1
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2025; 69:261-278. [PMID: 38579985 PMCID: PMC11954836 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Vinogradova E, Jarmukhanov Z, Nurgaziyev M, Kossumov A, Nurgozhina A, Mukhanbetzhanov N, Sergazy S, Chulenabyeva L, Issilbayeva A, Askarova S, Kaiyrlykyzy A, Rakhimova S, Kozhamkulov U, Kairov U, Khassenbekova Z, Tarzhanova D, Akilzhanova A, Lee JH, Terwilliger J, Sailybayeva A, Bekbossynova M, Zhumadilov Z, Kozhakhmetov S, Kushugulova A. Enterococcus dysbiosis as a mediator of vitamin D deficiency-associated memory impairments. Heliyon 2025; 11:e41969. [PMID: 39906849 PMCID: PMC11791146 DOI: 10.1016/j.heliyon.2025.e41969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Low vitamin D status is linked to disturbance in cognitive performance. This study explored possible ways how composition and functional capacity of the gut microbiome affects vitamin D metabolism, directing serum vitamin D (VitD) levels and memory impairmets. It was found that gut microbiome composition, characterized by an increase in the relative abundance of Enterococcus and correlated with vitamin D deficiency and, as consequence, with memory impairments. A key mechanism identified in the study was the differential utilization of short-chain fatty acids (SCFAs) produced by gut bacteria as substrates for synthesizing vitamin D3 precursor in the skin. This finding confirms a complex interplay between the gut microbiome, host metabolism, and cognitive health, highlighting the potential significance of targeting Enterococcus dysbiosis in future preventive and therapeutic strategies to address VitD deficiency-related memory impairments. These results underscore the importance of understanding and modulating gut microbiome composition to optimize VitD status and cognitive function.
Collapse
Affiliation(s)
- Elizaveta Vinogradova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zharkyn Jarmukhanov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Madiyar Nurgaziyev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Alibek Kossumov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ayaulym Nurgozhina
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Shynggys Sergazy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Laura Chulenabyeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Argul Issilbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Aiym Kaiyrlykyzy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Saule Rakhimova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulan Kozhamkulov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulykbek Kairov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Dinar Tarzhanova
- Department of General Pharmacology, Astana Medical University, Astana, Kazakhstan
| | - Ainur Akilzhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Joseph H. Lee
- Sergievsky Center, Taub Institute, Department of Neurology and Epidemiology, Columbia University, New York, NY, USA
| | - Joseph Terwilliger
- Department of Psychiatry and Genetics & Development, Sergievsky Center, Columbia University, New York, NY, USA
- Division of Public Health Genomics, National Institute for Ealth and Welfare, Helsinki, Finland
| | | | | | | | - Samat Kozhakhmetov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Almagul Kushugulova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- National Research Cardiac Surgery Center, Astana, Kazakhstan
| |
Collapse
|
3
|
Kim H, Maigoro AY, Lee JH, Frunze O, Kwon HW. The Improving Effects of Probiotic-Added Pollen Substitute Diets on the Gut Microbiota and Individual Health of Honey Bee ( Apis mellifera L.). Microorganisms 2024; 12:1567. [PMID: 39203409 PMCID: PMC11356693 DOI: 10.3390/microorganisms12081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Honey bee (Apis mellifera L.) health is crucial for honey bee products and effective pollination, and it is closely associated with gut bacteria. Various factors such as reduced habitat, temperature, disease, and diet affect the health of honey bees by disturbing the homeostasis of the gut microbiota. In this study, high-throughput 16S rRNA gene sequencing was used to analyze the gut microbiota of honey bees subjected to seven diets over 5 days. Lactobacillus dominated the microbiota in all diets. Cage experiments (consumption, head protein content, and vitellogenin gene expression level) were conducted to verify the effect of the diet. Through a heatmap, the Diet2 (probiotic-supplemented) group was clustered together with the Beebread and honey group, showing high consumption (177.50 ± 26.16 mg/bee), moderately higher survival duration (29.00 ± 2.83 days), protein content in the head (312.62 ± 28.71 µg/mL), and diet digestibility (48.41 ± 1.90%). Additionally, we analyzed the correlation between gut microbiota and health-related indicators in honey bees fed each diet. Based on the overall results, we identified that probiotic-supplemented diets increased gut microbiota diversity and positively affected the overall health of individual honey bees.
