1
|
Wang C, Cheng Z, Miao J, Xue X, Dong Y, Zhao L, Guo H, Wang J, Wang Z, Lu S, Fang G, Peng Y, Zhai Y, Zhang Z, Gao D, Wang Z, Wang P, Zhang L, Dunmall LSC, Wang J, Tang W, Li X, Ding Z, Zhao X, Li L, Lemoine NR, Wang Z, Tonge D, Tan W, Dong J, Wang Y. Genomic-transcriptomic analysis identifies the Syrian hamster as a superior animal model for human diseases. BMC Genomics 2025; 26:286. [PMID: 40122829 PMCID: PMC11931762 DOI: 10.1186/s12864-025-11393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The Syrian hamster (Mesocricetus auratus) has shown promise as a human diseases model, recapitulating features of different human diseases including COVID-19. However, the landscape of its genome and transcriptome has not been systematically dissected, restricting its potential applications. RESULTS Here we provide a complete analysis of the genome and transcriptome of the Syrian hamster and found that its lineage diverged from that of the Chinese hamster (Cricetulus griseus) around 29.4 million years ago. 21,387 protein-coding genes were identified, with 90.03% of the 2.56G base pair sequence being anchored to 22 chromosomes. Further comparison of the transcriptomes from 15 tissues of the Syrian hamster revealed that the Syrian hamster shares a pattern of alternative splicing modes more similar to humans, compared to rats and mice. An integrated genomic-transcriptomic analysis revealed that the Syrian hamster also has genetic and biological advantages as a superior animal model for cardiovascular diseases. Strikingly, several genes involved in SARS-COV-2 infection, including ACE2, present a higher homology with humans compared to other rodents and show the same function as their human counterparts. CONCLUSION The detailed molecular characterisation of the Syrian hamster in the present study opens a wealth of fundamental resources from this small rodent for future research into human disease pathology and treatment.
Collapse
Affiliation(s)
- Chuchu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhenguo Cheng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450000, People's Republic of China
| | - Xia Xue
- Henan Key Laboratory for Helicobacter Pylori and Digestive Tract Microecology, The Fifth Affiliated Hospital of Zhengzhou University; Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Science; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yunshu Dong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Li Zhao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, People's Republic of China
| | - Haoran Guo
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jianyao Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhizhong Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shuangshuang Lu
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Guangming Fang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ying Peng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yafei Zhai
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dongling Gao
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhimin Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Lirong Zhang
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jun Wang
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wenxue Tang
- Centre for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaowei Li
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhongren Ding
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaoyan Zhao
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ling Li
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Nicholas R Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA
| | - Daniel Tonge
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, People's Republic of China
| | - Jianzeng Dong
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Department of of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chao Yang District, Beijing, 100029, People's Republic of China.
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
2
|
Xiao Y, Yang D, Zhang H, Guo H, Liao Y, Lian C, Yao Y, Gao H, Huang Y. Theabrownin as a Potential Prebiotic Compound Regulates Lipid Metabolism via the Gut Microbiota, Microbiota-Derived Metabolites, and Hepatic FoxO/PPAR Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8506-8520. [PMID: 38567990 DOI: 10.1021/acs.jafc.3c08541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The dysregulation of lipid metabolism poses a significant health threat, necessitating immediate dietary intervention. Our previous research unveiled the prebiotic-like properties of theabrownin. This study aimed to further investigate the theabrownin-gut microbiota interactions and their downstream effects on lipid metabolism using integrated physiological, genomic, metabolomic, and transcriptomic approaches. The results demonstrated that theabrownin significantly ameliorated dyslipidemia, hepatic steatosis, and systemic inflammation induced by a high-fat/high-cholesterol diet (HFD). Moreover, theabrownin significantly improved HFD-induced gut microbiota dysbiosis and induced significant alterations in microbiota-derived metabolites. Additionally, the detailed interplay between theabrownin and gut microbiota was revealed. Analysis of hepatic transcriptome indicated that FoxO and PPAR signaling pathways played pivotal roles in response to theabrownin-gut microbiota interactions, primarily through upregulating hepatic Foxo1, Prkaa1, Pck1, Cdkn1a, Bcl6, Klf2, Ppara, and Pparg, while downregulating Ccnb1, Ccnb2, Fabp3, and Plin1. These findings underscored the critical role of gut-liver axis in theabrownin-mediated improvements in lipid metabolism disorders and supported the potential of theabrownin as an effective prebiotic compound for targeted regulation of metabolic diseases.
