1
|
Kou J, Guo H, Leng J, Xiang H, Wang H, Zhang J, Yang P, Zou F, Zhuang W, Niu H, Ying H, Wu J. Preparation of mixed-mode hydrophilic particle for efficient separation of common human milk oligosaccharides. J Chromatogr A 2025; 1748:465865. [PMID: 40086144 DOI: 10.1016/j.chroma.2025.465865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Human milk oligosaccharides (HMOs) are essential for babies' growth. The most commonly used method for HMOs analysis combines hydrophilic interaction liquid chromatography (HILIC) with ultra-performance liquid chromatography (UPLC). However, high-pressure operation and the cost of commercial HILIC columns limit progress in the HMOs research. In this study, we synthesized a novel mixed-mode adsorbent, PS-g-PAMPS, by grafting 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto a Merrifield resin (PS-g-Cl), and characterized it. The adsorbents were packed into a column (Mixed-HILIC column) for efficient high-performance liquid chromatography (HPLC) analysis of four HMOs: 2'-Focusllactose (2'-FL), Lacto-N-Tetraose (LNnT), 3'-Sialyllactose (3'-SL), and 6'-Sialyllactose (6'-SL). Compared to three commercial columns, AMINEX HPX-87H column, ROA-Organic Acid column, Glycan BEH amide column, our column offered several advantages: low-pressure operation, cost-effective adsorbent, and baseline separation of six analytes in the same analysis time. The mixed-mode mechanism of electrostatic repulsion and hydrophilic interactions was verified using zeta potential, and organic phase ratio. Key performance parameters, including spike recovery, limit of detection, and limit of quantification, were evaluated, and the column's reliability was confirmed using a real 2'-FL fermentation sample. These results demonstrated the potential of the Mixed-HILIC column for the development of application chromatography in HMOs.
Collapse
Affiliation(s)
- Jingwei Kou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Han Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Jing Leng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Houle Xiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Hui Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Jinming Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Pengpeng Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Fengxia Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Huanqing Niu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China.
| |
Collapse
|
2
|
Ninchan B, Chauywongyart P, Utapong T, Thamrongsiripak N. Effect of Gamma Irradiation on Depolymerization and Property Changes of Gum Tragacanth. Int J Biomater 2024; 2024:8875341. [PMID: 39650096 PMCID: PMC11625087 DOI: 10.1155/ijbm/8875341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 11/21/2024] [Indexed: 12/11/2024] Open
Abstract
High-energy nonthermal processes (irradiation) are an interesting technique for depolymerization. Gum tragacanth (GT) is a heteropolysaccharide composed of various sugars that are beneficial in the food and pharmaceutical industries. This study investigated the effects of different gamma irradiation doses (2.5, 5, 10, 20, 100, 500, 1,000, and 2000 kGy) on GT properties, considering both structural and physicochemical changes. The results confirmed that gamma irradiation influenced depolymerization with increases in monosaccharides (L-arabinose, D-galactose, D-glucose, D-xylose, L-fucose, L-rhamnose) and the percentage of degradation. Fourier transform infrared (FTIR) spectroscopy analysis indicated that structural changes occurred, with more free O-H and C-O bonding, including the carboxylic group (COOH) in the degraded molecules after irradiation. The changes in physicochemical properties were lower viscosity and a color change under gamma irradiation. The property changes in the GT were clearly related to an increased dose of gamma rays. In summary, there was comprehensive GT degradation following exposure using different increasing doses of gamma radiation, with some concomitant property changes in the GT.
Collapse
Affiliation(s)
- Boontiwa Ninchan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
- Sugars and Derivatives Analytical Laboratory, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Parimitta Chauywongyart
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Teerawat Utapong
- Irradiation Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
| | - Nuatawan Thamrongsiripak
- Irradiation Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
| |
Collapse
|
3
|
Burke RM, Payne DC, McNeal M, Conrey SC, Burrell AR, Mattison CP, Casey-Moore MC, Mijatovic-Rustempasic S, Gautam R, Esona MD, Thorman AW, Bowen MD, Parashar UD, Tate JE, Morrow AL, Staat MA. Correlates of Rotavirus Vaccine Shedding and Seroconversion in a US Cohort of Healthy Infants. J Infect Dis 2024; 230:754-762. [PMID: 38330312 DOI: 10.1093/infdis/jiae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Rotavirus is a leading cause of severe pediatric gastroenteritis; 2 highly effective vaccines are used in the United States (US). We aimed to identify correlates of immune response to rotavirus vaccination in a US cohort. METHODS Pediatric Respiratory and Enteric Virus Acquisition and Immunogenesis Longitudinal (PREVAIL) is a birth cohort of 245 mother-child pairs enrolled in 2017-2018 and followed for 2 years. Infant stool samples and symptom information were collected weekly. Shedding was defined as reverse-transcription polymerase chain reaction detection of rotavirus vaccine virus in stools collected 4-28 days after dose 1. Seroconversion was defined as a 3-fold rise in immunoglobulin A between the 6-week and 6-month blood draws. Correlates were analyzed using generalized estimating equations and logistic regression. RESULTS Prevaccination immunoglobulin G (IgG) (odds ratio [OR], 0.84 [95% confidence interval {CI}, .75-.94] per 100-unit increase) was negatively associated with shedding. Shedding was also less likely among infants with a single-nucleotide polymorphism inactivating FUT2 antigen secretion ("nonsecretors") with nonsecretor mothers, versus all other combinations (OR, 0.37 [95% CI, .16-.83]). Of 141 infants with data, 105 (74%) seroconverted; 78 (77%) had shed vaccine virus following dose 1. Prevaccination IgG and secretor status were significantly associated with seroconversion. Neither shedding nor seroconversion significantly differed by vaccine product. CONCLUSIONS In this US cohort, prevaccination IgG and maternal and infant secretor status were associated with rotavirus vaccine response.
