1
|
Choręziak A, Rosiejka D, Michałowska J, Bogdański P. Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources-An Overview. Nutrients 2025; 17:1148. [PMID: 40218906 PMCID: PMC11990347 DOI: 10.3390/nu17071148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Protein is a fundamental macronutrient in the human diet. It supplies our organisms with essential amino acids, which are needed for the growth and maintenance of cells and tissues. Conventional protein sources, despite their complete amino acid profiles and excellent digestibility, have a proven negative impact on the environment. Furthermore, their production poses many ethical challenges. This review aims to present nutritional, more ethical, and environmentally friendly alternatives that could serve as potential protein sources for the population. The available literature on alternative protein sources has been analyzed. Based on the research conducted, various products have been identified and described, including plant-based protein sources such as soybeans, peas, faba beans, lupins, and hemp seeds; aquatic sources such as algae, microalgae, and water lentils; as well as insect-based and microbial protein sources, and cell-cultured meat. Despite numerous advantages, such as a lower environmental impact, higher ethical standards of production, and beneficial nutritional profiles, alternative protein sources are not without limitations. These include lower bioavailability of certain amino acids, the presence of antinutritional compounds, technological challenges, and issues related to consumer acceptance. Nevertheless, with proper dietary composition, optimization of production processes, and further technological advancements, presented alternatives can constitute valuable and sustainable protein sources for the growing global population.
Collapse
Affiliation(s)
| | | | - Joanna Michałowska
- Department of Obesity and Metabolic Disorders Treatment and Clinical Dietetics, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | | |
Collapse
|
2
|
Kafka A, Lipok J, Żyszka-Haberecht B, Wieczorek D. Effect of Different Colours of Light on Chosen Aspects of Metabolism of Radish Sprouts with Phosphoromic Approach. Molecules 2024; 29:5528. [PMID: 39683687 DOI: 10.3390/molecules29235528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Among various environmental factors, light is a crucial parameter necessary for the germination of some seeds. Seed germination is an important phase in the plant life cycle, when metabolic activity is resumed and reserves are mobilized to support initial plant development. Although all nutrients are extremely important for proper physiological and biochemical development of plants, phosphorus (P) seems to play a special role, as it is an essential component of all important structural and functional substances which compose the cells of plants. We believe that transformations of the forms of phosphorus accompanying metabolic activity of germinating seeds determine the efficiency of this process, and thus the seedling's metabolic status. Therefore, we decided to study the changes in the major phosphorus-containing substances in radish sprouts during the first phase of growth. The effect of different colours of light on the quality parameters in radish, as a model plant, during germination, was evaluated. Contents of Pi, adenylates, antioxidants, pigments, phytase activity, and 31P NMR phosphorus profile were investigated. Based on the results of our study, we may propose the phosphoromic approach as an important metabolic parameter determining the physiological status of the plant.
Collapse
Affiliation(s)
- Anna Kafka
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Jacek Lipok
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Beata Żyszka-Haberecht
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Dorota Wieczorek
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
3
|
Santos AD, Oliveira AS, Carvalho MTB, Barreto AS, Quintans JDSS, Quintans Júnior LJ, Barreto RDSS. H. pectinata (L.) Poit - Traditional uses, phytochemistry and biological-pharmacological activities in preclinical studies: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118478. [PMID: 38909822 DOI: 10.1016/j.jep.2024.118478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE H. pectinata (L.) Poit, popularly known as "sambacaitá" or "canudinho", is a plant endemic to north-eastern Brazil. Its aerial parts, leaves and flowers have traditionally been used to treat gastrointestinal disorders, rhinopharyngitis, nasal congestion, bacterial and fungal infections, fever, colic, inflammation, and pain. AIM OF THE STUDY The aim of this review was to provide information on the botanical characteristics, ethnomedicinal uses, phytochemistry and biological-pharmacological activities of H. pectinata. MATERIALS AND METHODS This systematic review followed the Cochrane Handbook Collaboration and the PRISMA guidelines. The review question was what are the biological-pharmacological activities of H. pectinata presented in non-clinical studies. The search for articles was conducted in the Medline (via PubMed), Embase, Web of Science, Scopus, Virtual Health Library, SciELO, Google Scholar and the Brazilian Digital Library of Theses and Dissertations databases. Two reviewers independently selected the studies that met the inclusion criteria, extracted the data, and assessed the risk of bias of the included studies. RESULTS 39 articles were included in this review, of which 19 reported in vitro experiments, 16 in vivo studies and 4 in vivo and in vitro experiments. H. pectinata is a plant widely used in folk medicine in north-eastern Brazil for the treatment of various ailments, such as respiratory diseases, gastrointestinal disorders, bacterial and fungal infections, and general inflammation. Supporting its popular use, several in vitro and in vivo pharmacological investigations of the essential oil and extract of H. pectinata have demonstrated their anti-inflammatory, antinociceptive, antioxidant, antidepressant, anticancer, hepatoregenerative, healing, and antimicrobial activities. H. pectinata has been reported to contain 75 bioactive constituents, comprising 9 flavonoids, 54 terpenes, and 12 other compounds. CONCLUSION H. pectinata is a plant commonly used in traditional medicine. Phytochemically, it contains several bioactive constituents, including terpenes and flavonoids, and has been shown to have antinociceptive, anti-inflammatory, antimicrobial and antitumour activity, as well as hepatorregenerative and healing effects, and low toxicity.