Collapse
Affiliation(s)
- Yue Xiao
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Dongmei Yang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Haoran Zhang
- The First Clinical College, Changzhi Medical College, Changzhi 046013, China
| | - Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ying Liao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Changhong Lian
- Changzhi Medical College Affiliated Heping Hospital, Changzhi 046099, China
| | - Yuqin Yao
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yina Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Loh CH, Kuo WW, Lin SZ, Shih CY, Lin PY, Situmorang JH, Huang CY. PKC-δ-dependent mitochondrial ROS attenuation is involved as 9-OAHSA combats lipoapotosis in rat hepatocytes induced by palmitic acid and in Syrian hamsters induced by high-fat high-cholesterol high-fructose diet. Toxicol Appl Pharmacol 2023; 470:116557. [PMID: 37207915 DOI: 10.1016/j.taap.2023.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a global concern, often undetected until reaching an advanced stage. Palmitic acid (PA) is a type of fatty acid that increases and leads to liver apoptosis in MAFLD. However, there is currently no approved therapy or compound for MAFLD. Recently, branched fatty acid esters of hydroxy fatty acids (FAHFAs), a group of bioactive lipids, have emerged as promising agents to treat associated metabolic diseases. This study utilizes one type of FAHFA, oleic acid ester of 9-hydroxystearic acid (9-OAHSA), to treat PA-induced lipoapoptosis in an in vitro MAFLD model using rat hepatocytes and a high-fat high-cholesterol high-fructose (HFHCHFruc) diet in Syrian hamsters. The results indicate that 9-OAHSA rescues hepatocytes from PA-induced apoptosis and attenuates lipoapoptosis and dyslipidemia in Syrian hamsters. Additionally, 9-OAHSA decreases the generation of mitochondrial reactive oxygen species (mito-ROS) and stabilizes the mitochondrial membrane potential in hepatocytes. The study also demonstrates that the effect of 9-OAHSA on mito-ROS generation is at least partially mediated by PKC-δ signaling. These findings suggest that 9-OAHSA shows promise as a therapy for MAFLD.
Collapse
Affiliation(s)
- Ching-Hui Loh
- Department of Family Medicine and Medical Research, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Center for Aging and Health, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Jiro Hasegawa Situmorang
- Cardiovascular and Mitochondrial Related Disease Research Center, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Center for Biomedical Research, National Research and Innovation Agency (BRIN), Cibinong, Indonesia.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
4
|
Li C, Li W, Yang H, Mi Z, Tan S, Lei X. Polysaccharides from Tumorous stem mustard prevented high fructose diet-induced non-alcoholic fatty liver disease by regulating gut microbiota, hepatic lipid metabolism, and the AKT/FOXO1/MAPK signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
5
|
Zhao CZ, Jiang W, Zhu YY, Wang CZ, Zhong WH, Wu G, Chen J, Zhu MN, Wu QL, Du XL, Luo YY, Li M, Wang HL, Zhao H, Ma QG, Zhong GY, Wei RR. Highland barley Monascus purpureus Went extract ameliorates high-fat, high-fructose, high-cholesterol diet induced nonalcoholic fatty liver disease by regulating lipid metabolism in golden hamsters. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114922. [PMID: 34923087 DOI: 10.1016/j.jep.2021.114922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocyte lipid accumulation is the main feature in the early stage of nonalcoholic fatty liver disease (NAFLD). Highland barley Monascus purpureus Went (HBMPW), a fermentation product of Hordeum vulgare Linn. var. nudum Hook. f. has traditionally been used as fermented foods in Tibet with the effect of reducing blood lipid in folk medicine. AIM OF THE STUDY This study investigated the protective effects and molecular mechanism of highland barley Monascus purpureus Went extract (HBMPWE) on NAFLD in syrian golden hamster fed with high-fat, high-fructose, high-cholesterol diet (HFFCD). MATERIALS AND METHODS HFFCD-induced NAFLD golden hamster model was established and treated with HBMPWE. Liver index, biochemical index, and hematoxylin and eosin (HE) staining were observed. Liver metabolomics and western blot analysis were employed. RESULTS Our study found that HBMPWE ameliorated HFFCD induced dyslipidemia, weight gain and elevated the liver index. In addition, HBMPWE treatment significantly attenuated lipid accumulation in the liver and modulated lipid metabolism (sphingolipid, glycerophospholipid). Our data demonstrated that HBMPWE not only regulated the expression of proteins related to fatty acid synthesis and decomposition (SREBP-1/ACC/FAS/AceS1, PPARα/ACSL/CPT1/ACOX1), but also regulated the expression of proteins related to cholesterol synthesis and clearance (HMGCR, LDLR, CYP7A1). CONCLUSIONS HBMPWE improved NAFLD through multiple pathways and multiple targets in body metabolism and could be used as a functional food to treat NAFLD and other lipid metabolic disorders.