Collapse
Affiliation(s)
- Rachel M Burke
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Daniel C Payne
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
| | - Shannon C Conrey
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Allison R Burrell
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Claire P Mattison
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
- Cherokee Nation Assurance, Arlington, Virginia
| | - Mary C Casey-Moore
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Rashi Gautam
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mathew D Esona
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alexander W Thorman
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael D Bowen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umesh D Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline E Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ardythe L Morrow
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mary A Staat
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
| |
Collapse
|
4
|
Pressley SR, McGill AS, Luu B, Atsumi S. Recent Advances in the Microbial Production of Human Milk Oligosaccharides. Curr Opin Food Sci 2024; 57:101154. [PMID: 39399461 PMCID: PMC11469638 DOI: 10.1016/j.cofs.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Human milk oligosaccharides (HMOs) are naturally occurring, non-digestible sugars found in human milk. They have recently become a popular target for industrial synthesis due to their positive effects on the developing gut microbiome and immune system of infants. Microbial synthesis has shown great promise in driving down the cost of these sugars and making them more available for consumers and researchers. The application of common metabolic engineering techniques such as gene knockouts, gene overexpression, and expression of exogenous genes has enabled the rational design of whole-cell biocatalysts which can produce increasingly complex HMOs. Herein, we discuss how these strategies have been applied to produce a variety of sugars from sialylated to complex fucosylated HMOs. With increased availability of HMOs, more research can be done to understand their beneficial effects.
Collapse
Affiliation(s)
- Shannon R. Pressley
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Alex S. McGill
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Bryant Luu
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Dore MP, Meloni G, Bassu I, Pes GM. Helicobacter pylori Infection Does Not Protect Against Allergic Diseases: Evidence From a Pediatric Cohort From Northern Sardinia, Italy. Helicobacter 2024; 29:e13107. [PMID: 38943311 DOI: 10.1111/hel.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The "hygiene hypothesis" states that reduced exposure to microbial antigens due to an excessively hygienic environment can increase the risk of developing autoimmune diseases, including atopic disorders and asthma. In recent decades, there has been a progressive decline in the prevalence of numerous microorganisms following improved hygienic-sanitary conditions. More specifically, several studies reported an inverse association between the reduction in Helicobacter pylori infection and the rise of asthma and allergic disorders. AIM To evaluate the prevalence of atopic disorders in a pediatric population in relation to seropositivity against H. pylori. METHODS Children from Northern Sardinia, Italy, referred to the local Children's Hospital for any reason, were investigated to identify risk factors, especially H. pylori infection, associated with atopic disorders. A validated questionnaire, including demographics, house size, history of breastfeeding, residence, school or daycare center attendance, exposure to animals, and a defined diagnosis of atopy-including asthma-was filled out by a trained pediatrician according to parents' answers and child records. A blood sample was collected from each participant and immunoglobulin G against H. pylori was assessed by a locally validated ELISA test. RESULTS The seroprevalence of H. pylori infection was 11.7% among 492 children (240 females). Thirty-two children had a confirmed diagnosis of asthma and 12 of allergy. No one child showed both conditions. Statistically significant differences in H. pylori seropositivity were not detected between children with or without atopy (8.4% vs. 12.6; p = 0.233). Although atopic disorders were more frequent in children exposed to traditional atopic risk factors, none of them showed to be significant after adjusting for all covariates. CONCLUSIONS Serologically assessed H. pylori infection was not significantly associated with a reduced risk of atopic diseases in children.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
- Baylor College of Medicine, Houston, Texas, USA
| | - Gianfranco Meloni
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
| | - Ica Bassu
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
- Blue Zone Longevity Observatory, Ogliastra, Italy
| |
Collapse
|
6
|
Yamaguchi T, Fukudome H, Higuchi J, Takahashi T, Tsujimori Y, Ueno HM, Toba Y, Sakai F. Label-Free Liquid Chromatography-Mass Spectrometry Quantitation of Relative N- and O-Glycan Concentrations in Human Milk in Japan. Int J Mol Sci 2024; 25:1772. [PMID: 38339050 PMCID: PMC10855831 DOI: 10.3390/ijms25031772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Human milk is abundant in carbohydrates and includes human milk oligosaccharides (HMOs) and N/O-glycans conjugated to proteins. HMO compositions and concentrations vary in individuals according to the maternal secretor status based on the fucosyltransferase 2 genotype; however, the profile of N/O-glycans remains uninvestigated because of the analytical complexity. Herein, we applied a label-free chromatography-mass spectrometry (LC-MS) technique to elucidate the variation in the composition and concentration of N/O-glycans in human milk. We used label-free LC-MS to relatively quantify 16 N-glycans and 12 O-glycans in 200 samples of Japanese human milk (1-2 months postpartum) and applied high performance anion exchange chromatography with pulsed amperometric detection to absolutely quantify the concentrations of 11 representative HMOs. Cluster analysis of the quantitative data revealed that O-glycans and several HMOs were classified according to the presence or absence of fucose linked to galactose while N-glycans were classified into a different group from O-glycans and HMOs. O-glycans and HMOs with fucose linked to galactose were more abundant in human milk from secretor mothers than from nonsecretor mothers. Thus, secretor status influenced the composition and concentration of HMOs and O-glycans but not those of N-glycans in human milk.
