1
|
Adair D, Bagheri A, Yosef M, Khalatbari S, Lewis T, Mohan A, Lugogo N. High Interleukin (IL)-6 is Associated with Lower Lung Function and Increased Likelihood of Metabolic Dysfunction in Asthma. Pulm Ther 2025; 11:41-54. [PMID: 39714726 PMCID: PMC11861817 DOI: 10.1007/s41030-024-00281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
INTRODUCTION Asthma is a complex condition characterized by airway inflammation. Interleukin-6 (IL-6) plays a significant role in asthma pathogenesis through its effects on T cells and its association with pro-inflammatory responses. Both lung and circulating IL-6 levels are elevated in asthma. IL-6 is positively associated with disease severity, frequent exacerbations, and impaired lung function, all of which can be observed clinically. We developed an IL-6 cut-off model to examine the association between high IL-6, race, high body mass index (BMI), metabolic disease, and asthma severity as assessed by reduced lung function. METHODS This study utilized the Coronary Artery Risk Development in Young Adults (CARDIA) database, comprised of 5115 adults, to investigate the relationship between IL-6 levels, asthma, race, and metabolic dysfunction. A "healthy" subset of 427 patients was used to compute the IL-6 cut-off. IL-6 levels within detection limits (0.15-12 pg/mL) were analyzed. The IL-6 cut-off was determined using the 95th percentile of log-transformed IL-6 values for lean (BMI < 25) and healthy individuals. Specific cut-offs were established for racial groups. Statistical analyses involved comparing patient characteristics between high and low IL-6 groups, regression analyses, and assessment of factors influencing lung function changes. RESULTS Using an IL-6 cut-off of 4.979 pg/mL, the cohort was divided into high and low IL-6 groups. High IL-6 correlated with Black race, higher BMI, hypertension, and markers of metabolic dysfunction, e.g., elevated HbA1c, C-reactive protein (CRP), and reduced lung function. Multivariable analysis linked high IL-6 with male gender, high BMI, Black race, HbA1c, CRP, and inversely with lung function and total cholesterol. Obesity showed a consistent positive association with elevated IL-6, regardless of the presence or absence of asthma. Patients with asthma and high IL-6 were more likely to be Black and showed increased CRP. Lung function was lowest in non-lean, high IL-6 patients with asthma, with similar trends in non-lean (BMI ≥ 25) patients without asthma. CONCLUSION This study underscores the significant association between IL-6, asthma, obesity, and metabolic dysfunction. Elevated IL-6 correlates with asthma severity, particularly in individuals with obesity. Future research should explore anti-IL-6 therapies for specific phenotypes, such as obesity-related asthma. These findings advance our understanding of asthma and the role of IL-6 in its pathogenesis.
Collapse
Affiliation(s)
- Dionne Adair
- Division of Pediatric Pulmonary, Medical College of Georgia, Augusta, GA, USA
| | - AmirBehzad Bagheri
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Matheos Yosef
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, USA
| | - Shokoufeh Khalatbari
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, USA
| | - Toby Lewis
- Division of Pediatric Pulmonology, University of Michigan, Ann Arbor, MI, USA
| | - Arjun Mohan
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Njira Lugogo
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Nogueira Silva Lima MT, Delayre-Orthez C, Howsam M, Jacolot P, Niquet-Léridon C, Okwieka A, Anton PM, Perot M, Barbezier N, Mathieu H, Ghinet A, Fradin C, Boulanger E, Jaisson S, Gillery P, Tessier FJ. Early- and life-long intake of dietary advanced glycation end-products (dAGEs) leads to transient tissue accumulation, increased gut sensitivity to inflammation, and slight changes in gut microbial diversity, without causing overt disease. Food Res Int 2024; 195:114967. [PMID: 39277266 DOI: 10.1016/j.foodres.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Dietary advanced glycation end-products (dAGEs) accumulate in organs and are thought to initiate chronic low-grade inflammation (CLGI), induce glycoxidative stress, drive immunosenescence, and influence gut microbiota. Part of the toxicological interest in glycation products such as dietary carboxymethyl-lysine (dCML) relies on their interaction with receptor for advanced glycation end-products (RAGE). It remains uncertain whether early or lifelong exposure to dAGEs contributes physiological changes and whether such effects are reversible or permanent. Our objective was to examine the physiological changes in Wild-Type (WT) and RAGE KO mice that were fed either a standard diet (STD - 20.8 ± 5.1 µg dCML/g) or a diet enriched with dCML (255.2 ± 44.5 µg dCML/g) from the perinatal period for up to 70 weeks. Additionally, an early age (6 weeks) diet switch (dCML→STD) was explored to determine whether potential harmful effects of dCML could be reversed. Previous dCML accumulation patterns described by our group were confirmed here, with significant RAGE-independent accumulation of dCML in kidneys, ileum and colon over the 70-week dietary intervention (respectively 3-fold, 