1
|
Tejero Pérez A, Kapravelou G, Porres Foulquie JM, López Jurado Romero de la Cruz M, Martínez Martínez R. Potential benefits of microalgae intake against metabolic diseases: beyond spirulina-a systematic review of animal studies. Nutr Rev 2024; 82:872-891. [PMID: 37643736 DOI: 10.1093/nutrit/nuad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
CONTEXT Microalgae are a diverse source of bioactive molecules, such as polyphenols, carotenoids, and omega-3 fatty acids, with beneficial properties in biomarkers of metabolic diseases. Unlike the rest of the microalgae genera, Arthrospira sp., commonly called spirulina, has been widely studied. OBJECTIVE This review aims to describe the current knowledge about microalgae, besides spirulina, focusing on their beneficial properties against metabolic diseases. DATA SOURCES A systematic research of MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2012. In vivo animal studies including microalgae consumption, except for spirulina, that significantly improved altered biomarkers related to metabolic diseases were included. These biomarkers included body weight/composition, glucose metabolism, lipid metabolism, oxidative damage, inflammation markers, and gut microbiota. DATA EXTRACTION After the literature search and the implementation of inclusion and exclusion criteria, 37 studies were included in the revision out of the 132 results originally obtained after the application of the equation on the different databases. DATA ANALYSIS Data containing 15 microalgae genera were included reporting on a wide range of beneficial results at different levels, including a decrease in body weight and changes in plasma levels of glucose and lipoproteins due to molecular alterations such as those related to gene expression regulation. The most reported beneficial effects were related to gut microbiota and inflammation followed by lipid and glucose metabolism and body weight/composition. CONCLUSIONS Microalgae intake improved different altered biomarkers due to metabolic diseases and seem to have potential in the design of enriched foodstuffs or novel nutraceuticals. Nevertheless, to advance to clinical trials, more thorough/detailed studies should be performed on some of the microalgae genera included in this review to collect more information on their molecular mechanisms of action.
Collapse
Affiliation(s)
- Adrian Tejero Pérez
- Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Faculty of Medicine, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Jesús María Porres Foulquie
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - María López Jurado Romero de la Cruz
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| |
Collapse
|
2
|
Yamashita Y, Takeuchi T, Endo Y, Goto A, Uno M, Sakaki S, Yamaguchi Y, Takenaka H, Yamashita H. The effect of Dunaliella tertiolecta supplementation on diet-induced obesity in UCP1-deficient mice. Biosci Biotechnol Biochem 2023; 88:16-25. [PMID: 37777845 DOI: 10.1093/bbb/zbad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
We previously demonstrated that dietary supplementation with Dunaliella tertiolecta (DT) increases uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) and improves diet-induced obesity (DIO) in C57BL/6 J mice at thermoneutrality (30 °C). Here, we investigated whether DT improves DIO in a thermoneutral UCP1-deficient (KO) animal. KO mice were fed a high-fat diet supplemented with DT for 12 weeks. Compared to control group without DT, body weight was significantly reduced in DT group with no difference in food intake. Dunaliella tertiolecta-supplemented mice exhibited lower adiposity and well-maintained multilocular morphology in BAT, in which a significant increase in gene expression of PR domain containing 16 was detected in DT group compared to control group. Moreover, increase in UCP2 level and/or decrease in ribosomal protein S6 phosphorylation were detected in adipose tissues of DT group relative to control group. These results suggest that DT supplementation improves DIO by stimulating UCP1-independent energy dissipation at thermoneutrality.