Collapse
Affiliation(s)
- Toshiyuki Yamaguchi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan; (T.Y.); (H.F.); (J.H.); (H.M.U.)
| | - Hirofumi Fukudome
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan; (T.Y.); (H.F.); (J.H.); (H.M.U.)
| | - Junichi Higuchi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan; (T.Y.); (H.F.); (J.H.); (H.M.U.)
| | - Tomoki Takahashi
- Department of Research and Development, Bean Stalk Snow Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan; (T.T.); (Y.T.); (Y.T.)
| | - Yuta Tsujimori
- Department of Research and Development, Bean Stalk Snow Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan; (T.T.); (Y.T.); (Y.T.)
| | - Hiroshi M. Ueno
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan; (T.Y.); (H.F.); (J.H.); (H.M.U.)
- Department of Research and Development, Bean Stalk Snow Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan; (T.T.); (Y.T.); (Y.T.)
| | - Yasuhiro Toba
- Department of Research and Development, Bean Stalk Snow Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan; (T.T.); (Y.T.); (Y.T.)
| | - Fumihiko Sakai
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan; (T.Y.); (H.F.); (J.H.); (H.M.U.)
| |
Collapse
|
7
|
Lou YC, Rubin BE, Schoelmerich MC, DiMarco KS, Borges AL, Rovinsky R, Song L, Doudna JA, Banfield JF. Infant microbiome cultivation and metagenomic analysis reveal Bifidobacterium 2'-fucosyllactose utilization can be facilitated by coexisting species. Nat Commun 2023; 14:7417. [PMID: 37973815 PMCID: PMC10654741 DOI: 10.1038/s41467-023-43279-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
The early-life gut microbiome development has long-term health impacts and can be influenced by factors such as infant diet. Human milk oligosaccharides (HMOs), an essential component of breast milk that can only be metabolized by some beneficial gut microorganisms, ensure proper gut microbiome establishment and infant development. However, how HMOs are metabolized by gut microbiomes is not fully elucidated. Isolate studies have revealed the genetic basis for HMO metabolism, but they exclude the possibility of HMO assimilation via synergistic interactions involving multiple organisms. Here, we investigate microbiome responses to 2'-fucosyllactose (2'FL), a prevalent HMO and a common infant formula additive, by establishing individualized microbiomes using fecal samples from three infants as the inocula. Bifidobacterium breve, a prominent member of infant microbiomes, typically cannot metabolize 2'FL. Using metagenomic data, we predict that extracellular fucosidases encoded by co-existing members such as Ruminococcus gnavus initiate 2'FL breakdown, thus critical for B. breve's growth. Using both targeted co-cultures and by supplementation of R. gnavus into one microbiome, we show that R. gnavus can promote extensive growth of B. breve through the release of lactose from 2'FL. Overall, microbiome cultivation combined with genome-resolved metagenomics demonstrates that HMO utilization can vary with an individual's microbiome.
Collapse
Affiliation(s)
- Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Benjamin E Rubin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Marie C Schoelmerich
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Environmental Systems Sciences, ETH Zurich, Zurich, Switzerland
| | - Kaden S DiMarco
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Rachel Rovinsky
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Leo Song
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
8
|
Wang H, Zhang M, Huo Y, Cui X, He R, Han B, Wang Z, Song Y, Lv X, Zhang J, Ge W. Comprehensive investigation of milk oligosaccharides in different mammalian species and the effect of breed and lactation period on sheep milk oligosaccharides. Food Res Int 2023; 172:113132. [PMID: 37689897 DOI: 10.1016/j.foodres.2023.113132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
Milk oligosaccharides (MOs) have unique health benefits for newborns, and MOs are important components in mammalian milk. The present study was conducted to provide a comprehensive analysis of MOs in important domestic animals, including goats, cows, camels and sheep. The comparison with human MOs was conducted simultaneously. Furthermore, analysis of the relative abundance of sheep MOs among different breeds (Hu sheep, East Friesen sheep, East Friesen-Hu crossbred sheep) and lactation periods (colostrum, mature milk) was performed. In general, 35, 24 19, 26, and 16 MOs were identified in human, goat, bovine, camel and sheep milk, respectively. The type of sheep MOs was not greatly influenced by the breeds and lactation period. Hu sheep colostrum had the highest abundance of MOs among six sheep milks, followed by East Friesen sheep colostrum, while East Friesen-Hu crossbred sheep mature milk had the lowest abundance of MOs. These findings provide evidence for the potential value of MOs from domestic animal milk for the commercial applications.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling 712100, China
| | - Minghui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling 712100, China
| | - Yucui Huo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling 712100, China
| | - Xiuxiu Cui
- Xi'an Baiyue Goat Dairy Group Co., Ltd, Yanliang 710089, China
| | - Rui He
- Shaanxi Baiyue Youlishi Dairy Co., Ltd, Xi'an 710000, China
| | - Bei Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710000, China
| | - Zhongfu Wang
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling 712100, China
| | - Jing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling 712100, China.