Collapse
Affiliation(s)
- Hyunjee Kim
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
| | - Abdulkadir Yusif Maigoro
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
| | - Jeong-Hyeon Lee
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Olga Frunze
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
| | - Hyung-Wook Kwon
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Division of Research and Development, Insensory Inc., 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Phan J, Calvo DC, Nair D, Jain S, Montagne T, Dietsche S, Blanchard K, Treadwell S, Adams J, Krajmalnik-Brown R. Precision synbiotics increase gut microbiome diversity and improve gastrointestinal symptoms in a pilot open-label study for autism spectrum disorder. mSystems 2024; 9:e0050324. [PMID: 38661344 PMCID: PMC11097633 DOI: 10.1128/msystems.00503-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The efficacy of prebiotics and probiotics (synbiotics when combined) to improve symptoms associated with autism spectrum disorder (ASD) has shown considerable inter-study variation, likely due to the complex, heterogeneous nature of the disorder and its associated behavioral, developmental, and gastrointestinal symptoms. Here, we present a precision synbiotic supplementation study in 296 children and adults diagnosed with ASD versus 123 age-matched neurotypical controls. One hundred seventy ASD participants completed the study. Baseline and post-synbiotic assessment of ASD and gastrointestinal (GI) symptoms and deep metagenomic sequencing were performed. Within the ASD cohort, there were significant differences in microbes between subpopulations based on the social responsiveness scale (SRS2) survey (Prevotella spp., Bacteroides, Fusicatenibacter, and others) and gluten and dairy-free diets (Bifidobacterium spp., Lactococcus, Streptococcus spp., and others). At the baseline, the ASD cohort maintained a lower taxonomic alpha diversity and significant differences in taxonomic composition, metabolic pathways, and gene families, with a greater proportion of potential pathogens, including Shigella, Klebsiella, and Clostridium, and lower proportions of beneficial microbes, including Faecalibacterium compared to controls. Following the 3-month synbiotic supplementation, the ASD cohort showed increased taxonomic alpha diversity, shifts in taxonomy and metabolic pathway potential, and improvements in some ASD-related symptoms, including a significant reduction in GI discomfort and overall improved language, comprehension, cognition, thinking, and speech. However, the open-label study design may include some placebo effects. In summary, we found that precision synbiotics modulated the gut microbiome and could be used as supplementation to improve gastrointestinal and ASD-related symptoms. IMPORTANCE Autism spectrum disorder (ASD) is prevalent in 1 out of 36 children in the United States and contributes to health, financial, and psychological burdens. Attempts to identify a gut microbiome signature of ASD have produced varied results. The limited pre-clinical and clinical population sizes have hampered the success of these trials. To understand the microbiome associated with ASD, we employed whole metagenomic shotgun sequencing to classify microbial composition and genetic functional potential. Despite being one of the most extensive ASD post-synbiotic assessment studies, the results highlight the complexity of performing such a case-control supplementation study in this population and the potential for a future therapeutic approach in ASD.