Collapse
Affiliation(s)
- Adenilson Dos Santos
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Alan Santos Oliveira
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - André Sales Barreto
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Jullyana de Souza Siqueira Quintans
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lucindo José Quintans Júnior
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Rosana de Souza Siqueira Barreto
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil.
| |
Collapse
|
4
|
Zhou Q, Chen Y, Peng L, Wu J, Hao W, Wang M. Sprouting facilitates the antiglycative effect of black soybean ( Glycine max (L.) Merr.) by promoting the accumulation of isoflavones. Curr Res Food Sci 2024; 9:100827. [PMID: 39281341 PMCID: PMC11399799 DOI: 10.1016/j.crfs.2024.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
The exposure of advanced glycation end products (AGEs) can induce chronic inflammation, oxidative stress, and accelerated aging, contributing the onset and progression of many diseases especially diabetic complications. Therefore, the searching of antiglycative foods is of practical significance, which may serve as a strategy in the attenuation of AGEs-associated diseases. In this study, we evaluated the antiglycative potential of some beans and bean sprouts that were common in our daily life. The results revealed that sprouting enhanced the antiglycative activity of beans, with black soybean sprouts demonstrating the highest efficacy (4.92-fold higher than the unsprouted beans). To assess practical implications, we examined the antiglycative activity of black soybean sprouts in pork soup, a popular food model that incorporates sprouts. Our findings confirmed the inhibitory effect on a dose-dependent manner. Through open column fractionation, we identified isoflavones and soyasaponin Bb as the candidates responsible for these effects. Additionally, compare to the unsprouted black soybeans, we found significant increases in the levels of antioxidative properties (2.51-fold), total phenolics (7.28-fold), isoflavones, and soyasaponin Bb during the sprouting process. Further studies determined that genistein, genistin, and daidzin were the major antiglycative compounds in black soybean sprouts. Collectively, this study emphasizes the benefits of sprouted beans and offers foundation for the development of functional sprouting foods.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuxuan Chen
- School of Biological Sciences, The University of Hong Kong, 999077 China
| | - Lifang Peng
- School of Biological Sciences, The University of Hong Kong, 999077 China
| | - Jun Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wen Hao
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266000, China
- Qingdao Institute of Preventive Medicine, Qingdao 266000, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Milana M, van Asselt ED, van der Fels-Klerx HJ. The chemical and microbiological safety of emerging alternative protein sources and derived analogues: A review. Compr Rev Food Sci Food Saf 2024; 23:e13377. [PMID: 38865251 DOI: 10.1111/1541-4337.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
Climate change and changing consumer demand are the main factors driving the protein transition. This shift toward more sustainable protein sources as alternatives to animal proteins is also reflected in the rapid upscaling of meat and dairy food analogues. Such changes could challenge food safety, as new food sources could result in new and unexpected food safety risks for consumers. This review analyzed the current knowledge on chemical and microbiological contamination of emerging alternative protein sources of plant origin, including soil-based (faba bean, mung bean, lentils, black gram, cowpea, quinoa, hemp, and leaf proteins) and aquatic-based (microalgae and duckweeds) proteins. Moreover, findings on commercial analogues from known alternative protein sources were included. Overall, the main focus of the investigations is on the European context. The review aimed to enable foresight approaches to food safety concerning the protein transition. The results indicated the occurrence of multiple chemical and microbiological hazards either in the raw materials that are the protein sources and eventually in the analogues. Moreover, current European legislation on maximum limits does not address most of the "contaminant-food" pairs identified, and no legislative framework has been developed for analogues. Results of this study provide stakeholders with a more comprehensive understanding of the chemical and microbiological safety of alternative protein sources and derived analogues to enable a holistic and safe approach to the protein transition.
Collapse
Affiliation(s)
- M Milana
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands
| | - E D van Asselt
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
6
|
Park YS, Kang SM, Kim YJ, Lee IJ. Exploring the dietary and therapeutic potential of licorice (Glycyrrhiza uralensis Fisch.) sprouts. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118101. [PMID: 38527575 DOI: 10.1016/j.jep.2024.118101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This research substantiates the traditional use of Glycyrrhiza uralensis Fisch. for liver health, with scientific evidence of the non-toxic and lipid-lowering properties of licorice sprout extracts. The sprouts' rich mineral and amino acid content, along with their strong antioxidant activity, reinforce their value in traditional medicine. These findings bridge ancient herbal practices with modern science, highlighting licorice's potential in contemporary therapeutic applications. AIM OF THE STUDY The study aimed to investigate the dietary and medicinal potential of G. uralensis sprouts by assessing their safety, nutritional content, and antioxidant properties using both plant and animal models. Specifically, the study sought to determine the effects of different sizes of licorice sprouts on lipid metabolism in human liver cancer cells and their overall impact on rat health indicators. MATERIALS AND METHODS The study examined the effects of aqueous and organic extracts from G. uralensis sprouts of varying lengths on the cytotoxicity, lipid metabolism, and antioxidant activity in HepG2 cells, alongside in vivo impacts on Sprague-Dawley rats, using MTT, ICP, and HPLC. It aimed to assess the potential health benefits of licorice sprouts by analyzing their protective effects against oxidative stress and their nutritional content. RESULTS Licorice sprout extracts from G. uralensis demonstrated no cytotoxicity in HepG2 cells, significantly reduced lipid levels, and enhanced antioxidant activities, with the longest sprouts (7 cm) showing higher mineral, sugar, and arginine content as well as increased glycyrrhizin and liquiritigenin. In vivo studies with Sprague-Dawley rats revealed weight gain and improved antioxidant enzyme activities in blood plasma and liver tissues after consuming the extracts, highlighting the sprouts' dietary and therapeutic potential. CONCLUSIONS This study is the first to demonstrate that G. uralensis sprouts, particularly those 7 cm in length, have no cytotoxic effects, reduce lipids, and have high mineral and antioxidant contents, offering promising dietary and therapeutic benefits.