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling 712100, China.
| |
Collapse
|
9
|
Muro-Valdez JC, Meza-Rios A, Aguilar-Uscanga BR, Lopez-Roa RI, Medina-Díaz E, Franco-Torres EM, Zepeda-Morales ASM. Breastfeeding-Related Health Benefits in Children and Mothers: Vital Organs Perspective. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1535. [PMID: 37763654 PMCID: PMC10536202 DOI: 10.3390/medicina59091535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
Breast milk (BM) is a constantly changing fluid that represents the primary source of nutrition for newborns. It is widely recognized that breastfeeding provides benefits for both the child and the mother, including a lower risk of ovarian and breast cancer, type 2 diabetes mellitus, decreased blood pressure, and more. In infants, breastfeeding has been correlated with a lower risk of infectious diseases, obesity, lower blood pressure, and decreased incidence of respiratory infections, diabetes, and asthma. Various factors, such as the baby's sex, the health status of the mother and child, the mother's diet, and the mode of delivery, can affect the composition of breast milk. This review focuses on the biological impact of the nutrients in BM on the development and functionality of vital organs to promote the benefit of health.
Collapse
Affiliation(s)
- Julio César Muro-Valdez
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| | - Alejandra Meza-Rios
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| | - Blanca Rosa Aguilar-Uscanga
- Laboratorio de Microbiología Industrial, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Rocio Ivette Lopez-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Eunice Medina-Díaz
- Instituto Transdisciplinar de Investigación y Servicios, CUCEI, Universidad de Guadalajara, Av. José Parres Arias 5, Rinconada de la Azalea, Industrial Belenes, Zapopan 45150, Mexico
| | - Esmeralda Marisol Franco-Torres
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico
| | - Adelaida Sara Minia Zepeda-Morales
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (J.C.M.-V.); (A.M.-R.)
| |
Collapse
|
10
|
Structure and function of microbial α-l-fucosidases: a mini review. Essays Biochem 2023; 67:399-414. [PMID: 36805644 PMCID: PMC10154630 DOI: 10.1042/ebc20220158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/23/2023]
Abstract
Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (β/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel β-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.
Collapse
|
11
|
Kaplina A, Kononova S, Zaikova E, Pervunina T, Petrova N, Sitkin S. Necrotizing Enterocolitis: The Role of Hypoxia, Gut Microbiome, and Microbial Metabolites. Int J Mol Sci 2023; 24:2471. [PMID: 36768793 PMCID: PMC9917134 DOI: 10.3390/ijms24032471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening disease that predominantly affects very low birth weight preterm infants. Development of NEC in preterm infants is accompanied by high mortality. Surgical treatment of NEC can be complicated by short bowel syndrome, intestinal failure, parenteral nutrition-associated liver disease, and neurodevelopmental delay. Issues surrounding pathogenesis, prevention, and treatment of NEC remain unclear. This review summarizes data on prenatal risk factors for NEC, the role of pre-eclampsia, and intrauterine growth retardation in the pathogenesis of NEC. The role of hypoxia in NEC is discussed. Recent data on the role of the intestinal microbiome in the development of NEC, and features of the metabolome that can serve as potential biomarkers, are presented. The Pseudomonadota phylum is known to be associated with NEC in preterm neonates, and the role of other bacteria and their metabolites in NEC pathogenesis is also discussed. The most promising approaches for preventing and treating NEC are summarized.
Collapse
Affiliation(s)
- Aleksandra Kaplina
- Research Laboratory for Physiology and Diseases of Newborns, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Svetlana Kononova
- Group of Protein Synthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Ekaterina Zaikova
- Research Laboratory of Autoimmune and Autoinflammatory Diseases, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana Pervunina
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Natalia Petrova
- Research Laboratory for Physiology and Diseases of Newborns, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Stanislav Sitkin
- Epigenetics and Metagenomics Group, Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named after I.I. Mechnikov, St. Petersburg 191015, Russia
| |
Collapse
|
12
|
Association of Exclusive Breastfeeding with Asthma Risk among Preschool Children: An Analysis of National Health and Nutrition Examination Survey Data, 1999 to 2014. Nutrients 2022; 14:nu14204250. [PMID: 36296941 PMCID: PMC9607098 DOI: 10.3390/nu14204250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
Breastmilk contains many important nutrients, anti-inflammatory agents, and immunomodulators. It is the preferred nutrition source for infants. However, the association of the duration of exclusive breastmilk feeding (BMF) with asthma development is unclear. Data on children from the United States who participated in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2014 were obtained. We examined the association between the duration of exclusive BMF and asthma in 6000 children (3 to 6 years old). After calculating the duration of exclusive breastfeeding according to answers to NHANES questionnaires, the estimated duration of exclusive BMF was divided into five categories: never breastfed or BMF for 0 to 2 months after birth; BMF for 2 to 4 months after birth; BMF for 4 to 6 months after birth; and BMF for ≥6 months after birth. The overall prevalence of asthma in children aged 3 to 6 years was approximately 13.9%. The risk of asthma was lower in children with an exclusive BMF duration of 4 to 6 months (aOR, 0.69; 95% CI, 0.48–0.98), after adjustment for potentially confounding factors. Subgroup analysis revealed that children of younger ages (3 to 4 years old) benefited most from the protective effects of exclusive BMF for 4 to 6 months (aOR, 0.47; 95% CI, 0.27, 0.8). We found that exclusive BMF, especially BMF for 4 to 6 months, is associated with a decreased risk of asthma in preschool-age children. The protective effect appeared to be diminished in older children. The potential mechanism needs further investigation.
