1
|
Rühle J, Schwarz J, Dietz S, Rückle X, Schoppmeier U, Lajqi T, Poets CF, Gille C, Köstlin-Gille N. Impact of perinatal administration of probiotics on immune cell composition in neonatal mice. Pediatr Res 2024; 96:1645-1654. [PMID: 38278847 PMCID: PMC11772233 DOI: 10.1038/s41390-024-03029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Newborns and especially preterm infants are much more susceptible to infections than adults. The pathogens causing infections in newborns are often detectable in the intestinal flora of affected children even before disease onset. Therefore, it seems reasonable to prevent dysbiosis in newborns and preterm infants. An approach followed in many neonatal intensive care units (NICUs) is to prevent infections in preterm infants with probiotics however their mechanisms of action of probiotics are incompletely understood. Here, we investigated the effect of perinatal probiotic exposure on immune cells in newborn mice. METHODS Pregnant mice were orally treated with a combination of Lactobacillus acidophilus and Bifidobacterium bifidum (Infloran®) from mid-pregnancy until the offspring were harvested. Immune cell composition in organs of the offspring were analyzed by flow cytometry. RESULTS Perinatal probiotic exposure had profound effects on immune cell composition in the intestine, liver and lungs of newborn mice with reduction of myeloid and B cells and induction of T cells in the probiotic treated animals' organs at weaning. Furthermore, probiotic exposure had an effect on T cell development in the thymus. CONCLUSION Our results contribute to a better understanding of the interaction of probiotics with the developing immune system. IMPACT probiotics have profound effects on immune cell composition in intestines, livers and lungs of newborn mice. probiotics modulate T cell development in thymus of newborn mice. effects of probiotics on neonatal immune cells are particularly relevant in transition phases of the microbiome. our results contribute to a better understanding of the mechanisms of action of probiotics in newborns.
Collapse
Affiliation(s)
- Jessica Rühle
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Julian Schwarz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Stefanie Dietz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Xenia Rückle
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Ulrich Schoppmeier
- Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Christian F Poets
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany.
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany.
| |
Collapse
|
2
|
Tantibhadrasapa A, Li S, Buddhasiri S, Sukjoi C, Mongkolkarvin P, Boonpan P, Wongpalee SP, Paenkaew P, Sutheeworapong S, Nakphaichit M, Nitisinprasert S, Hsieh MH, Thiennimitr P. Probiotic Limosilactobacillus reuteri KUB-AC5 decreases urothelial cell invasion and enhances macrophage killing of uropathogenic Escherichia coli in vitro study. Front Cell Infect Microbiol 2024; 14:1401462. [PMID: 39091675 PMCID: PMC11291381 DOI: 10.3389/fcimb.2024.1401462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Bacterial urinary tract infections (UTI) are among the most common infectious diseases worldwide. The rise of multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) UTI cases is a significant threat to healthcare systems. Several probiotic bacteria have been proposed as an alternative to combat MDR UTI. Lactic acid bacteria in the genus Limosilactobacillus are some of the most studied and used probiotics. However, strain-specific effects play a critical role in probiotic properties. L. reuteri KUB-AC5 (AC5), isolated from the chicken gut, confers antimicrobial and immunobiotic effects against some human pathogens. However, the antibacterial and immune modulatory effects of AC5 on UPEC have never been explored. Methods Here, we investigated both the direct and indirect effects of AC5 against UPEC isolates (UTI89, CFT073, and clinical MDR UPEC AT31) in vitro. Using a spot-on lawn, agar-well diffusion, and competitive growth assays, we found that viable AC5 cells and cell-free components of this probiotic significantly reduced the UPEC growth of all strains tested. The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC. Results and discussion Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. Pretreatment of UPEC-infected murine macrophage RAW264.7 cells with viable AC5 (multiplicity of infection, MOI = 1) for 24 hours enhanced macrophage-killing activity and increased proinflammatory (Nos2, Il6, and Tnfa) and anti-inflammatory (Il10) gene expression. These findings indicate the gut-derived AC5 probiotic could be a potential urogenital probiotic against MDR UTI.