Collapse
Affiliation(s)
- Yong-Sung Park
- Department of Applied Biosciences, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, South Korea
| | - Yeon-Ji Kim
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro, Dong-gu, Daegu, 41062, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, South Korea.
| |
Collapse
|
7
|
Huang M, Xu H, Zhou Q, Xiao J, Su Y, Wang M. The nutritional profile of chia seeds and sprouts: tailoring germination practices for enhancing health benefits-a comprehensive review. Crit Rev Food Sci Nutr 2024; 65:2365-2387. [PMID: 38622873 DOI: 10.1080/10408398.2024.2337220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chia seeds have gained significant attention due to their unique composition and potential health benefits, including high dietary fibers, omega-3 fatty acids, proteins, and phenolic compounds. These components contribute to their antioxidant, anti-inflammatory effects, as well as their ability to improve glucose metabolism and dyslipidemia. Germination is recognized as a promising strategy to enhance the nutritional value and bioavailability of chia seeds. Chia seed sprouts have been found to exhibit increased essential amino acid content, elevated levels of dietary fiber and total phenols, and enhanced antioxidant capability. However, there is limited information available concerning the dynamic changes of bioactive compounds during the germination process and the key factors influencing these alterations in biosynthetic pathways. Additionally, the influence of various processing conditions, such as temperature, light exposure, and duration, on the nutritional value of chia seed sprouts requires further investigation. This review aims to provide a comprehensive analysis of the nutritional profile of chia seeds and the dynamic changes that occur during germination. Furthermore, the potential for tailored germination practices to produce chia sprouts with personalized nutrition, targeting specific health needs, is also discussed.
Collapse
Affiliation(s)
- Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Maqbool Z, Khalid W, Mahum, Khan A, Azmat M, Sehrish A, Zia S, Koraqi H, AL‐Farga A, Aqlan F, Khan KA. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Sci Nutr 2024; 12:707-721. [PMID: 38370091 PMCID: PMC10867502 DOI: 10.1002/fsn3.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Mahum
- Food Science and TechnologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
| | - Anosha Khan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Maliha Azmat
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Aqeela Sehrish
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Sania Zia
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Hyrije Koraqi
- Faculty of Food Science and BiotechnologyUBT‐Higher Education InstitutionPristinaKosovo
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| | - Khalid Ali Khan
- Center of Bee Research and its Products/ Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
- Applied CollegeKing Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
9
|
Kim HS, Hwang HJ, Seo WD, Do SH. Oat ( Avena sativa L.) Sprouts Restore Skin Barrier Function by Modulating the Expression of the Epidermal Differentiation Complex in Models of Skin Irritation. Int J Mol Sci 2023; 24:17274. [PMID: 38139104 PMCID: PMC10743458 DOI: 10.3390/ijms242417274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Oats (Avena sativa L.) are used as therapeutic plants, particularly in dermatology. Despite numerous studies on their skin moisturization, anti-inflammation, and antioxidation effects, the precise molecular mechanisms of these effects are only partially understood. In this study, the efficacy of oat sprouts in the treatment of allergic contact dermatitis (ACD) was investigated, and their specific phytoconstituents and exact mechanisms of action were identified. In the in vivo ACD model, by stimulating the mitogen-activated protein kinase signaling pathway, oat sprouts increased the expression levels of proteins associated with skin barrier formation, which are produced during the differentiation of keratinocytes. In addition, in a lipopolysaccharide-induced skin irritation model using HaCaT, steroidal saponins (avenacoside B and 26-deglucoavenacoside B) and a flavonoid (isovitexin-2-o-arabinoside) of oat sprouts regulated the genetic expression of the same proteins located on the adjacent locus of human chromosomes known as the epidermal differentiation complex (EDC). Furthermore, oat sprouts showed immunomodulatory functions. These findings suggest the potential for expanding the use of oat sprouts as a treatment option for various diseases characterized by skin barrier disruption.
Collapse
Affiliation(s)
- Hyo-Sung Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun-Jeong Hwang
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Woo-Duck Seo
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sun-Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Majzoobi M, Wang Z, Teimouri S, Pematilleke N, Brennan CS, Farahnaky A. Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition. Foods 2023; 12:3901. [PMID: 37959020 PMCID: PMC10649608 DOI: 10.3390/foods12213901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Due to the global rise in food insecurity, micronutrient deficiency, and diet-related health issues, the United Nations (UN) has called for action to eradicate hunger and malnutrition. Grains are the staple food worldwide; hence, improving their nutritional quality can certainly be an appropriate approach to mitigate malnutrition. This review article aims to collect recent information on developing nutrient-dense grains using a sustainable and natural process known as "sprouting or germination" and to discuss novel applications of sprouted grains to tackle malnutrition (specifically undernutrition). This article discusses applicable interventions and strategies to encourage biochemical changes in sprouting grains further to boost their nutritional value and health benefits. It also explains opportunities to use spouted grains at home and in industrial food applications, especially focusing on domestic grains in regions with prevalent malnutrition. The common challenges for producing sprouted grains, their future trends, and research opportunities have been covered. This review article will benefit scientists and researchers in food, nutrition, and agriculture, as well as agrifood businesses and policymakers who aim to develop nutrient-enriched foods to enhance public health.
Collapse
Affiliation(s)
- Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (Z.W.); (S.T.); (N.P.); (C.S.B.); (A.F.)
| | | | | | | | | | | |
Collapse
|
11
|
Chang B, Bae J, Yun S, Kim Y, Park S, Kim S. Wheat sprouts ( Triticum aestivum Linn.) cultured by a smart farm system ameliorate NAFLD through the AMPK-mediated SREBP signaling pathway. Food Sci Biotechnol 2023; 32:1585-1594. [PMID: 37637841 PMCID: PMC10449750 DOI: 10.1007/s10068-023-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 08/29/2023] Open
Abstract
Wheat is cultivated worldwide and is the most widely distributed food crop. Wheat is a staple crop in many countries. However, the effects of various cultivation methods on the efficacy of wheat sprouts have not been determined. This study investigated wheat sprouts obtained using a standardized smart farm system (WS-S) to improve the effects of non-alcoholic fatty liver disease (NAFLD) and molecular mechanism. Wheat sprouts significantly attenuated the accumulation of lipid droplets in FFA-induced HepG2 cells through AMPK pathway activity. In vivo experiments showed that WS-S significantly lowered body weight gain and decreased adipose tissue, lipid, aspartate transaminase, and alanine aminotransferase levels in HFD/F-treated mice. Furthermore, WS-S stimulated the phosphorylation of ACC and peroxisome proliferator-activated receptor alpha via the AMPK pathway and inhibited SREBP-1/FAS signaling to inhibit de novo adipogenesis and increase fatty acid oxidation. These results suggest that WS-S ameliorates NAFLD by regulating fatty acid metabolism via the AMPK pathway.