Collapse
|
13
|
Zuurveld M, Kiliaan PC, van Grinsven SE, Folkerts G, Garssen J, van't Land B, Willemsen LE. Ovalbumin-Induced Epithelial Activation Directs Monocyte-Derived Dendritic Cells to Instruct Type 2 Inflammation in T Cells Which Is Differentially Modulated by 2'-Fucosyllactose and 3-Fucosyllactose. J Innate Immun 2022; 15:222-239. [PMID: 36215948 PMCID: PMC10643896 DOI: 10.1159/000526528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Allergic sensitization starts with epithelial cell activation driving dendritic cells (DCs) to instruct T helper 2 (Th2) cell polarization. Food allergens trigger intestinal epithelial cell (IEC) activation. Human milk oligosaccharides may temper the allergic phenotype by shaping mucosal immune responses.We investigated in vitro mucosal immune development after allergen exposure by combining ovalbumin (OVA)-preexposed IEC with monocyte-derived DCs (OVA-IEC-DCs) and subsequent coculture of OVA-IEC-DCs with Th cells. IECs were additionally preincubated with 2'FL or 3FL.OVA activation increased IEC cytokine secretion. OVA-IEC-DCs instructed both IL13 (p < 0.05) and IFNγ (p < 0.05) secretion from Th cells. 2'FL and 3FL permitted OVA-induced epithelial activation, but 2'FL-OVA-IEC-DCs boosted inflammatory and regulatory T-cell development. 3FL-OVA-IEC lowered IL12p70 and IL23 in DCs and suppressed IL13 (p < 0.005) in T cells, while enhancing IL17 (p < 0.001) and IL10 (p < 0.005).These results show that OVA drives Th2- and Th1-type immune responses via activation of IECs in this model. 2'FL and 3FL differentially affect OVA-IEC-driven immune effects. 2'FL boosted overall T-cell OVA-IEC immunity via DC enhancing inflammatory and regulatory responses. 3FL-OVA-IEC-DCs silenced IL13, shifting the balance towards IL17 and IL10.This model demonstrates the contribution of IEC to OVA Th2-type immunity. 2'FL and 3FL modulate the OVA-induced activation in this novel model to study allergic sensitization.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Pien C.J. Kiliaan
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sophie E.L. van Grinsven
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Danone Nutricia Research, Utrecht, The Netherlands
| | - Belinda van't Land
- Danone Nutricia Research, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linette E.M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
|
15
|
Bereznicka A, Mikolajczyk K, Czerwinski M, Kaczmarek R. Microbial lectome versus host glycolipidome: How pathogens exploit glycosphingolipids to invade, dupe or kill. Front Microbiol 2022; 13:958653. [PMID: 36060781 PMCID: PMC9437549 DOI: 10.3389/fmicb.2022.958653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosphingolipids (GSLs) are ubiquitous components of the cell membranes, found across several kingdoms of life, from bacteria to mammals, including humans. GSLs are a subclass of major glycolipids occurring in animal lipid membranes in clusters named "lipid rafts." The most crucial functions of GSLs include signal transduction and regulation as well as participation in cell proliferation. Despite the mainstream view that pathogens rely on protein-protein interactions to survive and thrive in their hosts, many also target the host lipids. In particular, multiple pathogens produce adhesion molecules or toxins that bind GSLs. Attachment of pathogens to cell surface receptors is the initial step in infections. Many mammalian pathogens have evolved to recognize GSL-derived receptors. Animal glycosphingolipidomes consist of multiple types of GSLs differing in terminal glycan and ceramide structures in a cell or tissue-specific manner. Interspecies differences in GSLs dictate host specificity as well as cell and tissue tropisms. Evolutionary pressure exerted by pathogens on their hosts drives changes in cell surface glycoconjugates, including GSLs, and has produced a vast number of molecules and interaction mechanisms. Despite that abundance, the role of GSLs as pathogen receptors has been largely overlooked or only cursorily discussed. In this review, we take a closer look at GSLs and their role in the recognition, cellular entry, and toxicity of multiple bacterial, viral and fungal pathogens.
Collapse
Affiliation(s)
| | | | - Marcin Czerwinski
- Department of Immunochemistry, Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wrocław, Poland
| | - Radoslaw Kaczmarek
- Department of Immunochemistry, Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
16
|
De Cosmi V, Mazzocchi A, Agostoni C, Visioli F. Fructooligosaccharides: From Breast Milk Components to Potential Supplements. A Systematic Review. Adv Nutr 2022; 13:318-327. [PMID: 34555852 PMCID: PMC8803487 DOI: 10.1093/advances/nmab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
Breast milk is the optimal food choice for infant growth and development. Among breast milk components, fructooligosaccharides (FOSs) are being actively studied because of their role in microbiota development. In particular, 2'-fucosyllactose is being proposed as a potential supplement/nutraceutical or component of infant formula. In this systematic review, we critically summarize the available information on FOSs and we discuss their future use in infant nutrition. We searched the main electronic databases (PubMed, Embase, and Scopus), with a final check in May 2021. Search terms were inserted individually and using the Boolean tools AND and OR. Relevant articles were identified using the following words: ("fructooligosaccharides" OR "FOS") AND ("human milk" OR "breast milk" OR "donor milk" OR "bank milk"). The search retrieved 1814 articles. After removal of duplicates, we screened 1591 articles based on title, abstract, and exclusive use of the English language. We included articles describing the concentration of FOSs in human milk and assessed the relevant ones. We excluded reviews, studies on animals, and studies exclusively carried out on adults. Also, we excluded studies that have not reported evidence either on FOSs or on galactooligosaccharides from human milk. The resulting publications were reviewed, and 10 studies were included in the systematic review. We conclude that human milk FOSs are, indeed, crucial to infant gut development and their addition to infant formula is safe, well-tolerated, and might provide immune benefits to newborns. However, we would like to underscore the scantiness of human data and the need to avoid the immediate translation of infant research to the commercialization of supplements marketed to adults.