Collapse
Affiliation(s)
- Yukari Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Tamaki Takeuchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Yuki Endo
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Ayumi Goto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Misa Uno
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Setsuko Sakaki
- MAC Gifu Research Institute, MicroAlgae Corporation , Gifu, Japan
| | - Yuji Yamaguchi
- MAC Gifu Research Institute, MicroAlgae Corporation , Gifu, Japan
| | | | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
3
|
Miranda CS, Silva-Veiga FM, Santana-Oliveira DA, Fernandes-da-Silva A, Brito GC, Martins FF, Souza-Mello V. Chronic Excessive Fructose Intake Maximizes Brown Adipocyte Whitening but Causes Similar White Adipocyte Hypertrophy Than a High-Fat Diet in C57BL/6 Mice. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:435-444. [PMID: 35822844 DOI: 10.1080/07315724.2022.2062686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Objective: This study aimed to evaluate the differential role of a high-fat diet (HF) or high-fructose diet (HFRU) on white adipose tissue and brown adipose tissue remodeling in C57BL/6 mice.Methods: The animals were randomly assigned to receive HF (50% of energy as lipids), HFRU (50% of energy as fructose), or a control diet (C, 10% of energy as lipids) for 12 weeks. Results: The HF group became overweight from the 7th week onwards, but both HF and HFRU groups showed hyperinsulinemia, oral glucose intolerance, and adverse adipose tissue remodeling. HF and HFRU groups showed interscapular brown adipose tissue whitening, tough the reduced QA [nuclei] suggested maximized brown adipocyte dysfunction due to the HFRU diet. In contrast, HF and HFRU diets exerted similar effects upon subcutaneous white adipocytes, with a similar average cross-sectional area. Immunohistochemistry confirmed the whitening enhancement with reduced UCP1 immunodensity in the HFRU group. Conclusion: In conclusion, HF and HFRU diets had indistinguishable effects upon white adipocyte morphology, but the HFRU diet provoked a more pronounced whitening than the HF diet after a 12-week protocol. These results point to the silent and harmful impact that excessive fructose has upon the metabolism of lean mice.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabrielle Carvalho Brito
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Liu XM, Li Z, Xie XR, Wang JQ, Qiao X, Qiao X, Xie CZ, Xu JY. Combination of DNA Damage, Autophagy, and ERK Inhibition: Novel Evodiamine-Inspired Multi-Action Pt(IV) Prodrugs with High-Efficiency and Low-Toxicity Antitumor Activity. J Med Chem 2023; 66:1852-1872. [PMID: 36715603 DOI: 10.1021/acs.jmedchem.2c01660] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exploring multi-targeting chemotherapeutants with advantages over single-targeting agents and drug combinations is of great significance in drug discovery. Herein, we employed phytogenic evodiamine (EVO) and conventional Pt(II) drugs to design and synthesize multi-target EVO-Pt(IV) anticancer prodrugs (4-14). Among them, compound 10 exhibited a 118-fold enhancement in the IC50 value compared to cisplatin and low toxicity to normal cells. Further studies proved that 10 significantly enhanced intracellular Pt accumulation and DNA damage, perturbed mitochondrial membrane potential, inhibited cell migration and invasion, upregulated reactive oxygen species levels, and induced apoptosis and autophagic cell death. Molecular docking assay revealed that 10 fits perfectly into the extracellular signal-regulated protein kinase (ERK)-1 pocket, which was verified to produce profound ERK suppression. Most strikingly, compound 10 exhibited superior in vivo antitumor efficiency and effectively attenuated systemic toxicity. Our results emphasize that functionalizing platinum drugs with the multi-target EVO could generate synergistically excellent anticancer activity with low toxicity and decreased resistance, which may represent a brand-new cancer therapy modality.