Collapse
Affiliation(s)
- BoYoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Republic of Korea
| | - JinHye Bae
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Republic of Korea
| | - SeungBeom Yun
- R&D Center, BTC Corporation, #703, Technology Development Center, Gyeongi Technopark, 705, Haean-ro, Sangnok-gu, Ansan-si, 15588 Gyeonggi-do Republic of Korea
| | - YongDuk Kim
- R&D Center, BTC Corporation, #703, Technology Development Center, Gyeongi Technopark, 705, Haean-ro, Sangnok-gu, Ansan-si, 15588 Gyeonggi-do Republic of Korea
| | - SeongJin Park
- Reputer Co., 401, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si, 54810 Jeollabuk-do Republic of Korea
| | - SungYeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Republic of Korea
| |
Collapse
|
12
|
Yang G, Xu J, Xu Y, Guan X, Ramaswamy HS, Lyng JG, Li R, Wang S. Recent developments in applications of physical fields for microbial decontamination and enhancing nutritional properties of germinated edible seeds and sprouts: a review. Crit Rev Food Sci Nutr 2023; 64:12638-12669. [PMID: 37712259 DOI: 10.1080/10408398.2023.2255671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Germinated edible seeds and sprouts have attracted consumers because of their nutritional values and health benefits. To ensure the microbial safety of the seed and sprout, emerging processing methods involving physical fields (PFs), having the characteristics of high efficiency and environmental safety, are increasingly proposed as effective decontamination processing technologies. This review summarizes recent progress on the application of PFs to germinating edible seeds, including their impact on microbial decontamination and nutritional quality and the associated influencing mechanisms in germination. The effectiveness, application scope, and limitation of the various physical techniques, including ultrasound, microwave, radio frequency, infrared heating, irradiation, pulsed light, plasma, and high-pressure processing, are symmetrically reviewed. Good application potential for improving seed germination and sprout growth is also described for promoting the accumulation of bioactive compounds in sprouts, and subsequently enhancing the antioxidant capacity under favorable PFs processing conditions. Moreover, the challenges and future directions of PFs in the application to germinated edible seeds are finally proposed. This review also attempts to provide an in-depth understanding of the effects of PFs on microbial safety and changes in nutritional properties of germinating edible seeds and a theoretical reference for the future development of PFs in processing safe sprouted seeds.
Collapse
Affiliation(s)
- Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, Canada
| | - James G Lyng
- Institute of Food and Health, University College Dublin, Belfield, Ireland
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
13
|
Lin Y, Zhou C, Li D, Jia Y, Dong Q, Yu H, Wu T, Pan C. Mitigation of Acetamiprid Residue Disruption on Pea Seed Germination by Selenium Nanoparticles and Lentinans. PLANTS (BASEL, SWITZERLAND) 2023; 12:2781. [PMID: 37570938 PMCID: PMC10420818 DOI: 10.3390/plants12152781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The use of pesticides for pest control during the storage period of legume seeds is a common practice. This study evaluated the disruptive effects on pea seed germination and the repair effects of selenium nanoparticles (SeNPs) and lentinans (LNTs) This study examined the biomass, nutrient content, antioxidant indicators, plant hormones, phenolic compounds, and metabolites associated with the lignin biosynthesis pathway in pea sprouts. The application of acetamiprid resulted in a significant decrease in yield, amino-acid content, and phenolic compound content of pea sprouts, along with observed lignin deposition. Moreover, acetamiprid residue exerted a notable level of stress on pea sprouts, as evidenced by changes in antioxidant indicators and plant hormones. During pea seed germination, separate applications of 5 mg/L SeNPs or 20 mg/L LNTs partially alleviated the negative effects induced by acetamiprid. When used in combination, these treatments restored most of the aforementioned indicators to levels comparable to the control group. Correlation analysis suggested that the regulation of lignin content in pea sprouts may involve lignin monomer levels, reactive oxygen species (ROS) metabolism, and plant hormone signaling mediation. This study provides insight into the adverse impact of acetamiprid residues on pea sprout quality and highlights the reparative mechanism of SeNPs and LNTs, offering a quality assurance method for microgreens, particularly pea sprouts. Future studies can validate the findings of this study from the perspective of gene expression.
Collapse
Affiliation(s)
- Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
- Huizhou Yinnong Technology Co., Ltd., Huizhou 516057, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Huan Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Tong Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| |
Collapse
|
14
|
Yan C, Huang Y, Zhang S, Cui L, Jiao Z, Peng Z, Luo X, Liu Y, Qiu Z. Dynamic profiling of intact glucosinolates in radish by combining UHPLC-HRMS/MS and UHPLC-QqQ-MS/MS. FRONTIERS IN PLANT SCIENCE 2023; 14:1216682. [PMID: 37476169 PMCID: PMC10354559 DOI: 10.3389/fpls.2023.1216682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
Glucosinolates (GSLs) and their degradation products in radish confer plant defense, promote human health, and generate pungent flavor. However, the intact GSLs in radish have not been investigated comprehensively yet. Here, an accurate qualitative and quantitative analyses of 15 intact GSLs from radish, including four major GSLs of glucoraphasatin (GRH), glucoerucin (GER), glucoraphenin (GRE), and 4-methoxyglucobrassicin (4MGBS), were conducted using UHPLC-HRMS/MS in combination with UHPLC-QqQ-MS/MS. Simultaneously, three isomers of hexyl GSL, 3-methylpentyl GSL, and 4-methylpentyl GSL were identified in radish. The highest content of GSLs was up to 232.46 μmol/g DW at the 42 DAG stage in the 'SQY' taproot, with an approximately 184.49-fold increase compared to the lowest content in another sample. That the GSLs content in the taproots of two radishes fluctuated in a similar pattern throughout the five vegetative growth stages according to the metabolic profiling, whereas the GSLs content in the '55' leaf steadily decreased over the same period. Additionally, the proposed biosynthetic pathways of radish-specific GSLs were elucidated in this study. Our findings will provide an abundance of qualitative and quantitative data on intact GSLs, as well as a method for detecting GSLs, thus providing direction for the scientific progress and practical utilization of GSLs in radish.