Collapse
Affiliation(s)
- Valentina De Cosmi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessandra Mazzocchi
- Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padua, Padua, Italy; Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence (CEI) Autonomous University of Madrid + Spanish National Research Council (UAM + CSIC), Madrid, Spain.
| |
Collapse
|
17
|
Nogacka AM, Arboleya S, Nikpoor N, Auger J, Salazar N, Cuesta I, Alvarez-Buylla JR, Mantecón L, Solís G, Gueimonde M, Tompkins TA, de los Reyes-Gavilán CG. In Vitro Probiotic Modulation of the Intestinal Microbiota and 2′Fucosyllactose Consumption in Fecal Cultures from Infants at Two Months of Age. Microorganisms 2022; 10:microorganisms10020318. [PMID: 35208773 PMCID: PMC8876326 DOI: 10.3390/microorganisms10020318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/17/2023] Open
Abstract
2′-fucosyllactose (2′FL) is one of the most abundant oligosaccharides in human milk, with benefits on neonatal health. Previous results point to the inability of the fecal microbiota from some infants to ferment 2′FL. We evaluated a probiotic formulation, including the strains Lactobacillus helveticus Rosell®-52 (R0052), Bifidobacterium longum subsp. infantis Rosell®-33 (R0033), and Bifidobacterium bifidum Rosell®-71 (R0071), individually or in an 80:10:10 combination on the microbiota and 2′FL degradation. Independent batch fermentations were performed with feces from six full-term infant donors of two months of age (three breastfed and three formula-fed) with added probiotic formulation or the constituent strains in the presence of 2′FL. Microbiota composition was analyzed by 16S rRNA gene sequencing. Gas accumulation, pH decrease and 2′FL consumption, and levels of different metabolites were determined by chromatography. B. bifidum R0071 was the sole microorganism promoting a partial increase of 2′FL degradation during fermentation in fecal cultures of 2′FL slow-degrading donors. However, major changes in microbiota composition and metabolic activity occurred with L. helveticus R0052 or the probiotic formulation in cultures of slow degraders. Further studies are needed to decipher the role of the host intestinal microbiota in the efficacy of these strains.
Collapse
Affiliation(s)
- Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Correspondence: (A.M.N.); (C.G.d.l.R.-G.); Tel.: +34-985-89-21-31 (A.M.N.)
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
| | - Naghmeh Nikpoor
- Rosell Institute for Microbiome and Probiotics, Montreal, QC H4P 2R2, Canada; (N.N.); (J.A.); (T.A.T.)
| | - Jeremie Auger
- Rosell Institute for Microbiome and Probiotics, Montreal, QC H4P 2R2, Canada; (N.N.); (J.A.); (T.A.T.)
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
| | - Isabel Cuesta
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
| | - Jorge R. Alvarez-Buylla
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
| | - Laura Mantecón
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Asturias, Spain
| | - Gonzalo Solís
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
| | - Thomas A. Tompkins
- Rosell Institute for Microbiome and Probiotics, Montreal, QC H4P 2R2, Canada; (N.N.); (J.A.); (T.A.T.)
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Correspondence: (A.M.N.); (C.G.d.l.R.-G.); Tel.: +34-985-89-21-31 (A.M.N.)
| |
Collapse
|
18
|
Singh RP, Niharika J, Kondepudi KK, Bishnoi M, Tingirikari JMR. Recent understanding of human milk oligosaccharides in establishing infant gut microbiome and roles in immune system. Food Res Int 2022; 151:110884. [PMID: 34980411 DOI: 10.1016/j.foodres.2021.110884] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Human milk oligosaccharides (HMOs) are complex sugars with distinctive structural diversity present in breast milk. HMOs have various functional roles to play in infant development starting from establishing the gut microbiome and immune system to take it up to the mature phase. It has been a major energy source for human gut microbes that confer positive benefits on infant health by directly interacting through intestinal cells and generating short-chain fatty acids. It has recently become evident that each species of Bifidobacterium and other genera which are resident of the infant gut employ distinct molecular mechanisms to capture and digest diverse structural HMOs to avoid competition among themselves and successfully maintain gut homeostasis. HMOs also directly modulate gut immune responses and can decoy receptors of pathogenic bacteria and viruses, inhibiting their binding on intestinal cells, thus preventing the emergence of a disease. This review provides a critical understanding of how different gut bacteria capture and utilize selective sugars from the HMO pool and how different structural HMOs protect infants from infectious diseases.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Laboratory of Gut Glycobiology, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India.