Collapse
Affiliation(s)
- Joann Phan
- Sun Genomics, Inc., San Diego, California, USA
| | - Diana C. Calvo
- Department of Civil Engineering, Construction Management, and Environmental Engineering, Northern Arizona University, Flagstaff, Arizona, USA
| | - Divya Nair
- Sun Genomics, Inc., San Diego, California, USA
| | - Suneer Jain
- Sun Genomics, Inc., San Diego, California, USA
| | | | | | | | | | - James Adams
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
5
|
Karthikeyan D, Kumar S, Jayaprakash NS. A comprehensive review of recent developments in the gram-negative bacterial UDP-2,3-diacylglucosamine hydrolase (LpxH) enzyme. Int J Biol Macromol 2024; 267:131327. [PMID: 38574903 DOI: 10.1016/j.ijbiomac.2024.131327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
The emergence of multidrug resistance has provided a great challenge to treat nosocomial infections, which have become a major health threat around the globe. Lipid A (an active endotoxin component), the final product of the Raetz lipid A metabolism pathway, is a membrane anchor of lipopolysaccharide (LPS) of the gram-negative bacterial outer membrane. It shields bacterial cells and serves as a protective barrier from antibiotics, thereby eliciting host response and making it difficult to destroy. UDP-2,3-diacylglucosamine pyrophosphate hydrolase (LpxH), a crucial peripheral membrane enzyme of the Raetz pathway, turned out to be the potential target to inhibit the production of Lipid A. This review provides a comprehensive compilation of information regarding the structural and functional aspects of LpxH, as well as its analogous LpxI and LpxG. In addition, apart from by providing a broader understanding of the enzyme-inhibitor mechanism, this review facilitates the development of novel drug candidates that can inhibit the pathogenicity of the lethal bacterium.
Collapse
Affiliation(s)
- Divyapriya Karthikeyan
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Sanjit Kumar
- Department of Biotechnology, School of Interdisciplinary Education and Research, Guru Ghasidas Vishwavidyalaya, Bilaspur (A Central University), Chhattisgarh 495009, India
| | - N S Jayaprakash
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
6
|
Maigoro AY, Lee JH, Kim H, Frunze O, Kwon HW. Gut Microbiota of Apis mellifera at Selected Ontogenetic Stages and Their Immunogenic Potential during Summer. Pathogens 2024; 13:122. [PMID: 38392860 PMCID: PMC10893431 DOI: 10.3390/pathogens13020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Honeybees (Apis mellifera) are pollinating agents of economic importance. The role of the gut microbiome in honeybee health has become increasingly evident due to its relationship with immune function, growth, and development. Although their dynamics at various developmental stages have been documented, their dynamics during the era of colony collapse disorder and immunogenic potential, which are connected to the antagonistic immune response against pathogens, need to be elucidated. Using 16S rRNA gene Illumina sequencing, the results indicated changes in the gut microbiota with the developmental stage. The bacterial diversity of fifth stage larva was significantly different among the other age groups, in which Fructobacillus, Escherichia-Shigella, Bombella, and Tyzzerella were unique bacteria. In addition, the diversity of the worker bee microbiome was distinct from that of the younger microbiome. Lactobacillus and Gilliamella remained conserved throughout the developmental stages, while Bifidobacterium colonized only worker bees. Using an in silico approach, the production potential of lipopolysaccharide-endotoxin was predicted. Forager bees tend to have a higher abundance rate of Gram-negative bacteria. Our results revealed the evolutionary importance of some microbiome from the larval stage to the adult stage, providing insight into the potential dynamics of disease response and susceptibility. This finding provides a theoretical foundation for furthering the understanding of the function of the gut microbiota at various developmental stages related to probiotic development and immunogenic potential.
Collapse
Affiliation(s)
- Abdulkadir Yusif Maigoro
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea (H.K.)
| | - Jeong-Hyeon Lee
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Hyunjee Kim
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea (H.K.)
| | - Olga Frunze
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea (H.K.)
| | - Hyung-Wook Kwon
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea (H.K.)