Collapse
Affiliation(s)
- Chenghuan Yan
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yan Huang
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Shuting Zhang
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Lei Cui
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhenbiao Jiao
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhaoxin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yun Liu
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhengming Qiu
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
15
|
Choi SH, Kim SY, Kim KM, Mony TJ, Bae HJ, Kim MS, Lee CH, Choi SE, Lee SH, Park SJ. Fermented Sprouts of Codonopsis lanceolata Suppress LPS-Induced Inflammatory Responses by Inhibiting NF-κB Signaling Pathway in RAW 264.7 Macrophages and CD1 Mice. Pharmaceutics 2023; 15:1793. [PMID: 37513980 PMCID: PMC10384864 DOI: 10.3390/pharmaceutics15071793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The interest in bioconversion through fermentation of sprouts produced in smart farms is increasing due to their potential health benefits. Codonopsis lanceolata (CL) is reported to alleviate inflammatory conditions, but much research is still needed to determine which types and parts of CL are most effective. This study investigated the anti-inflammatory effects of a fermented extract of CL sprouts' aerial part (F-CSA) against LPS-stimulated RAW 264.7 macrophages and mice. In the screening test, F-CSA showed the most substantial anti-inflammatory effect among several samples, containing the highest total flavonoids, tannins, and polyphenols. UPLC-ESI-Q/TOF-MS and HPLC analysis revealed that F-CSA had the highest amount of luteolin among all the CL samples analyzed. F-CSA reduced the release of inflammatory cytokines and mediators such as NO and PGE2 by inhibiting the expression levels of iNOS and COX-2 in LPS-stimulated macrophages. Further, we found that the anti-inflammatory effects of F-CSA were mediated by inhibiting the JNK/NF-κB signaling pathway. Moreover, F-CSA improved survival rates and reduced plasma levels of NO and IL-6 in CD1 mice stimulated with LPS. These findings suggest that F-CSA, which contains luteolin, can alleviate inflammation in LPS-induced RAW 264.7 cells and a CD1 mouse model by inhibiting the JNK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Seung-Hyuk Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeong-Min Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tamanna Jahan Mony
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Min Seok Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan Ho Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
16
|
Czarnek K, Tatarczak-Michalewska M, Dreher P, Rajput VD, Wójcik G, Gierut-Kot A, Szopa A, Blicharska E. UV-C Seed Surface Sterilization and Fe, Zn, Mg, Cr Biofortification of Wheat Sprouts as an Effective Strategy of Bioelement Supplementation. Int J Mol Sci 2023; 24:10367. [PMID: 37373518 PMCID: PMC10298951 DOI: 10.3390/ijms241210367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes play an important role in the regulation of many biological functions. An effective way to prevent deficiencies of essential minerals in human diets is the biofortification of plant materials. The process of enriching crop sprouts under hydroponic conditions is the easiest and cheapest to conduct and control. In this study, the sprouts of the wheat (Triticum aestivum L.) varieties Arkadia and Tonacja underwent biofortification with Fe, Zn, Mg, and Cr solutions in hydroponic media at four concentrations (0, 50, 100, and 200 µg g-1) over four and seven days. Moreover, this study is the first to combine sprout biofortification with UV-C (λ = 254 nm) radiation treatment for seed surface sterilization. The results showed that UV-C radiation was effective in suppressing seed germination contamination by microorganisms. The seed germination energy was slightly affected by UV-C radiation but remained at a high level (79-95%). The influence of this non-chemical sterilization process on seeds was tested in an innovative manner using a scanning electron microscope (SEM) and EXAKT thin-section cutting. The applied sterilization process reduced neither the growth and development of sprouts nor nutrient bioassimilation. In general, wheat sprouts easily accumulate Fe, Zn, Mg, and Cr during the applied growth period. A very strong correlation between the ion concentration in the media and microelement assimilation in the plant tissues (R2 > 0.9) was detected. The results of the quantitative ion assays performed with atomic absorption spectrometry (AAS) using the flame atomization method were correlated with the morphological evaluation of sprouts in order to determine the optimum concentration of individual elements in the hydroponic solution. The best conditions were indicated for 7-day cultivation in 100 µg g-1 of solutions with Fe (218% and 322% better nutrient accumulation in comparison to the control condition) and Zn (19 and 29 times richer in zinc concentration compared to the sprouts without supplementation). The maximum plant product biofortification with magnesium did not exceed 40% in intensity compared to the control sample. The best-developed sprouts were grown in the solution with 50 µg g-1 of Cr. In contrast, the concentration of 200 µg g-1 was clearly toxic to the wheat sprouts.