| | - Jayashree Niharika
- Laboratory of Gut Glycobiology, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Jagan Mohan Rao Tingirikari
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh 534101, India
| |
Collapse
|
19
|
Influence of 2'-Fucosyllactose on the Microbiota Composition and Metabolic Activity of Fecal Cultures from Breastfed and Formula-Fed Infants at Two Months of Age. Microorganisms 2021; 9:microorganisms9071478. [PMID: 34361914 PMCID: PMC8304384 DOI: 10.3390/microorganisms9071478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/22/2023] Open
Abstract
Although breast milk is considered the gold standard of nutrition for infant feeding, some circumstances may make breastfeeding difficult. Several commercial milk preparations include synthetic human milk oligosaccharides (HMOs) in their composition. However, the effect of HMOs on the establishment of the intestinal microbiota remains incompletely understood. Independent batch fermentations were performed with feces from six full-term infant donors of two months of age (three breastfed and three formula-fed, exclusively) in the presence of 2′fucosyllactose (2′FL), one of the most abundant HMOs in human milk. Microbiota composition was analyzed by 16S rRNA gene sequencing at baseline and at 24 h of incubation. The 2′FL consumption, gas accumulation, and levels of different metabolites were determined by chromatography. Microbiota profiles at baseline were clearly influenced by the mode of feeding and by the intrinsic ability of microbiotas to degrade 2′FL. The 2′FL degradation rate clustered fecal cultures into slow and fast degraders, regardless of feeding type, this being a determinant factor influencing the evolution of the microbiota during incubation, although the low number of donors precludes drawing sound conclusions. More studies are needed to decipher the extent to which the early intervention with HMOs could influence the microbiota as a function of its ability to utilize 2′FL.
Collapse
|
20
|
Verkhnyatskaya SA, Kong C, Klostermann CE, Schols HA, de Vos P, Walvoort MTC. Digestion, fermentation, and pathogen anti-adhesive properties of the hMO-mimic di-fucosyl-β-cyclodextrin. Food Funct 2021; 12:5018-5026. [PMID: 33954318 PMCID: PMC8185958 DOI: 10.1039/d1fo00830g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022]
Abstract
Human milk is widely acknowledged as the best food for infants, and that is not just because of nutritional features. Human milk also contains a plethora of bioactive molecules, including a large set of human milk oligosaccharides (hMOs). Especially fucosylated hMOs have received attention for their anti-adhesive effects on pathogens, preventing attachment to the intestine and infection. Because hMOs are generally challenging to produce in sufficient quantities to study and ultimately apply in (medical) infant formula, novel compounds that are inspired by hMO structures (so-called "mimics") are interesting compounds to produce and evaluate for their biological effects. Here we present our thorough study into the digestion, fermentation and anti-adhesive capacity of the novel compound di-fucosyl-β-cyclodextrin (DFβCD), which was inspired by the molecular structures of hMOs. We establish that DFβCD is not digested by α-amylase and also resistant to fermentation by microbial enzymes from a 9 month-old infant inoculum. In addition, we reveal that DFβCD blocks adhesion of enterotoxigenic E. coli (ETEC) to Caco-2 cells, especially when DFβCD is pre-incubated with ETEC prior to addition to the Caco-2 cells. This suggests that DFβCD functions through a decoy effect. We expect that our results inspire the generation and biological evaluation of other fucosylated hMOs and mimics, to obtain a comprehensive overview of the anti-adhesive power of fucosylated glycans.
Collapse
Affiliation(s)
| | - Chunli Kong
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
21
|
Synthesis of fucosylated oligosaccharides with α-L-fucosidase from Thermotoga maritima immobilized on Eupergit ® CM. Extremophiles 2021; 25:311-317. [PMID: 33938983 DOI: 10.1007/s00792-021-01230-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022]
Abstract
Fucosylated oligosaccharides present in human milk perform various biological functions that benefit infants' health. These compounds can be also obtained by enzymatic synthesis. In this work, the effect of the immobilization of α-L-fucosidase from Thermotoga maritima on the synthesis of fucosylated oligosaccharides was studied, using lactose and 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as acceptor and donor substrates, respectively, and Eupergit® CM as an immobilization support. The enzyme was immobilized with 90% efficiency at pH 8 and ionic strength of 1.5 M. Immobilization decreased enzyme affinity for the donor substrate as shown by a 1.5-times higher KM value and a 22-times decrease of the kcat/KM ratio in comparison to the unbound enzyme. In contrast, no effect was observed on the synthesis/hydrolysis ratio (rs/rh) when α-L-fucosidase was immobilized. Also, the effect of initial concentration of substrates was studied. An increase of the acceptor concentration improved the yields of fucosylated oligosaccharides regardless enzyme immobilization. The synthesis yields of 38.9 and 40.6% were obtained using Eupergit® CM-bound or unbound enzyme, respectively, and 3.5 mM pNP-Fuc and 146 mM lactose. In conclusion, α-L-fucosidase from Thermotoga maritima was efficiently immobilized on Eupergit® CM support without affecting the synthesis of fucosylated oligosaccharides.
