function. This review aims to describe optimal circulating FA profiles for BP to adjust dietary recommendations for HTN prevention. RECENT FINDINGS Recent research highlights the critical role of FAs in regulating inflammation and vascular function. Different FAs have varying effects on oxidative stress, insulin resistance, inflammation, and vascular dysfunction, all contributing to HTN. These findings emphasize the importance of FAs in managing BP and preventing CVD. Up-to-now, findings suggest that eicosapentaenoic acid (20:5n3), docosahexaenoic acid (22:6n3), arachidic acid (20:0), behenic acid (22:0) and lignoceric acid (24:0) were promising candidates in reducing BP and thus, dietary intake could be recommended. Conversely, dietary intake of myristic acid (14:0), palmitic acid (16:0), and industrial trans FAs (iTFAs) should be restricted due to their association with elevated BP. Further research is warranted for pentadecanoic acid (15:0), heptadecanoic acid (17:0), stearic acid (18:0), alpha-linolenic acid (18:3n3), docosapentaenoic acid (22:5n3), linoleic acid (18:2n6), dihomo-gamma-linolenic acid (20:3n6), arachidonic acid (20:4n6), palmitoleic acid (16:1n7), and ruminant TFAs since their associations with BP present inconsistencies in the literature. Lifestyle factors such as dietary intake, physical activity, alcohol consumption and smoking should be considered when examining the relationship between FAs and BP. Overall, the FAs profile may contribute to BP level management; therefore, dietary recommendations are important.
Collapse
Affiliation(s)
- Hana Arghavani
- Endocrinology and Nephrology Research Axis, CHU de Québec Research Center, CHU of Quebec-Laval University, CHUL - 2705, Boulevard. Laurier, Quebec, G1V 4G2, Canada
| | - Jean-François Bilodeau
- Endocrinology and Nephrology Research Axis, CHU de Québec Research Center, CHU of Quebec-Laval University, CHUL - 2705, Boulevard. Laurier, Quebec, G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Research Axis, CHU de Québec Research Center, CHU of Quebec-Laval University, CHUL - 2705, Boulevard. Laurier, Quebec, G1V 4G2, Canada.
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Trugilho L, Alvarenga L, Cardozo LF, Barboza I, Leite M, Fouque D, Mafra D. Vitamin E and conflicting understandings in noncommunicable diseases: Is it worth supplementing? Clin Nutr ESPEN 2024; 59:343-354. [PMID: 38220396 DOI: 10.1016/j.clnesp.2023.12.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Vitamin E is a lipid-soluble nutrient found mainly in vegetable oils and oilseeds. It is divided into eight homologous compounds; however, only α-tocopherol exhibits vitamin activity. Many advantages are related to these compounds, including cellular protection through antioxidant and anti-inflammatory activity, and improving lipid metabolism. Physiopathology of many diseases incepts with reduced antioxidant defense, characterized by an increased reactive oxygen species production and activation of transcription factors involved in inflammation, such as nuclear factor-kappa B (NF-κB), that can be linked to oxidative stress. Moreover, disorders of lipid metabolism can increase the risk of cardiovascular diseases. In addition, intestinal dysbiosis plays a vital role in developing chronic non-communicable diseases. In this regard, vitamin E can be considered to mitigate those disorders, but data still needs to be more conclusive. This narrative review aims to elucidate the mechanisms of action of vitamin E and if supplementation can be beneficial in a disease scenario regarding non-communicable diseases.