Collapse
Affiliation(s)
| | - Songbo Li
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Key Laboratory of Tumor Immunopathology, Youjiang Medical University for Nationalities, Baise, China
| | - Songphon Buddhasiri
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Panupon Mongkolkarvin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattarapon Boonpan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prasobsook Paenkaew
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Michael H. Hsieh
- Department of Urology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Zoghi S, Sadeghpour Heravi F, Nikniaz Z, Shirmohamadi M, Moaddab SY, Ebrahimzadeh Leylabadlo H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng Life Sci 2024; 24:2300070. [PMID: 38708416 PMCID: PMC11065333 DOI: 10.1002/elsc.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 05/07/2024] Open
Abstract
Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
4
|
Hong GH, Lee SY, Kim IA, Suk J, Baeg C, Kim JY, Lee S, Kim KJ, Kim KT, Kim MG, Park KY. Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study. Nutrients 2024; 16:1339. [PMID: 38732587 PMCID: PMC11085399 DOI: 10.3390/nu16091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Heat-treated Lactiplantibacillus plantarum nF1 (HT-nF1) increases immune cell activation and the production of various immunomodulators (e.g., interleukin (IL)-12) as well as immunoglobulin (Ig) G, which plays an important role in humoral immunity, and IgA, which activates mucosal immunity. To determine the effect of HT-nF1 intake on improving immune function, a randomized, double-blind, placebo-controlled study was conducted on 100 subjects with normal white blood cell counts. The HT-nF1 group was administered capsules containing 5 × 1011 cells of HT-nF1 once a day for 8 weeks. After 8 weeks of HT-nF1 intake, significant changes in IL-12 were observed in the HT-nF1 group (p = 0.045). In particular, the change in natural killer (NK) cell activity significantly increased in subjects with low secretory (s) IgA (≤49.61 μg/mL) and low NK activity (E:T = 10:1) (≤3.59%). These results suggest that HT-nF1 has no safety issues and improves the innate immune function by regulating T helper (Th)1-related immune factors. Therefore, we confirmed that HT-nF1 not only has a positive effect on regulating the body's immunity, but it is also a safe material for the human body, which confirms its potential as a functional health food ingredient.
Collapse
Affiliation(s)
- Geun-Hye Hong
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - So-Young Lee
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - In Ah Kim
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Jangmi Suk
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Chaemin Baeg
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (J.Y.K.); (S.L.)
| | - Sehee Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (J.Y.K.); (S.L.)
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Ki Tae Kim
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - Min Gee Kim
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - Kun-Young Park
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| |
Collapse
|
5
|
Revankar NA, Negi PS. Biotics: An emerging food supplement for health improvement in the era of immune modulation. Nutr Clin Pract 2024; 39:311-329. [PMID: 37466413 DOI: 10.1002/ncp.11036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
The involvement of the commensal microbiota in immune function is a multifold process. Biotics, such as probiotics, prebiotics, synbiotics, and paraprobiotics, have been subjected to animal and human trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in overall health. In recent years, studies on human microbiome interaction have established the multifarious role of biotics in maintaining overall health. The consumption of biotics has been extensively reported to help in maintaining microbial diversity, enhancing gut-associated mucosal immune homeostasis, and providing protection against a wide range of lifestyle disorders. However, the establishment of biotics as an alternative therapy for a range of health conditions is yet to be ascertained. Despite the fact that scientific literature has demonstrated the correlation between biotics and immune modulation, most in vivo and in vitro reports are inconclusive on the dosage required. This review provides valuable insights into the immunomodulatory effects of biotics consumption based on evidence obtained from animal models and clinical trials. Furthermore, we highlight the optimal dosages of biotics that have been reported to deliver maximum health benefits. By identifying critical research gaps, we have suggested a roadmap for future investigations to advance our understanding of the intricate crosstalk between biotics and immune homeostasis.
Collapse
Affiliation(s)
- Neelam A Revankar
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep S Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Morales F, Montserrat-de la Paz S, Leon MJ, Rivero-Pino F. Effects of Malnutrition on the Immune System and Infection and the Role of Nutritional Strategies Regarding Improvements in Children's Health Status: A Literature Review. Nutrients 2023; 16:1. [PMID: 38201831 PMCID: PMC10780435 DOI: 10.3390/nu16010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Malnutrition refers to a person's status as under- or overnourished, and it is usually associated with an inflammation status, which can subsequently imply a different health status, as the risk of infection is increased, along with a deterioration of the immune system. Children's immune systems are generally more susceptible to problems than adults. In the situation of malnutrition, because malnourished children's immune systems are compromised, they are more likely to die. However, little is known about the underlying mechanism of altered immune functioning and how it relates to starvation. Nutritional interventions have been reported as cost-effective strategies to prevent or treat the development of malnourishment, considering the link between food intake and health, especially in children, and also the susceptibility of this population to diseases and how their health status during childhood might affect their long-term physiological growth. The ingestion of specific nutrients (e.g., vitamins or oligoelements) has been reported to contribute to the proper functioning of children's immune systems. In this review, we aim to describe the basis of malnutrition and how this is linked to the immune system, considering the role of nutrients in the modulation of the immune system and the risk of infection that can occur in these situations in children, as well as to identify nutritional interventions to improve their health.