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| |
Collapse
|
7
|
Lin P, Zhang Q, Sun J, Li Q, Li D, Zhu M, Fu X, Zhao L, Wang M, Lou X, Chen Q, Liang K, Zhu Y, Qu C, Li Z, Ma P, Wang R, Liu H, Dong K, Guo X, Cheng X, Sun Y, Sun J. A comparison between children and adolescents with autism spectrum disorders and healthy controls in biomedical factors, trace elements, and microbiota biomarkers: a meta-analysis. Front Psychiatry 2024; 14:1318637. [PMID: 38283894 PMCID: PMC10813399 DOI: 10.3389/fpsyt.2023.1318637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a multifaceted developmental condition that commonly appears during early childhood. The etiology of ASD remains multifactorial and not yet fully understood. The identification of biomarkers may provide insights into the underlying mechanisms and pathophysiology of the disorder. The present study aimed to explore the causes of ASD by investigating the key biomedical markers, trace elements, and microbiota factors between children with autism spectrum disorder (ASD) and control subjects. Methods Medline, PubMed, ProQuest, EMBASE, Cochrane Library, PsycINFO, Web of Science, and EMBSCO databases have been searched for publications from 2012 to 2023 with no language restrictions using the population, intervention, control, and outcome (PICO) approach. Keywords including "autism spectrum disorder," "oxytocin," "GABA," "Serotonin," "CRP," "IL-6," "Fe," "Zn," "Cu," and "gut microbiota" were used for the search. The Joanna Briggs Institute (JBI) critical appraisal checklist was used to assess the article quality, and a random model was used to assess the mean difference and standardized difference between ASD and the control group in all biomedical markers, trace elements, and microbiota factors. Results From 76,217 records, 43 studies met the inclusion and exclusion criteria and were included in this meta-analysis. The pooled analyses showed that children with ASD had significantly lower levels of oxytocin (mean differences, MD = -45.691, 95% confidence interval, CI: -61.667, -29.717), iron (MD = -3.203, 95% CI: -4.891, -1.514), and zinc (MD = -6.707, 95% CI: -12.691, -0.722), lower relative abundance of Bifidobacterium (MD = -1.321, 95% CI: -2.403, -0.238) and Parabacteroides (MD = -0.081, 95% CI: -0.148, -0.013), higher levels of c-reactive protein, CRP (MD = 0.401, 95% CI: 0.036, 0.772), and GABA (MD = 0.115, 95% CI: 0.045, 0.186), and higher relative abundance of Bacteroides (MD = 1.386, 95% CI: 0.717, 2.055) and Clostridium (MD = 0.281, 95% CI: 0.035, 0.526) when compared with controls. The results of the overall analyses were stable after performing the sensitivity analyses. Additionally, no substantial publication bias was observed among the studies. Interpretation Children with ASD have significantly higher levels of CRP and GABA, lower levels of oxytocin, iron, and zinc, lower relative abundance of Bifidobacterium and Parabacteroides, and higher relative abundance of Faecalibacterium, Bacteroides, and Clostridium when compared with controls. These results suggest that these indicators may be a potential biomarker panel for the diagnosis or determining therapeutic targets of ASD. Furthermore, large, sample-based, and randomized controlled trials are needed to confirm these results.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Junyu Sun
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Qingtian Li
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyuan Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Fu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxia Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangyi Liang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiwei Qu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renyu Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafen Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Ke Dong
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Sun
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Jing Sun
- School of Medicine and Dentistry, Institute for Integrated Intelligence and Systems, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
- Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
8
|
Yang J, He L, Dai S, Zheng H, Cui X, Ou J, Zhang X. Therapeutic efficacy of sulforaphane in autism spectrum disorders and its association with gut microbiota: animal model and human longitudinal studies. Front Nutr 2024; 10:1294057. [PMID: 38260076 PMCID: PMC10800504 DOI: 10.3389/fnut.2023.1294057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Sulforaphane (SFN) has been found to alleviate complications linked with several diseases by regulating gut microbiota (GM), while the effect of GM on SFN for autism spectrum disorders (ASD) has not been studied. Therefore, this study aimed to investigate the relationship between the effects of SFN on childhood ASD and GM through animal model and human studies. Methods We evaluated the therapeutic effects of SFN on maternal immune activation (MIA) induced ASD-like rat model and pediatric autism patients using three-chamber social test and OSU Autism Rating Scale-DSM-IV (OARS-4), respectively, with parallel GM analysis using 16SrRNA sequencing. Results SFN significantly improved the sniffing times of ASD-like rats in the three-chamber test. For human participants, the