17-fold and 20-fold increases compared with controls). Diet switching returned tissue dCML concentrations to their baseline levels. The dCML-enriched diet had no significative effect on endogenous glycation, inflammation, oxidative stress or senescence parameters. The relative expression of TNFα, VCAM1, IL6, and P16 genes were all upregulated (∼2-fold) in an age-dependent manner, most notably in the kidneys of WT animals. RAGE knockout seemed protective in this regard, diminishing age-related renal expression of TNFα. Significant increases in TNFα expression were detectable in the intestinal tract of the Switch group (∼2-fold), suggesting a higher sensitivity to inflammation perhaps related to the timing of the diet change. Minor fluctuations were observed at family level within the caecal microbiota, including Eggerthellaceae, Anaerovoracaceae and Marinifilaceae communities, indicating slight changes in composition. Despite chronic dCML consumption resulting in higher free CML levels in tissues, there were no substantial increases in parameters related to inflammageing. Age was a more important factor in inflammation status, notably in the kidneys, while the early-life dietary switch may have influenced intestinal susceptibility to inflammation. This study affirms the therapeutic potential of RAGE modulation and corroborates evidence for the disruptive effect of dietary changes occurring too early in life. Future research should prioritize the potential influence of dAGEs on disease aetiology and development, notably any exacerbating effects they may have upon existing health conditions.
Collapse
Affiliation(s)
- M T Nogueira Silva Lima
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - C Delayre-Orthez
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Howsam
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - P Jacolot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - C Niquet-Léridon
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Okwieka
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France
| | - P M Anton
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Perot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - N Barbezier
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - H Mathieu
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Ghinet
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
| | - C Fradin
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - E Boulanger
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - S Jaisson
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - P Gillery
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - F J Tessier
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
3
|
Popov M, Popov Y, Kosterin D, Lepik O. Inflammatory Hematological Ratios in Adolescents with Mental Disorders: A Scoping Review. CONSORTIUM PSYCHIATRICUM 2024; 5:45-61. [PMID: 39071999 PMCID: PMC11272303 DOI: 10.17816/cp15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGOUND Inflammatory hematological ratios (IHRs), such as neutrophil to lymphocyte, monocyte to lymphocyte, and platelet to lymphocyte ratios, are associated with mental disorders, symptoms severity, and the disease phase. Evidence from the studies in adult patients has been summarized in systematic reviews and meta-analyses. The results of the studies in adolescents remain poorly systematized. AIM To summarize the findings from the studies that investigated the relationship of IHRs with mental disorders in adolescent patients. METHODS This scoping review included studies of IHRs in patients aged 10-19 years with mental disorders (other than anorexia nervosa), published in English by December 31, 2023. The search for relevant papers was performed in MEDLINE. The studies were categorized into two groups: studies with external controls (healthy adolescents) and studies with internal controls (patients in different phases of mental disorder, with or without self-harm/suicidal behaviors). RESULTS A total of 11 studies were included in the review (all cross-sectional ones). The results of these studies demonstrate that 1) adolescents with mental disorders (major depressive disorder, psychotic disorders, obsessive-compulsive disorder, attention deficit hyperactivity disorder, substance use disorders) have higher IHR values than individuals of the same age without corresponding disorders (5 studies); 2) IHR values are positively correlated with the severity of psychopathological symptoms (1 study); 3) higher IHR values are associated with the phase of the mental disorder - manic episode in bipolar disorder (1 study) and exacerbation of psychosis in psychotic disorders (1 study); and 4) higher IHR values are associated with self-harm/suicidal behaviors - suicide attempts (1 study) and non-suicidal self-injury (1 study). CONCLUSION IHRs are associated with mental disorders in adolescents, and higher IHR values are associated with a more severe/acute clinical presentation (severity of symptoms, mania, acute psychosis, self-harm/suicidal behaviors). Further studies of higher methodological quality are needed to evaluate the diagnostic and prognostic value of IHRs as biomarkers of mental disorders in adolescence.