Collapse
Affiliation(s)
- Fátima Morales
- Department of Preventive Medicine and Public Health, School of Medicine, University of Seville, 41009 Sevilla, Spain;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Maria J. Leon
- Department of Microbiology and Parasitology, School of Pharmacy, University of Seville, C. Profesor Garcia Gonzalez 2, 41012 Seville, Spain;
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| |
Collapse
|
7
|
Assad SE, Fragomeno M, Rumbo M, Minnaard J, Pérez PF. The immunomodulating effect of bifidobacteria is modified by the anticoagulant acenocoumarol. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Rückle X, Rühle J, Judd L, Hebel J, Dietz S, Poets CF, Gille C, Köstlin-Gille N. Different probiotic strains alter human cord blood monocyte responses. Pediatr Res 2022:10.1038/s41390-022-02400-5. [PMID: 36476746 DOI: 10.1038/s41390-022-02400-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Probiotics have a protective effect on various diseases. In neonatology, they are predominantly used to prevent necrotising enterocolitis (NEC), a severe inflammatory disease of the neonatal intestine. The mechanisms by which probiotics act are diverse; little is known about their direct effect on neonatal immune cells. METHODS In this study, we investigated the effect of probiotics on the functions of neonatal monocytes in an in vitro model using three different strains (Lactobacillus rhamnosus (LR), Lactobacillus acidophilus (LA) and Bifidobacterium bifidum (BB)) and mononuclear cells isolated from cord blood. RESULTS We show that stimulation with LR induces proinflammatory effects in neonatal monocytes, such as increased expression of surface molecules involved in monocyte activation, increased production of pro-inflammatory and regulatory cytokines and increased production of reactive oxygen species (ROS). Similar effects were observed when monocytes were stimulated simultaneously with LPS. Stimulation with LA and BB alone or in combination also induced cytokine production in monocytes, with BB showing the least effects. CONCLUSIONS Our results suggest that probiotics increase the defence functions of neonatal monocytes and thus possibly favourably influence the newborn's ability to fight infections. IMPACT Probiotics induce a proinflammatory response in neonatal monocytes in vitro. This is a previously unknown mechanism of how probiotics modulate the immune response of newborns. Probiotic application to neonates may increase their ability to fight off infections.
Collapse
Affiliation(s)
- Xenia Rückle
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Jessica Rühle
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Leonie Judd
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Janine Hebel
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Stefanie Dietz
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany.,Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Christian F Poets
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany. .,Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany.
| |
Collapse
|
9
|
Wu Y, Zhang M, Ni T, Zhang X, Wang R, Zhu L, Du J, Zhu Y, Zhao Y, Yang Y. Prognosis of systemic inflammation at an early stage of cirrhosis using the monocyte-to-lymphocyte ratio during malnutrition risk screening: a prospective cohort study. Postgrad Med 2022; 134:801-809. [PMID: 35929972 DOI: 10.1080/00325481.2022.2110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine whether the monocyte-to-lymphocyte ratio (MLR), as a systemic inflammation index, predicts malnutrition risk during the early stages of cirrhosis. METHODS We conducted a single-center prospective cohort study, enrolling patients from June 2016 to September 2020. The patients underwent malnutrition risk assessments upon admission. The patients were classified into five clinical stages according to portal hypertension. The malnutrition risk was scored using the Royal Free Hospital-Nutritional Prioritizing Tool (RFH-NPT) and validated by the Nutritional Risk Screening 2002 (NRS-2002) or Liver Disease Undernutrition Screening Tool (LDUST). Routine clinical laboratory measurements were performed to calculate the MLR, Child-Turcotte-Pugh (CTP) class, and model for end-stage liver disease (MELD) score. The patients were followed up for 2 years. RESULTS Among the 154 patients with cirrhosis, 60 had compensated cirrhosis and 94 had decompensated cirrhosis. The optimal cutoff value of the MLR, >0.4, was effective in predicting malnutrition related to death or liver transplantation. Those with a high malnutrition risk defined by the NRS-2002 or RFH-NPT had a higher MLR than those with a low malnutrition risk. For patients with class A CTP cirrhosis or a MELD score of <10, an MLR cutoff of <0.4 significantly distinguished more patients with a low malnutrition risk than those with a high malnutrition risk. Both the RFH-NPT score and MLR increased significantly across the decompensated cirrhosis substages. Interestingly, the MLR exhibited a positive correlation with the RFH-NPT score until varices appeared, but the correlation was the highest at the substage of a history of variceal bleeding (r = 0.714, P = 0.009). Multivariable analysis demonstrated that an MLR of >0.4 was an independent factor for malnutrition risk by screening with the RFH-NPT, and this was confirmed using the LDUST and NRS-2002. CONCLUSION Immune-related inflammatory dysfunction predicts malnutrition risk during the early stages of cirrhosis.