Collapse
|
22
|
Augustyniak D, Kramarska E, Mackiewicz P, Orczyk-Pawiłowicz M, Lundy FT. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int J Mol Sci 2021; 22:ijms22073658. [PMID: 33915818 PMCID: PMC8036953 DOI: 10.3390/ijms22073658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-375-6296
| | - Eliza Kramarska
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, 80134 Napoli, Italy
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | | | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
23
|
Zhang A, Sun L, Bai Y, Yu H, McArthur JB, Chen X, Atsumi S. Microbial production of human milk oligosaccharide lactodifucotetraose. Metab Eng 2021; 66:12-20. [PMID: 33812022 DOI: 10.1016/j.ymben.2021.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
Human milk oligosaccharides (HMOs) are potent bioactive compounds that modulate neonatal health and are of interest for development as potential drug treatments for adult diseases. The potential of these molecules, their limited access from natural sources, and difficulty in large-scale isolation of individual HMOs for studies and applications have motivated the development of chemical syntheses and in vitro enzymatic catalysis strategies. Whole cell biocatalysts are emerging as alternative self-regulating production platforms that have the potential to reduce the cost for enzymatic synthesis of HMOs. Whole cell biocatalysts for the production of short-chained, linear and small monofucosylated HMOs have been reported but those for fucosylated structures with higher complexity have not been explored. In this study, we established a strategy for producing a difucosylated HMO, lactodifucotetraose (LDFT), from lactose and L-fucose in Escherichia coli. We used two bacterial fucosyltransferases with narrow acceptor selectivity to drive the sequential fucosylation of lactose and intermediate 2'-fucosyllactose (2'-FL) to produce LDFT. Deletion of substrate degradation pathways that decoupled cellular growth from LDFT production, enhanced expression of native substrate transporters and modular induction of the genes in the LDFT biosynthetic pathway allowed complete conversion of lactose into LDFT and minor quantities of the side product 3-fucosyllactose (3-FL). Overall, 5.1 g/L of LDFT was produced from 3 g/L lactose and 3 g/L L-fucose in 24 h. Our results demonstrate promising applications of engineered microbial biosystems for the production of multi-fucosylated HMOs for biochemical studies.
Collapse
Affiliation(s)
- Angela Zhang
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Lei Sun
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA; School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
24
|
Van den Abbeele P, Sprenger N, Ghyselinck J, Marsaux B, Marzorati M, Rochat F. A Comparison of the In Vitro Effects of 2'Fucosyllactose and Lactose on the Composition and Activity of Gut Microbiota from Infants and Toddlers. Nutrients 2021; 13:726. [PMID: 33668823 PMCID: PMC7996240 DOI: 10.3390/nu13030726] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Because of the recognized health benefits of breast milk, it is recommended as the sole nutrition source during the first 6 months of life. Among the bioactive components are human milk oligosaccharides (HMOs) that exert part of their activity via the gut microbiota. Here, we investigated the gut microbiota fermentation of HMO 2'fucosyllactose (2'-FL), using two in vitro models (48 h fecal incubations and the long-term mucosal simulator of the human intestinal microbial ecosystem [M-SHIME®]) with fecal samples from 3-month-old breastfed (BF) infants as well as 2-3 year old toddlers. The short-term model allowed the screening of five donors for each group and provided supportive data for the M-SHIME® study. A key finding was the strong and immediate increase in the relative abundance of Bifidobacteriaceae following 2'-FL fermentation by both the BF infant and toddler microbiota in the M-SHIME®. At the metabolic level, while decreasing branched-chain fatty acids, 2'-FL strongly increased acetate production together with increases in the health-related propionate and butyrate whilst gas production only mildly increased. Notably, consistently lower gas production was observed with 2'-FL fermentation as compared to lactose, suggesting that reduced discomfort during the dynamic microbiome establishment in early life may be an advantage along with the bifidogenic effect observed.
Collapse
Affiliation(s)
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., Vers-Chez-Les-Blanc, CH-1000 Lausanne, Switzerland;
| | - Jonas Ghyselinck
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (P.V.d.A.); (J.G.); (B.M.)
| | - Benoît Marsaux
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (P.V.d.A.); (J.G.); (B.M.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Massimo Marzorati
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (P.V.d.A.); (J.G.); (B.M.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Florence Rochat
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., Vers-Chez-Les-Blanc, CH-1000 Lausanne, Switzerland;
| |
Collapse
|
25
|
Kwan SH, Wan-Ibrahim WI, Juvarajah T, Fung SY, Abdul-Rahman PS. Isolation and identification of O- and N-linked glycoproteins in milk from different mammalian species and their roles in biological pathways which support infant growth. Electrophoresis 2020; 42:233-244. [PMID: 33085102 DOI: 10.1002/elps.202000142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/07/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023]
Abstract
Milk serves as the sole nutrition for newborns, as well as a medium for the transfer of immunological components from the mother to the baby. This study reveals different glycoprotein profiles obtained from human, bovine, and caprine milk and their potential roles in supporting infant growth. Proteins from these three milk samples are separated and analyzed using two-dimensional gel electrophoresis (2-DE). Glycosylated proteins from all samples are enriched by affinity chromatography using lectins from the seeds of Artocarpus integer before analysis using LC/MS-QTOF. The glycoproteome profiling demonstrates that glycosylated proteins are higher in caprine milk compared to other samples. Analysis using LC/MS-QTOF identified 42 O-glycosylated and 56 N-glycosylated proteins, respectively. Among those identified, human milk has 17 glycoproteins, which are both O- and N-glycosylated, whereas caprine and bovine have 10 and 1, respectively. Only glycoproteins from human milk have shown positive matching to important human biological pathways, such as vesicle-mediated transport, immune system and hemostasis pathways. Human milk remains unique for human babies with the presence of antibodies in the form of immunoglobulins that are lacking in ruminant milk proteomes.
Collapse
Affiliation(s)
- Soon Hong Kwan
- Medical Biotechnology Laboratory, Central Research Laboratories, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wan Izlina Wan-Ibrahim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thaneswari Juvarajah
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Universiti Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Puteri Shafinaz Abdul-Rahman
- Medical Biotechnology Laboratory, Central Research Laboratories, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Universiti Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|