average verbal or non-verbal communication (OSU-CO) scores of SFN group had changed significantly at the 12-wk endpoint. SFN was safe and no serious side effects after taking. GM changes were similar for both ASD-like rats and ASD patients, such as consistent changes in order Bacillales, family Staphylococcaceae and genus Staphylococcus. Although the gut microbiota composition was significantly altered in SFN-treated ASD-like rats, the alteration of GM was not evident in ASD patients after 12 weeks of SFN treatment. However, in the network analysis, we found 25 taxa correlated with rats' social behavior, 8 of which were associated with SFN treatment in ASD-like rats, For ASD patients, we found 35 GM abundance alterations correlated with improvements in ASD symptoms after SFN treatment. Moreover, family Pasteurellaceae and genus Haemophilus were found to be associated with SFN administration in the network analyses in both ASD-like rats and ASD patients. Discussion These findings suggest that SFN could provide a novel avenue for preventing and treating ASD, and its therapeutic effects might be related to gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianjun Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaojie Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Maigoro AY, Muhammad M, Bello B, Useh U, Lee S. Exploration of Gut Microbiome Research in Africa: A Scoping Review. J Med Food 2023; 26:616-623. [PMID: 37523293 DOI: 10.1089/jmf.2023.k.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
The crucial role of the gut microbiome in various diseases has led to increased interest in interventions and therapeutics targeting the human microbiome. Accordingly, the current scoping review analyzed the diseases and interventions involved in gut microbiome research in Africa. The electronic databases of PubMed, Google Scholar, and Scopus were searched from inception to October 2021. This study identified 48 studies involving 7073 study participants. Of the 48 studies, 20 (42%) used interventions to modulate gut microbiota, whereas the remaining 28 (58%) did not. Out of the total African countries, only 13% were involved in intervention-based gut microbiome research, whereas a larger proportion of 67% were not involved in any gut microbiome research. The interventions used in gut microbiome research in Africa include supplements, natural products, educational approaches, associated pathogens, albendazole, fresh daily yogurt, iron-containing lipid-based nutrient supplements, fecal microbiota transplant, and prophylactic cotrimoxazole. This scoping review highlights the current state of gut microbiome research in Africa. The findings of this review can inform the design of future studies and interventions aimed at improving gut health in African populations.
Collapse
Affiliation(s)
- Abdulkadir Yusif Maigoro
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Mubarak Muhammad
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Bashir Bello
- Lifestyle Diseases Research Entity, Faculty of Health Sciences, North-West University, Vanderbijlpark, South Africa
| | - Ushotanefe Useh
- Lifestyle Diseases Research Entity, Faculty of Health Sciences, North-West University, Vanderbijlpark, South Africa
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
10
|
Yu R, Zhang M, Ahmed T, Wu Z, Lv L, Zhou G, Li B. Metabolic and Proteomic Profiles Reveal the Response of the ASD-Associated Resistant Strain 6-1 of Lactobacillus plantarum to Propionic Acid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17020. [PMID: 36554909 PMCID: PMC9779356 DOI: 10.3390/ijerph192417020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Autism spectrum disorder (ASD) seriously affects children's health. In our previous study, we isolated and identified a bacterium (Lactobacillus plantarum strain 6-1) that is resistant to propionic acid (PA), which has been reported to play a significant role in the formation of ASD. In order to elucidate the mechanism of the resistance to PA, this study investigated the change in the metabolic and proteomic profile of L. plantarum strain 6-1 in the presence and absence of PA. The results show that 967 and 1078 proteins were specifically identified in the absence and the presence of PA, respectively, while 616 proteins were found under both conditions. Gene ontology enrichment analysis of 130 differentially expressed proteins accumulated in the presence and absence of PA indicated that most of the proteins belong to biological processes, cellular components, and molecular functions. Pathway enrichment analysis showed a great reduction in the metabolic pathway-related proteins when this resistant bacterium was exposed to PA compared to the control. Furthermore, there was an obvious difference in protein-protein interaction networks in the presence and the absence of propionic acid. In addition, there was a change in the metabolic profile of L. plantarum strain 6-1 when this bacterium was exposed to PA compared to the control, while six peaks at 696.46, 1543.022, 1905.241, 2004.277, 2037.374, and 2069.348 m/z disappeared. Overall, the results could help us to understand the mechanism of the resistance of gut bacteria to PA, which will provide a new insight for us to use PA-resistant bacteria to prevent the development of ASD in children.