Collapse
Affiliation(s)
- Yuchao Wu
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengmeng Zhang
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianzhi Ni
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Zhang
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruojing Wang
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Du
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yage Zhu
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingren Zhao
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Yang
- Department of Infectious Diseases and Hepatopathy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Kumar H, Schütz F, Bhardwaj K, Sharma R, Nepovimova E, Dhanjal DS, Verma R, Kumar D, Kuča K, Cruz-Martins N. Recent advances in the concept of paraprobiotics: Nutraceutical/functional properties for promoting children health. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34748444 DOI: 10.1080/10408398.2021.1996327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Probiotics consumption has been associated with various health promoting benefits, including disease prevention and even treatment by modulating gut microbiota. Contrary to this, probiotics may also overstimulate the immune system, trigger systemic infections, harmful metabolic activities, and promote gene transfer. In children, the fragile immune system and impaired intestinal barrier may boost the occurrence of adverse effects following probiotics' consumption. To overcome these health challenges, the key focus has been shifted toward non-viable probiotics, also called paraprobiotics. Cell wall polysaccharides, peptidoglycans, surface proteins and teichoic acid present on cell's surface are involved in the interaction of paraprobiotics with the host, ultimately providing health benefits. Among other benefits, paraprobiotics possess the ability to regulate innate and adaptive immunity, exert anti-adhesion, anti-biofilm, anti-hypertensive, anti-inflammatory, antioxidant, anti-proliferative, and antagonistic effects against pathogens, while also enhance clinical impact and general safety when administered in children in comparison to probiotics. Clinical evidence have underlined the paraprobiotics impact in children and young infants against atopic dermatitis, respiratory and gastrointestinal infections, in addition to be useful for immunocompromised individuals. Therefore, this review focuses on probiotics-related issues in children's health and also discusses the Lactobacillus and Bifidobacterium spp. qualities for qualifying as paraprobiotics and their role in promoting the children's health.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Francine Schütz
- Department of Medicine/Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Natália Cruz-Martins
- Department of Medicine/Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra, PRD, Portugal
| |
Collapse
|
11
|
Mantziari A, Salminen S, Szajewska H, Malagón-Rojas JN. Postbiotics against Pathogens Commonly Involved in Pediatric Infectious Diseases. Microorganisms 2020; 8:E1510. [PMID: 33008065 PMCID: PMC7601467 DOI: 10.3390/microorganisms8101510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
The Sustainable Development goals for 2020 included reducing all causes associated with infant and perinatal mortality in their priorities. The use of compounds with bioactive properties has been proposed as a therapeutic strategy due to their stimulating effect on the host's immune system. Additionally, biotherapeutic products such as postbiotics, tentatively defined as compounds produced during a fermentation process that support health and well-being, promote intestinal barrier integrity without posing considerable risks to children's health. Although this is a concept in development, there are increasing studies in the field of nutrition, chemistry, and health that aim to understand how postbiotics can help prevent different types of infections in priority populations such as minors under the age of five. The present review aims to describe the main mechanisms of action of postbiotics. In addition, it presents the available current evidence regarding the effects of postbiotics against pathogens commonly involved in pediatric infections. Postbiotics may constitute a safe alternative capable of modulating the cellular response and stimulating the host's humoral response.
Collapse
Affiliation(s)
- Anastasia Mantziari
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
| | - Hania Szajewska
- Department of Paediatrics at the Medical University of Warsaw, 02091 Warsaw, Poland;
| | - Jeadran Nevardo Malagón-Rojas
- Facultad de Medicina, Universidad El Bosque, 110121 Bogotá, Colombia;
- Instituto Nacional de Salud de Colombia, 111321 Bogotá, Colombia
| |
Collapse
|