Collapse
Affiliation(s)
- Liana Trugilho
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Isis Barboza
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Maurilo Leite
- Division of Nephrology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, France
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Ebenuwa I, Violet PC, Michel K, Padayatty SJ, Wang Y, Tu H, Wilkins KJ, Kassaye S, Levine M. Vitamin C Urinary Loss and Deficiency in Human Immunodeficiency Virus (HIV): Cross-sectional Study of Vitamin C Renal Leak in Women With HIV. Clin Infect Dis 2023; 77:1157-1165. [PMID: 37264998 PMCID: PMC10573720 DOI: 10.1093/cid/ciad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Reduced plasma vitamin C (vitC) concentrations in human immunodeficiency virus (HIV) may result from abnormal urinary excretion: a renal leak. VitC renal leak indicates underlying nutritional dysregulation independent of diet. We hypothesized that increased renal leak prevalence in HIV would be associated with deficient vitC concentrations. METHODS We conducted an outpatient cross-sectional study of 96 women (40 HIV [PWH] and 56 without HIV [PWOH]) at the National Institutes of Health and Georgetown University. Renal leak was defined as abnormal urinary vitC excretion at fasting plasma concentrations <43.2µM, 2 SDs below vitC renal threshold in healthy women. To determine the primary outcome of renal leak prevalence, matched urine and plasma samples were collected the morning after overnight fast. Secondary outcomes assessed group differences in mean plasma vitC concentrations and prevalence of vitC deficiency. Exploratory outcomes assessed clinical parameters associated with renal leak. VitC was measured by high-performance liquid chromatography with coulometric electrochemical detection. RESULTS PWH had significantly higher renal leak prevalence (73%vs14%; OR (odds ratio):16; P<.001), lower mean plasma vitC concentrations (14µMvs50µM; P<.001), and higher prevalence of vitC deficiency (43%vs7%; OR:10; P<.001) compared with PWOH, unchanged by adjustments for confounding factors. Significant predictors of renal leak included antiretroviral therapy (ART), Black race, older age, and metabolic comorbidities but not viral load or CD4 count. When compared with other chronic disease cohorts, PWH had the highest prevalence of renal leak and vitC deficiency (P<.001). CONCLUSIONS High prevalence of vitC renal leak in HIV was associated with vitC deficiency, ART use, and race/ethnicity differences.
Collapse
Affiliation(s)
- Ifechukwude Ebenuwa
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kate Michel
- Department of Medicine, Division of Infectious Disease, Georgetown University School of Medicine, Washington D.C., USA
| | - Sebastian J Padayatty
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaohui Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongbin Tu
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth J Wilkins
- Office of Clinical Research Support, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seble Kassaye
- Department of Medicine, Division of Infectious Disease, Georgetown University School of Medicine, Washington D.C., USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Huang Y, Zhang K, Zhang L, Qiu J, Fu L, Yin T, Wang J, Qin R, Zhang J, Dong X, Wang G. Dosage of Dual-Protein Nutrition Differentially Impacts the Formation of Atherosclerosis in ApoE-/- Mice. Nutrients 2022; 14:nu14040855. [PMID: 35215505 PMCID: PMC8879330 DOI: 10.3390/nu14040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Atherosclerosis (AS) is recognized as the original cause of most cardiovascular and cerebrovascular diseases. The dual-protein (DP) nutrition that consists of soy protein and whey protein is reported to be associated with a reduction in AS; however, the relationship between DP and AS remains ambiguous. Therefore, this study aimed to verify the effect of DP on AS and explore the optimal DP intake to improve AS. ApoE−/− mice were administrated with low- (LDP), middle- (MDP), and high-dose (HDP) DP. The MDP group exhibited significant improvements in AS. In terms of lipid metabolism, the levels of plasma total triglyceride and LDL-C and the mRNA expression levels of Cyp7a1 and PCSK9 were markedly tuned in the MDP group. In addition, the MDP treatment group had a substantially lower inflammatory response and better intestinal barrier function than LDP and HDP groups. The species richness demonstrated by the Chao1 index was distinctly increased in the MDP group, and the relative abundance of intestinal-permeability-protective microbes Blautia and Akkermansia was significantly elevated. In summary, an adequate intake of DP was able to counteract atherosclerosis development in ApoE−/− mice, and this study provides a scientific theoretical basis for the application of DP in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Yingchun Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402493, China; (L.Z.); (L.F.)
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
| | - Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing 402493, China; (L.Z.); (L.F.)
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100086, China;
- Correspondence: (J.W.); (X.D.); (G.W.)