Collapse
Affiliation(s)
- Rongrong Yu
- College of Education, Zhejiang University of Technology, Hangzhou 310032, China
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhifeng Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqiong Lv
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guoling Zhou
- Hangzhou Seventh People’s Hospital (HSPH), Hangzhou 310013, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Pietrucci D, Teofani A, Milanesi M, Fosso B, Putignani L, Messina F, Pesole G, Desideri A, Chillemi G. Machine Learning Data Analysis Highlights the Role of Parasutterella and Alloprevotella in Autism Spectrum Disorders. Biomedicines 2022; 10:biomedicines10082028. [PMID: 36009575 PMCID: PMC9405825 DOI: 10.3390/biomedicines10082028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
In recent years, the involvement of the gut microbiota in disease and health has been investigated by sequencing the 16S gene from fecal samples. Dysbiotic gut microbiota was also observed in Autism Spectrum Disorder (ASD), a neurodevelopmental disorder characterized by gastrointestinal symptoms. However, despite the relevant number of studies, it is still difficult to identify a typical dysbiotic profile in ASD patients. The discrepancies among these studies are due to technical factors (i.e., experimental procedures) and external parameters (i.e., dietary habits). In this paper, we collected 959 samples from eight available projects (540 ASD and 419 Healthy Controls, HC) and reduced the observed bias among studies. Then, we applied a Machine Learning (ML) approach to create a predictor able to discriminate between ASD and HC. We tested and optimized three algorithms: Random Forest, Support Vector Machine and Gradient Boosting Machine. All three algorithms confirmed the importance of five different genera, including Parasutterella and Alloprevotella. Furthermore, our results show that ML algorithms could identify common taxonomic features by comparing datasets obtained from countries characterized by latent confounding variables.
Collapse
Affiliation(s)
- Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, 70126 Bari, Italy
| | - Adelaide Teofani
- Department of Biology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Milanesi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Piazza Umberto I, 1, 70121 Bari, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Units of Microbiomics, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Francesco Messina
- Laboratory of Microbiology and Biological Bank National Institute for Infectious Diseases “Lazzaro Spallanzani” Istituto di Ricovero e Cura a Carattere Scientifico, 00149 Rome, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Piazza Umberto I, 1, 70121 Bari, Italy
| | - Alessandro Desideri
- Department of Biology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
- Correspondence: ; Tel.: +39-0761-357-429
| |
Collapse
|
12
|
Vellingiri B, Aishwarya SY, Benita Jancy S, Sriram Abhishek G, Winster Suresh Babu H, Vijayakumar P, Narayanasamy A, Mariappan S, Sangeetha R, Valsala Gopalakrishnan A, Parthasarathi R, Iyer M. An anxious relationship between Autism Spectrum Disorder and Gut Microbiota: A tangled chemistry? J Clin Neurosci 2022; 99:169-189. [PMID: 35286970 DOI: 10.1016/j.jocn.2022.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a serious multifactorial neurodevelopmental disorder often accompanied by strained social communication, repetitive behaviour, immune dysregulation, and gastrointestinal (GI) issues. Recent studies have recorded a link between dysbiosis in the gut microbiota (gm) and the primary stages of ASD. A bidirectional connection (also called microbiota-gut-brain-axis) exchanges information between the gut bacteria and central nervous system. When the homeostasis of the microenvironment of the gut is dysregulated, it causes oxidative stress, affecting neuronal cells and neurotransmitters, thereby causing neurodevelopmental disorders. Studies have confirmed a difference in the constitution of gut bacteria among ASD cases and their controls. Numerous studies on animal models of ASD have shown altered gm and its association with abnormal metabolite profile and altered behaviour phenotype. This process happens due to an abnormal metabolite production in gm, leading to changes in the immune system, especially in ASD. Hence, this review aims to question the current knowledge on gm dysbiosis and its related GI discomforts and ASD behavioural symptoms and shed light on the possible therapeutic approaches available to deal with this situation. Thereby, though it is understood that more research might be needed to prove an association or causal relationship between gm and ASD, therapy with the microbiome may also be considered as an effective strategy to combat this issue.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - S Y Aishwarya