Collapse
|
4
|
Rodríguez-Ayala M, Donat-Vargas C, Moreno-Franco B, Mérida DM, Ramón Banegas J, Rodríguez-Artalejo F, Guallar-Castillón P. Association of a healthy beverage score with total mortality in the adult population of Spain: A nationwide cohort study. PLoS Med 2024; 21:e1004337. [PMID: 38261590 PMCID: PMC10805278 DOI: 10.1371/journal.pmed.1004337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Despite the substantial evidence of the relationship between diet and mortality, the role of beverage consumption patterns is not well known. The aim of this study was to assess the association of the adherence to a Healthy Beverage Score (HBS) and all-cause mortality in a representative sample of the Spanish adult population. METHODS AND FINDINGS We conducted an observational cohort study using data from the Study on Nutrition and Cardiovascular Risk in Spain (ENRICA), which included 12,161 community-dwelling individuals aged ≥18 years recruited in 2008 to 2010 and followed until January 2022. At baseline, food consumption was collected using a validated diet history. The HBS consists of 7 items, each of which is scored from 1 to 4 (highest adherence). The HBS ranges from 7 to 28 points with a higher score representing a healthier pattern. Adherence was assigned as a higher consumption of low-fat milk, and coffee and tea, a lower consumption of whole-fat milk, no consumption of fruit juice, artificially sweetened beverages, or sugar-sweetened beverages, and no or moderate consumption of alcohol. Total mortality was ascertained by linkage to the Spanish National Death Index. Statistical analyses were performed with Cox models and adjusted for the main confounders, including sociodemographic, lifestyle, dietary variables, and morbidity. After a mean follow-up of 12.5 years (SD: 1.7; range: 0.5 to 12.9), a total of 967 deaths occurred. For all-cause mortality, the fully adjusted hazard ratio (HR) for the highest versus lowest sex-specific quartiles of HBS was 0.72 (95% confidence interval [0.57, 0.91], p linear-trend = 0.015), corresponding to an 8.3% reduction in the absolute risk of death. A linear relationship between the risk of death and the adherence to the HBS was observed using restricted cubic splines. The results were robust to sensitivity analyses. The main limitation was that repeated measurements on beverage consumption were not available and beverage consumption could have changed during follow-up. CONCLUSIONS In this study, we observed that higher adherence to the HBS was associated with lower total mortality. Adherence to a healthy beverage pattern could play a role in the prevention of premature mortality.
Collapse
Affiliation(s)
- Montserrat Rodríguez-Ayala
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
- Department of Microbiology and Parasitology, Hospital Universitario La Paz, Madrid, Spain
| | - Carolina Donat-Vargas
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
- ISGlobal, Campus Mar., Barcelona, Spain
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Belén Moreno-Franco
- Instituto de Investigación Sanitaria (IIS) Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain
- CIBERCV (CIBER of Cardiovascular), Instituto de Salud Carlos III, Madrid, Spain
| | - Diana María Mérida
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - José Ramón Banegas
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC., Madrid, Spain
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid and CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC., Madrid, Spain
| |
Collapse
|
5
|
Nogueira Silva Lima MT, Howsam M, Delayre-Orthez C, Jacolot P, Jaisson S, Criquet J, Billamboz M, Ghinet A, Fradin C, Boulanger E, Bray F, Flament S, Rolando C, Gillery P, Niquet-Léridon C, Tessier FJ. Glycated bovine serum albumin for use in feeding trials with animal models - In vitro methodology and characterization of a glycated substrate for modifying feed pellets. Food Chem 2023; 428:136815. [PMID: 37450953 DOI: 10.1016/j.foodchem.2023.136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
This study investigated different methods to produce Nε-carboxymethyl-lysine (CML)-enriched bovine serum albumin (BSA) as alternatives to the classical approach using glyoxylic acid (GA) and sodium cyanoborohydride (NaBH3CN) which results in toxic hydrogen cyanide (HCN). The reaction of GA (6 mmol/L) and NaBH3CN (21 mmol/L) to produce CML remained the most effective with CML yields of 24-35%, followed by 13-24% using 300 mmol/L glyoxal (GO). GA promoted specific modification of lysine to CML, and fewer structural modifications of the BSA molecule compared with GO, as evidenced by fluorescence and proteomic analyses. GO promoted greater arginine modification compared with GA (76 vs 23%). Despite structural changes to BSA with GO, murine fecal clearance of CML was similar to literature values. Hence, BSA glycation with 300 mmol/L glyoxal is a suitable alternative to GA and NaBH3CN for generating CML-enriched protein free of HCN, but a CML-only fortification model remains to be described.