Collapse
Affiliation(s)
- Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Li
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin-Ru Xie
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Qian Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cheng-Zhi Xie
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
5
|
Du K, Chen GH, Bai X, Chen L, Hu SQ, Li YH, Wang GZ, He JW, Lai SJ. Dynamics of transcriptome and chromatin accessibility revealed sequential regulation of potential transcription factors during the brown adipose tissue whitening in rabbits. Front Cell Dev Biol 2022; 10:981661. [PMID: 36225319 PMCID: PMC9548568 DOI: 10.3389/fcell.2022.981661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Brown adipose tissue (BAT) represents a valuable target for treating obesity in humans. BAT losses of thermogenic capacity and gains a “white adipose tissue-like (WAT-like)” phenotype (BAT whitening) under thermoneutral environments, which could lead to potential low therapy responsiveness in BAT-based obesity treatments. However, the epigenetic mechanisms of BAT whitening remain largely unknown. In this study, BATs were collected from rabbits at day0 (D0), D15, D85, and 2 years (Y2). RNA-sequencing (RNA-seq) and the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) were performed to investigate transcriptome and chromatin accessibility of BATs at the four whitening stages, respectively. Our data showed that many genes and chromatin accessible regions (refer to as “peaks”) were identified as significantly changed during BAT whitening in rabbits. The BAT-selective genes downregulated while WAT-selective genes upregulated from D0 to Y2, and the de novo lipogenesis-related genes reached the highest expression levels at D85. Both the highly expressed genes and accessible regions in Y2 were significantly enriched in immune response-related signal pathways. Analysis of different relationships between peaks and their nearby genes found an increased proportion of the synchronous changes between chromatin accessibility and gene expression during BAT whitening. The synergistic changes between the chromatin accessibility of promoter and the gene expression were found in the key adipose genes. The upregulated genes which contained increased peaks were significantly enriched in the PI3K-Akt signaling pathway, steroid biosynthesis, TGF-beta signaling pathway, osteoclast differentiation, and dilated cardiomyopathy. Moreover, the footprinting analysis suggested that sequential regulation of potential transcription factors (TFs) mediated the loss of thermogenic phenotype and the gain of a WAT-like phenotype of BAT. In conclusion, our study provided the transcriptional and epigenetic frameworks for understanding BAT whitening in rabbits for the first time and might facilitate potential insights into BAT-based obesity treatments.
Collapse
Affiliation(s)
- Kun Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guan-He Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shen-Qiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan-Hong Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guo-Ze Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jing-Wei He
- Sichuan Animal Husbandry Station, Chengdu, China
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Song-Jia Lai,
| |
Collapse
|
6
|
Dai Y, Zhu W, Zhou J, Shen T. The combination of berberine and evodiamine ameliorates high-fat diet-induced non-alcoholic fatty liver disease associated with modulation of gut microbiota in rats. Braz J Med Biol Res 2022; 55:e12096. [PMID: 35584453 PMCID: PMC9113531 DOI: 10.1590/1414-431x2022e12096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered to be a manifestation of hepatic metabolic syndrome. Some studies on the pathogenesis of NAFLD by targeting gut microbiota have attracted wide attention. Previous studies have demonstrated the positive effects of berberine and evodiamine on metabolic diseases and gut microbiota dysbiosis. However, it is not known whether the combination of berberine and evodiamine (BE) can prevent the development of high-fat diet (HFD)-induced NAFLD. Therefore, we aimed to explore the protective effects of BE on the development of HFD-induced NAFLD from the perspective of the gut microbiota. Gut microbiota profiles were established by high throughput sequencing of the bacterial 16S ribosomal RNA gene. The effects of BE on liver and intestinal tissue, intestinal barrier integrity, and hepatic inflammation were also investigated. The results showed that the abundance and diversity of gut microbiota were enriched by BE treatment, with an increase in beneficial bacteria, such as Lactobacillus, Ruminococcus, and Prevotella, and a decrease in pathogenic bacteria such as Fusobacterium and Lachnospira. In addition, BE effectively improved liver fat accumulation and tissue damage, inhibited the apoptosis of intestinal epithelial cells, increased the contents of intestinal tight junction proteins, and decreased the expression of pro-inflammatory factors. Consequently, BE treatment could be an effective and alternative strategy for alleviating NAFLD by modulating gut microbiota and safeguarding the intestinal barrier.
Collapse
Affiliation(s)
- Yufan Dai
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenyu Zhu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Tao Shen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|