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - S Benita Jancy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - G Sriram Abhishek
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Padmavathi Vijayakumar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sujitha Mariappan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - R Sangeetha
- Department of Zoology and Wild Life Biology, Government Arts College, Udhagamandalam 643002, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Centre for Innovation and Translational Research, Environmental Monitoring and Intervention Hub (DSIR-CRTDH), CSIR-Indian Institute of Toxicology Research, Lucknow 226001 Uttar Pradesh, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India.
| |
Collapse
|
13
|
Mohr AE, Crawford M, Jasbi P, Fessler S, Sweazea KL. Lipopolysaccharide and the gut microbiota: Considering structural variation. FEBS Lett 2022; 596:849-875. [PMID: 35262962 DOI: 10.1002/1873-3468.14328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Systemic inflammation is associated with chronic disease and is purported to be a main pathogenic mechanism underlying metabolic conditions. Microbes harbored in the host gastrointestinal tract release signaling byproducts from their cell wall, such as lipopolysaccharides (LPS), which can act locally and, after crossing the gut barrier and entering circulation, also systemically. Defined as metabolic endotoxemia, elevated concentrations of LPS in circulation are associated with metabolic conditions and chronic disease. As such, measurement of LPS is highly prevalent in animal and human research investigating these states. Indeed, LPS can be a potent stimulant of host immunity but this response depends on the microbial species' origin, a parameter often overlooked in both preclinical and clinical investigations. Indeed, the lipid A portion of LPS is mutable and comprises the main virulence and endotoxic component, thus contributing to the structural and functional diversity among LPSs from microbial species. In this review, we discuss how such structural differences in LPS can induce differential immunological responses in the host.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Meli'sa Crawford
- Biomedical Sciences, University of Riverside, California, Riverside, California, United States of America
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Samantha Fessler
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
14
|
Liu J, Gao Z, Liu C, Liu T, Gao J, Cai Y, Fan X. Alteration of Gut Microbiota: New Strategy for Treating Autism Spectrum Disorder. Front Cell Dev Biol 2022; 10:792490. [PMID: 35309933 PMCID: PMC8929512 DOI: 10.3389/fcell.2022.792490] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is defined as a complex heterogeneous disorder and characterized by stereotyped behavior and deficits in communication and social interactions. The emerging microbial knowledge has pointed to a potential link between gut microbiota dysbiosis and ASD. Evidence from animal and human studies showed that shifts in composition and activity of the gut microbiota may causally contribute to the etiopathogenesis of core symptoms in the ASD individuals with gastrointestinal tract disturbances and act on microbiota-gut-brain. In this review, we summarized the characterized gut bacterial composition of ASD and the involvement of gut microbiota and their metabolites in the onset and progression of ASD; the possible underlying mechanisms are also highlighted. Given this correlation, we also provide an overview of the microbial-based therapeutic interventions such as probiotics, antibiotics, fecal microbiota transplantation therapy, and dietary interventions and address their potential benefits on behavioral symptoms of ASD. The precise contribution of altering gut microbiome to treating core symptoms in the ASD needs to be further clarified. It seemed to open up promising avenues to develop microbial-based therapies in ASD.