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430079, China;
| | - Jingjie Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100086, China;
| | - Xianwen Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
- Chongqing Academy of Animal Sciences, Chongqing 402493, China; (L.Z.); (L.F.)
- Correspondence: (J.W.); (X.D.); (G.W.)
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.H.); (K.Z.); (J.Q.); (T.Y.)
- Correspondence: (J.W.); (X.D.); (G.W.)
| |
Collapse
|
6
|
Liu X, Sun Y, Zhan Y, Jiang Y. Prevalence and risk of subclinical carotid atherosclerosis in the global population with HIV: a systematic review and meta-analysis. Int J STD AIDS 2021; 32:411-420. [PMID: 33494655 DOI: 10.1177/0956462420972854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current evidence regarding the prevalence of subclinical carotid atherosclerosis (SCA) for people living with HIV(PLWH) is inconsistent. In this study, we aimed to synthesize data on the prevalence and association of SCA patients with HIV infection. We searched PubMed, EMBASE, Web of Science, Medline, SinoMed, and CNKI from inception to March 2, 2020. The pooled proportion, odds ratio (OR) with 95% confidence intervals (CIs) were calculated. For inclusion, SCA was measured by carotid intima-media thickness (CIMT), with a B-mode ultrasound machine. Twenty-six studies consisting of 6590 participants were identified. The overall prevalence of SCA was 31.6% (95% CI 13.4-53.3; I2 = 99%; 4 studies) according to CIMT ≥ 0.78 mm criteria, and 32.3% (19.6-46.4; 97%; 10 studies) according to CIMT ≥ 0.90 mm criteria. SCA prevalence was higher in Europe, over 40 years old and male. What's more, PLWH have a higher likelihood of developing SCA comorbidity than HIV-negative controls (pooled OR 2.66, 95% CI 1.57-4.50, I2 = 74%; 9 studies), even after sensitivity analysis (pooled OR 2.58, 1.54-4.31, 73%). This study suggests a high prevalence and risk of SCA in the global population with HIV. As a result, subclinical carotid atherosclerosis deserves more attention from policymakers, HIV health-care providers, researchers, and stakeholders.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, 12501Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Sun
- The Institute of Medical Information, 12501Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongle Zhan
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, 12501Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Jiang
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, 12501Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Berretta M, Quagliariello V, Maurea N, Di Francia R, Sharifi S, Facchini G, Rinaldi L, Piezzo M, Manuela C, Nunnari G, Montopoli M. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9121182. [PMID: 33256059 PMCID: PMC7761324 DOI: 10.3390/antiox9121182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Severe disease commonly manifests as a systemic inflammatory process. Inflammation is associated withthe enhanced production of reactive oxygen and nitrogen species and with a marked reduction in the plasma concentrations of protective antioxidant molecules. This imbalance gives rise to oxidative stress, which is greater in patients with more severe conditions such as sepsis, cancer, cardiovascular disease, acute respiratory distress syndrome, and burns. In these patients, oxidative stress can trigger cell, tissue, and organ damage, thus increasing morbidity and mortality. Ascorbic acid (ASC) is a key nutrient thatserves as an antioxidant and a cofactor for numerous enzymatic reactions. However, humans, unlike most mammals, are unable to synthesize it. Consequently, ASC must be obtained through dietary sources, especially fresh fruit and vegetables. The value of administering exogenous micronutrients, to reestablish antioxidant concentrations in patients with severe disease, has been recognized for decades. Despite the suggestion that ASC supplementation may reduce oxidative stress and prevent several chronic conditions, few large, randomized clinical trials have tested it in patients with severe illness. This article reviews the recent literature on the pharmacological profile of ASC and the role of its supplementation in critically ill patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
- Correspondence:
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| | - Gaetano Facchini
- Division of Medical Oncology, “S. Maria delle Grazie” Hospital—ASL Napoli 2 Nord, 80126 Pozzuoli, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 80121 Napoli, Italy;
| | - Michela Piezzo
- Division of Breast Medical Oncology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| | - Ceccarelli Manuela
- Division of Infectious Disease, University of Catania, 95122 Catania, Italy;
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| |
Collapse
|