Collapse
Affiliation(s)
- Katarzyna Czarnek
- Institute of Medical Science, Faculty of Medical, The John Paul II Catholic University of Lublin, Konstantynów 1 H Str., 20-708 Lublin, Poland
| | - Małgorzata Tatarczak-Michalewska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Piotr Dreher
- Chair and Department of Public Health, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Grzegorz Wójcik
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Anna Gierut-Kot
- Intermag sp. z o.o. R+D Department, Al. 1000-Lecia 15G, 32-300 Olkusz, Poland;
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Kraków, Poland;
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| |
Collapse
|
17
|
Hernández-Sánchez LY, González-Trujano ME, Moreno DA, Vibrans H, Castillo-Juárez I, Dorazco-González A, Soto-Hernández M. Pharmacological evaluation of the anxiolytic-like effects of an aqueous extract of the Raphanus sativus L. sprouts in mice. Biomed Pharmacother 2023; 162:114579. [PMID: 36989714 DOI: 10.1016/j.biopha.2023.114579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Raphanus sativus L. (Brassicaceae), commonly known as radish, is consumed worldwide as a vegetable. However, its benefits on mental health are unknown. The aim of this study was to evaluate its anxiolytic-like effects and safety using different experimental models. An aqueous extract of R. sativus sprouts (AERSS) was pharmacologically evaluated by intraperitoneal route (i.p.) at 10, 30, and 100 mg/kg and orally (p.o.) at 500 mg/kg on behavior by using open-field and plus-maze tests. In addition, its acute toxicity (LD50) was determined by the Lorke's method. Diazepam (1 mg/kg, i.p.) and buspirone (4 mg/kg, i.p.) were the reference drugs. A significant and anxiolytic-like dosage of AERSS (30 mg/kg, i.p.) resembling the effects of reference drugs was chosen to explore the involvement of GABAA/BDZs site (flumazenil, 5 mg/kg, i.p.) and serotonin 5-HT1A receptors (WAY100635, 1 mg/kg, i.p.) as a possible mechanism of action. A 500 mg/kg, p.o. dosage of AERSS produced an anxiolytic-like response equivalent to 100 mg/kg, i.p. No acute toxicity was observed since a LD50 > 2000 mg/kg, i.p. The phytochemical analysis allowed the identification and quantification of major presence of sulforaphene (2500 µM), sulforaphane (15 µM), iberin (0.75 µM), and indol-3-carbinol (0.75 µM), as major constituents. Both the GABAA/BDZs site and serotonin 5-HT1A receptors were involved in the anxiolytic-like activity of AERSS, depending on the pharmacological parameter or the experimental assay tested. Our results demonstrate that the anxiolytic activity of R. sativus sprouts involves GABAA/BDZs site and serotonin 5-HT1A receptors supporting its health benefits in the treatment of anxiety beyond the satisfaction of basic nutritional needs.
Collapse
|
18
|
Kim JH, Duan S, Park YR, Eom SH. Tissue-Specific Antioxidant Activities of Germinated Seeds in Lentil Cultivars during Thermal Processing. Antioxidants (Basel) 2023; 12:antiox12030670. [PMID: 36978918 PMCID: PMC10045596 DOI: 10.3390/antiox12030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Nongerminated seeds (NGS) and germinated seeds (GS) of lentils are regularly eaten after thermal processing. However, the effect of these high temperatures on the beneficial antioxidants present in seeds is unknown. This study examined the effects of thermal processing on the color, polyphenol content, and antioxidant activity (AA) of the seeds of three different cultivars of lentils, including two with seed coats, French green (FG) and Lentil green (LG), and one without a seed coat, Lentil red (LR). Regardless of the cultivars and processing temperatures, the GS tended to be clearer and less yellow than the NGS. The GS of the FG and LG showed lower levels of total phenolic content, major flavonoid content (kaempferol, luteolin, and myricetin), and AA than the NGS. On the other hand, the LR displayed the opposite trend, with the above indicators being higher in the GS than in the NGS. As the values in the germinated endosperm tended to increase, it was concluded that the decrease in AA in the FG and LG was caused by the reduction in antioxidants in the seed coat. Although the temperature had nonsignificant effects on the majority of the antioxidants in the NGS and GS of different lentil cultivars, an 80 °C treatment yielded the highest value of AA in the GS of FG and LG. The results of a correlation coefficient analysis demonstrated the significance of the content of kaempferol, total flavonoids, and total phenolics examined for this experiment as contributors to AA in lentil tissues.
Collapse
Affiliation(s)
- Ji Hye Kim
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Shucheng Duan
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - You Rang Park
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seok Hyun Eom
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence:
| |
Collapse
|
19
|
Bhaswant M, Shanmugam DK, Miyazawa T, Abe C, Miyazawa T. Microgreens-A Comprehensive Review of Bioactive Molecules and Health Benefits. Molecules 2023; 28:molecules28020867. [PMID: 36677933 PMCID: PMC9864543 DOI: 10.3390/molecules28020867] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Microgreens, a hypothesized term used for the emerging food product that is developed from various commercial food crops, such as vegetables, grains, and herbs, consist of developed cotyledons along with partially expanded true leaves. These immature plants are harvested between 7-21 days (depending on variety). They are treasured for their densely packed nutrients, concentrated flavors, immaculate and tender texture as well as for their vibrant colors. In recent years, microgreens are on demand from high-end restaurant chefs and nutritional researchers due to their potent flavors, appealing sensory qualities, functionality, abundance in vitamins, minerals, and other bioactive compounds, such as ascorbic acid, tocopherol, carotenoids, folate, tocotrienols, phylloquinones, anthocyanins, glucosinolates, etc. These qualities attracted research attention for use in the field of human health and nutrition. Increasing public concern regarding health has prompted humans to turn to microgreens which show potential in the prevention of malnutrition, inflammation, and other chronic ailments. This article focuses on the applications of microgreens in the prevention of the non-communicable diseases that prevails in the current generation, which emerged due to sedentary lifestyles, thus laying a theoretical foundation for the people creating awareness to switch to the recently introduced category of vegetable and providing great value for the development of health-promoting diets with microgreens.