Collapse
Affiliation(s)
- Cui-Zhu Zhao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Wei Jiang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Yu-Ye Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, 60637, United States; Department of Anesthesia & Critical Care, The University of Chicago, Chicago, 60637, United States
| | - Wei-Hong Zhong
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Guang Wu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Jie Chen
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Mei-Ning Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Qi-Lin Wu
- Tibet Yuewang Medicine Diagnosis Ecological Tibetan Medicine Technology Co., Ltd., Lhasa, 850000, PR China
| | - Xiao-Lang Du
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Ying-Ying Luo
- State Key Laboratory of Innovative Drugs and High Efficiency Energy Saving and Consumption Reduction Pharmaceutical Equipment & National Engineering Center for Manufacturing Technology of Solid Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Min Li
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Hong-Ling Wang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Hui Zhao
- Tibet Yuewang Medicine Diagnosis Ecological Tibetan Medicine Technology Co., Ltd., Lhasa, 850000, PR China; National United Engineering Research Center for Tibetan Plateau Microbiology, Lhasa, 850000, PR China
| | - Qin-Ge Ma
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China; Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, 60637, United States; Department of Anesthesia & Critical Care, The University of Chicago, Chicago, 60637, United States.
| | - Guo-Yue Zhong
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China.
| | - Rong-Rui Wei
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China.
| |
Collapse
|
6
|
Wang J, Su Z, Feng Y, Xi R, Liu J, Wang P. Comparison of several blood lipid-related indexes in the screening of non-alcoholic fatty liver disease in women: a cross-sectional study in the Pearl River Delta region of southern China. BMC Gastroenterol 2021; 21:482. [PMID: 34923965 PMCID: PMC8684623 DOI: 10.1186/s12876-021-02072-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background Lipid metabolism disorders play a critical role in the progression of non-alcoholic fatty liver disease (NAFLD). However, the number of studies on the relationships among blood lipid-related indexes and NAFLD is limited, and few studies have emphasized the comparison of blood lipid-related indexes in the same population to identify the optimal index for NAFLD screening. This study aimed to investigate the relationships among several blood lipid-related indexes and NAFLD, and to find the index with the best screening value for NAFLD. Methods Based on a general health examination at community health service agencies in the Pearl River Delta region of China in 2015, 3239 women were recruited in this cross-sectional study. The relationships among blood lipid-related indexes and NAFLD were assessed separately by constructing multivariate logistic regression models. Receiver operating characteristic analysis was used to evaluate and compare the screening abilities of the indexes for NAFLD. All data analyses were conducted in SPSS and MedCalc software. Results Whether in the crude model or each model adjusted for possible confounding factors, the risk of NAFLD significantly rose with increasing cardiometabolic index (CMI), triglyceride glucose index (TyG), triglycerides (TG) to high-density lipoprotein cholesterol (HDL-C) ratio (TG/HDL-C), total cholesterol (TC) to HDL-C ratio (TC/HDL-C) and low-density lipoprotein (LDL-C) to HDL-C ratio (LDL-C/HDL-C). Moreover, the area under the curve (AUC) of CMI was 0.744, which was better than that of TyG (0.725), TG/HDL-C (0.715), TC/HDL-C (0.650), and LDL-C/HDL-C (0.644) (P < 0.001). In addition, the optimal cut-off points were 0.62 for CMI, 8.55 for TyG, 1.15 for TG/HDL-C, 4.17 for TC/HDL-C, and 2.22 for LDL-C/HDL-C. Conclusions CMI is easy to obtain, is a recommended index in the screening of NAFLD in women and may be useful for detecting populations that are at high risk of NAFLD.
Collapse
Affiliation(s)
- Jingrui Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Su
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, China
| | - Yijin Feng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, China
| | - Ruihan Xi
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, China
| | - Jiamin Liu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, China
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, China. .,General Practice Center, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China.
| |
Collapse
|
7
|
Radhakrishnan S, Yeung SF, Ke JY, Antunes MM, Pellizzon MA. Considerations When Choosing High-Fat, High-Fructose, and High-Cholesterol Diets to Induce Experimental Nonalcoholic Fatty Liver Disease in Laboratory Animal Models. Curr Dev Nutr 2021; 5:nzab138. [PMID: 34993389 PMCID: PMC8718327 DOI: 10.1093/cdn/nzab138] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is intricately linked to metabolic disease (including obesity, glucose intolerance, and insulin resistance) and encompasses a spectrum of disorders including steatosis, nonalcoholic steatohepatitis (NASH), and fibrosis. Rodents consuming high-fat (HF; ∼40 kcal% fat including fats containing higher concentrations of saturated and trans fats), high-fructose (HFr), and high-cholesterol (HC) diets display many clinically relevant characteristics of NASH, along with other metabolic disorders. C57BL/6 mice are the most commonly used animal model because they can develop significant metabolic disorders including severe NASH with fibrosis after months of feeding, but other models also are susceptible. The significant number of diets that contain these different factors (i.e., HF, HFr, and HC), either alone or in combination, makes the choice of diet difficult. This methodology review describes the efficacy of these nutrient manipulations on the NAFLD phenotype in mice, rats, guinea pigs, hamsters, and nonhuman primates.
Collapse
Affiliation(s)
| | | | - Jia-Yu Ke
- Research Diets, Inc., New Brunswick, NJ, USA
| | - Maísa M Antunes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|