Collapse
Affiliation(s)
- Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Zhanyuan Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
15
|
Impact of Zinc Oxide Nanoparticles on the Composition of Gut Microbiota in Healthy and Autism Spectrum Disorder Children. MATERIALS 2021; 14:ma14195488. [PMID: 34639886 PMCID: PMC8509275 DOI: 10.3390/ma14195488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023]
Abstract
Autism spectrum disorder (ASD) seriously affects children’s health, while the gut microbiome has been widely hypothesized to be involved in the regulation of ASD behavior. This study investigated and compared the number, diversity, and population structure of gut microbiota between healthy and ASD children and their susceptibility to zinc oxide nanoparticles (ZnONPs) based on the measurement of live cell number, living/dead bacterial staining test, flow cytometry observation and bacterial community analysis using 16S rRNA gene amplicon sequencing. The result of this present study revealed that ASD children not only significantly reduced the live cell number and the community diversity of gut bacteria, but also changed the gut bacterial community composition compared to the healthy children. In addition, this result revealed that ZnONPs significantly reduced the number of live bacterial cells in the gut of healthy children, but not in that of ASD children. In contrast, ZnONPs generally increased the gut bacterial community diversity in both ASD and healthy children, while a greater increase was found in ASD children than that of healthy children. Furthermore, this study successfully isolated and identified some representative nanoparticle-resistant bacteria based on the color, shape, and edge of colony as well as the 16S rDNA sequence analysis. The community of nanoparticle-resistant bacteria differed in between healthy and ASD children. Indeed, the representative strains 6-1, 6-2, 6-3 and 6-4 from healthy children were identified as Bacillus anthracis, Escherichia coli, Bacillus cereus and Escherichia coli with sequence similarity of 97.86%, 99.86%, 99.03% and 99.65%, respectively, while the representative strains 8-1, 8-2 and 8-3 from ASD children were identified as Bacillus cereus, with sequence similarities of 99.58%, 99.72% and 99.72%, respectively. Overall, this study demonstrated that ZnONPs caused a change in number, diversity, and species composition of gut bacteria, but differed in healthy and ASD children.
Collapse
|
16
|
Taniguchi K, Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Implications of Gut-Brain axis in the pathogenesis of Psychiatric disorders. AIMS BIOENGINEERING 2021. [DOI: 10.3934/bioeng.2021021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
<abstract>
<p>Psychiatric disorders may extremely impair the quality of life with patients and are important reasons of social disability. Several data have shown that psychiatric disorders are associated with an altered composition of gut microbiota. Dietary intake could determine the microbiota, which contribute to produce various metabolites of fermentation such as short chain fatty acids. Some of the metabolites could result in epigenetic alterations leading to the disease susceptibility. Epigenetic dysfunction is in fact implicated in various psychiatric and neurologic disorders. For example, it has been shown that neuroepigenetic dysregulation occurs in psychiatric disorders including schizophrenia. Several studies have demonstrated that the intestinal microbiome may influence the function of central nervous system. Furthermore, it has been proved that the alterations in the gut microbiota-composition might affect in the bidirectional communication between gut and brain. Similarly, evidences demonstrating the association between psychiatric disorders and the gut microbiota have come from preclinical studies. It is clear that an intricate symbiotic relationship might exist between host and microbe, although the practical significance of the gut microbiota has not yet to be determined. In this review, we have summarized the function of gut microbiota in main psychiatric disorders with respect to the mental health. In addition, we would like to discuss the potential mechanisms of the disorders for the practical diagnosis and future treatment by using bioengineering of microbiota and their metabolites.</p>
</abstract>
Collapse
|