Collapse
Affiliation(s)
- Maharshi Bhaswant
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Dilip Kumar Shanmugam
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Chizumi Abe
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
- Correspondence: ; Tel.: +81-22-795-3205
| |
Collapse
|
20
|
Mattioli S, Cartoni Mancinelli A, Bravi E, Angelucci E, Falcinelli B, Benincasa P, Castellini C, Sileoni V, Marconi O, Dal Bosco A. Dietary Freeze-Dried Flaxseed and Alfalfa Sprouts as Additional Ingredients to Improve the Bioactive Compounds and Reduce the Cholesterol Content of Hen Eggs. Antioxidants (Basel) 2022; 12:antiox12010103. [PMID: 36670965 PMCID: PMC9854451 DOI: 10.3390/antiox12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Eggs are a complete food with high-quality proteins; a 2:1 ratio of unsaturated to saturated fatty acid (SFA); and a good amount of minerals, as well as vitamins or antioxidant compounds. Seeds or mature plants were usually added to the feed to improve egg quality. This study aimed to evaluate the effect of alfalfa and flax freeze-dried sprouts supplementation in diets of laying hens on egg oxidative status and key bioactive compounds. Thirty Sassò hens were fed with three different diets: standard, standard + 3% freeze-dried alfalfa sprouts, or flaxseed sprouts. Ten pools of 10 egg yolks per group were collected at 0, 4, and 8 weeks and analyzed. Supplementation with sprouts enriched the phytosterols, phytoestrogens, tocols, carotenes, vitamin D, and n-3 fatty acid contents in the eggs. Cholesterol content was lower in both sprout-supplemented groups, and a decrease in its oxidative products was also observed. It was found that a 3% freeze-dried sprouts supplementation of approximately 56 days improves the egg quality. Further studies are necessary to verify higher supplementing doses and the applicability of this strategy in the commercial egg production chain.
Collapse
Affiliation(s)
- Simona Mattioli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Alice Cartoni Mancinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Elisabetta Bravi
- Italian Brewing Research Centre, University of Perugia, 06126 Perugia, Italy
- Correspondence:
| | - Elisa Angelucci
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Beatrice Falcinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Valeria Sileoni
- Department of Economics, Universitas Mercatorum, Piazza Mattei 10, 00186 Rome, Italy
| | - Ombretta Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
- Italian Brewing Research Centre, University of Perugia, 06126 Perugia, Italy
| | - Alessandro Dal Bosco
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| |
Collapse
|
21
|
Salgado VDSCN, Zago L, Antunes AEC, Miyahira RF. Chia (Salvia hispanica L.) Seed Germination: a Brief Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:485-494. [PMID: 36083408 DOI: 10.1007/s11130-022-01011-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Chia (Salvia hispanica L.) is a seed native to northern Mexico and southern Guatemala that has started to be consumed in recent years in other regions of the world owing to its nutritional and functional properties. Germination of chia seeds seems to be able to further improve these properties, and it has been the subject of some studies. In general, germination has proven to be a simple and inexpensive process capable of improving the content of phenolic compounds and the antioxidant capacity of foods, as well as reducing antinutritional factors that interfere with nutrient absorption. A particular characteristic of chia seeds is that they produce mucilage when they are hydrated. For this reason, the germination conditions of the seed need to be adapted. The nutritional guidelines of some countries, such as Brazil, Germany and Sweden, recommend that the diet of the population should be more plant-based, thus encouraging the consumption of foods with a high content of bioactive compounds and nutrients, e.g., germinated seeds. This review briefly explored the germination conditions of chia seeds as well as the changes in phytonutrient content and antinutritional factors after their germination process. The main information available in the literature is that germination of chia seeds can increase the contents of protein, fiber, and total phenolic compounds. As a conclusion, germination of chia seeds is favorable for increasing their health benefits and nutritional value. However, chia germination parameters should be adjusted and microbiological risks should be properly evaluated.
Collapse
Affiliation(s)
| | - Lilia Zago
- Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, CEP: 20550-013, Brazil
| | | | - Roberta Fontanive Miyahira
- Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, CEP: 20550-013, Brazil.
| |
Collapse
|
22
|
Wang H, Zhang Y, Jiang H, Cao J, Jiang W. A comprehensive review of effects of electrolyzed water and plasma-activated water on growth, chemical compositions, microbiological safety and postharvest quality of sprouts. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Hassan S, Zeng XA, Khan MK, Farooq MA, Ali A, Kumari A, Mahwish, Rahaman A, Tufail T, Liaqat A. Recent developments in physical invigoration techniques to develop sprouts of edible seeds as functional foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.997261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For nutritional security, the availability of nutrients from food sources is a crucial factor. Global consumption of edible seeds including cereals, pulses, and legumes makes it a valuable source of nutrients particularly vitamins, minerals, and fiber. The presence of anti-nutritional factors forms complexes with nutrients, this complexity of the nutritional profile and the presence of anti-nutritional factors in edible seeds lead to reduced bioavailability of nutrients. By overcoming these issues, the germination process may help improve the nutrient profile and make them more bioavailable. Physical, physiological, and biological methods of seed invigoration can be used to reduce germination restraints, promote germination, enhance early crop development, to increase yields and nutrient levels through sprouting. During sprouting early start of metabolic activities through hydrolytic enzymes and resource mobilization causes a reduction in emergence time which leads to a better nutritional profile. The use of physical stimulating methods to increase the sprouting rate gives several advantages compared to conventional chemical-based methods. The advantages of physical seed treatments include environment-friendly, high germination rate, early seedling emergence, uniform seedling vigor, protection from chemical hazards, and improved yield. Different physical methods are available for seed invigoration viz. gamma irradiation, laser irradiation, microwaves, magnetic field, plasma, sound waves, and ultrasonic waves. Still, further research is needed to apply each technique to different seeds to identify the best physical method and factors for seed species along with different environmental parameters. The present review will describe the use and effects of physical processing techniques for seed invigoration.
Collapse
|
24
|
Combined effects of intermittent radio frequency heating with cinnamon oil vapor on microbial control and quality changes of alfalfa seeds. Int J Food Microbiol 2022; 367:109586. [DOI: 10.1016/j.ijfoodmicro.2022.109586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022]
|
25
|
Dobrowolska-Iwanek J, Zagrodzki P, Galanty A, Fołta M, Kryczyk-Kozioł J, Szlósarczyk M, Rubio PS, Saraiva de Carvalho I, Paśko P. Determination of Essential Minerals and Trace Elements in Edible Sprouts from Different Botanical Families—Application of Chemometric Analysis. Foods 2022; 11:foods11030371. [PMID: 35159521 PMCID: PMC8834360 DOI: 10.3390/foods11030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Background: elemental deficiency may result in the malfunctioning of human organisms. Sprouts, with their attractive looks and well-established popularity, may be considered as alternative sources of elements in the diet. Moreover, the uptake of micro- and macronutrients from sprouts is better when compared to other vegetable sources. The aim of the study was to determine and compare the level of the selected essential minerals and trace elements in 25 sprouts from different botanical families, to preselect the richest species of high importance for human diets. Methods: the Cu, Zn, Mn, Fe, Mg, Ca determinations were performed using atomic absorption spectrometry with flame atomization and iodine by the colorimetric method. Results: beetroot sprouts had the highest levels of Zn, Fe, and Mg, while onion sprouts were the richest in Mn and Ca, among all of the tested sprouts. Sprouts of the Brassicaceae family were generally richer in Ca, Mg, and Zn than sprouts from the Fabaceae family. Results allow preselection of the most perspective sprouts as possible dietary sources of essential minerals and trace elements. For rucola, leeks, onions, and beetroot sprouts, the data on minerals and trace element compositions were performed for the first time.
Collapse
Affiliation(s)
- Justyna Dobrowolska-Iwanek
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Maria Fołta
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
| | - Marek Szlósarczyk
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Pol Salvans Rubio
- Faculty of Pharmacy and Food Science, University of Barcelona, Diagonal Campus, Joan XXIII 27-31, 08-028 Barcelona, Spain;
| | - Isabel Saraiva de Carvalho
- Mediterranean Institute for Agriculture, Environment and Development, University of Algarve, 8005-139 Faro, Portugal;
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (J.D.-I.); (P.Z.); (M.F.); (J.K.-K.)
- Correspondence: ; Tel.: +48-126-205-670
| |
Collapse
|
26
|
Low Temperatures Affect the Physiological Status and Phytochemical Content of Flat Leaf Kale (Brassica oleracea var. acephala) Sprouts. Foods 2022; 11:foods11030264. [PMID: 35159416 PMCID: PMC8834612 DOI: 10.3390/foods11030264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Consumption of plants in the juvenile stage becomes popular because sprouts are easy to grow, and they can be a tasty source of micro- and macro-nutrients and various phytochemicals. However, some environmental factors during sprout growth can affect their characteristics. In this article, we investigated how low temperatures during cultivation (8 °C) and additional exposure to freezing temperatures (−8 °C) affect the physiological status and phytochemical content of kale (Brassica oleracea var. acephala) sprouts compared to the control grown at 21 °C. We conducted five independent laboratory experiments and found that low temperature significantly increased proline content and decreased sprouts yield. In addition, low temperature caused a significant decrease in carotenoid and flavonoid content, while phenolic acid content and total glucosinolates content increased, but individual glucosinolates were differentially affected. Our results indicate that low temperatures affect the physiological status of kale sprouts and affect the content of phytochemicals.
Collapse
|
27
|
Consumption of Sprouts and Perceptions of Their Health Properties in a Region of Northwestern Mexico. Foods 2021; 10:foods10123098. [PMID: 34945649 PMCID: PMC8701714 DOI: 10.3390/foods10123098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
There is a lack of information about consumer understanding of functional foods. Sprouts provide beneficial compounds that can help counteract chronic noncommunicable diseases. The population of a region in Northwestern Mexico has a high prevalence of chronic degenerative disease, and there is a need to promote strategies to increase the consumption of foods that provide health benefits, including sprouts. However, there is a lack of information regarding the sale, consumption and perception of sprouts’ healthy properties. A computer-assisted web-based survey (CAWI) was developed and distributed through social media to understand consumer knowledge of these foods’ health effects and their consumption. The survey of people with diverse sociodemographic profiles indicated a 1–3 times per week consumption and they knew the health benefits of consuming sprouts. A total of 82% of respondents were conscious that sprout consumption could prevent chronic diseases, which may be related to education level (χ2: 0.001, p < 0.05). In order to expand on our findings, it is important to investigate the communication strategies used by sprout manufacturers, dieticians, nutritionists and health professionals about the health benefits of sprout products to promote their consumption.
Collapse
|
28
|
Aloo SO, Ofosu FK, Oh DH. Elicitation: a new perspective into plant chemo-diversity and functional property. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34802360 DOI: 10.1080/10408398.2021.2004388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sprouts are consumed as fresh foods or their flours can be added in processed products as determinants of sensory perception, product differentiation, and shelf life. Elicitation technique can be used to accumulate phytochemicals in plant sprouts thereby improving their functionality. This review summarized the recent state of knowledge on the use of elicitors to produce sprouts with improved functional properties. Elicitation using abiotic or biotic elicitors has been applied to increase the yield of sprout secondary metabolites (glucosinolates, aminobutyric acid, phenolic compounds), biological activities (antioxidant, anti-obesity, antidiabetic properties), and growth. Elicitors trigger the synthesis of plant metabolites by changing enzyme activities or gene expression related to the plant defence system. They also promote sprout growth by enhancing the levels of plant growth hormones. Elicitation is an effective method to produce sprouts with improved health benefits, and enhance their growth. Future studies are needed to identify early plant signaling pathways to fully understand elicitors' mechanisms on plant metabolites. Moreover, further investigation can be impetus in revealing the lower and upper limits of elicitor that can be applied in sprouts without compromising health and environmental safety.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|