Collapse
Affiliation(s)
- M T Nogueira Silva Lima
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - M Howsam
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - C Delayre-Orthez
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 60000 Beauvais, France
| | - P Jacolot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 60000 Beauvais, France
| | - S Jaisson
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France, University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - J Criquet
- Univ. Lille, Laboratory of Advanced Spectroscopy for Interactions, Reactivity and Environment, CNRS, UMR 8516 - LASIRE, Lille F-59000, France
| | - M Billamboz
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
| | - A Ghinet
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
| | - C Fradin
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - E Boulanger
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - F Bray
- Miniaturization for Synthesis, Analysis & Proteomics, UAR 3290, CNRS, University of Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - S Flament
- Miniaturization for Synthesis, Analysis & Proteomics, UAR 3290, CNRS, University of Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - C Rolando
- Miniaturization for Synthesis, Analysis & Proteomics, UAR 3290, CNRS, University of Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - P Gillery
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France, University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - C Niquet-Léridon
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 60000 Beauvais, France
| | - F J Tessier
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
6
|
Li J, Chen J, Huang P, Cai Z, Zhang N, Wang Y, Li Y. The Anti-Inflammatory Mechanism of Flaxseed Linusorbs on Lipopolysaccharide-Induced RAW 264.7 Macrophages by Modulating TLR4/NF-κB/MAPK Pathway. Foods 2023; 12:2398. [PMID: 37372610 DOI: 10.3390/foods12122398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Flaxseed linusorbs (FLs), cyclic peptides derived from flaxseed oils, have shown multiple activities such as anticancer, antibacterial, and anti-inflammatory effects. However, the anti-inflammatory monomers of FLs and their mechanisms are still unclear. In this study, we have elucidated that FLs suppress the modulation of NF-κB/MAPK signaling pathways by targeting the inhibition of activating TLR4 in LPS-induced RAW 264.7 cells. Therefore, the transcription and expression of inflammatory cytokines (i.e., TNF-α, IL-1β, and IL-6) and inflammatory mediator proteins (i.e., iNos and Cox-2) were significantly suppressed by FLs. In addition, an in silico study discovered that eight monomers of FLs showed high-affinity bindings with TLR4. In silico data combined with HPLC results indicated that FLA and FLE, accounting for 44%, were likely the major anti-inflammatory monomers in FLs. In summary, FLA and FLE were proposed as the main anti-inflammatory active cyclopeptides via hindering TLR4/NF-κB/MAPK signaling pathways, suggesting the potential use of food-derived FLs as natural anti-inflammatory supplements in a daily diet.
Collapse
Affiliation(s)
- Jialong Li
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jing Chen
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Institute for Advance and Application Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Ping Huang
- Guangzhou Meizhiao Cosmetics Co., Ltd., No. 555, Panyu Av. North, Guangzhou 510000, China
| | - Zizhe Cai
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ning Zhang
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Barrios-Nolasco A, Domínguez-López A, Miliar-García A, Cornejo-Garrido J, Jaramillo-Flores ME. Anti-Inflammatory Effect of Ethanolic Extract from Tabebuia rosea (Bertol.) DC., Quercetin, and Anti-Obesity Drugs in Adipose Tissue in Wistar Rats with Diet-Induced Obesity. Molecules 2023; 28:molecules28093801. [PMID: 37175211 PMCID: PMC10180162 DOI: 10.3390/molecules28093801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is characterized by the excessive accumulation of fat, which triggers a low-grade chronic inflammatory process. Currently, the search for compounds with anti-obesogenic effects that help reduce body weight, as well as associated comorbidities, continues. Among this group of compounds are plant extracts and flavonoids with a great diversity of action mechanisms associated with their beneficial effects, such as anti-inflammatory effects and/or as signaling molecules. In the bark of Tabebuia rosea tree, there are different classes of metabolites with anti-inflammatory properties, such as quercetin. Therefore, the present work studied the effect of the ethanolic extract of T. rosea and quercetin on the mRNA of inflammation markers in obesity compared to the drugs currently used. Total RNA was extracted from epididymal adipose tissue of high-fat diet-induced obese Wistar rats treated with orlistat, phentermine, T. rosea extract, and quercetin. The rats treated with T. rosea and quercetin showed 36 and 31% reductions in body weight compared to the obese control, and they likewise inhibited pro-inflammatory molecules: Il6, Il1b, Il18, Lep, Hif1a, and Nfkb1 without modifying the expression of Socs1 and Socs3. Additionally, only T. rosea overexpressed Lipe. Both T. rosea and quercetin led to a reduction in the expression of pro-inflammatory genes, modifying signaling pathways, which led to the regulation of the obesity-inflammation state.
Collapse
Affiliation(s)
- Alejandro Barrios-Nolasco
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07320, Mexico
| | - Aarón Domínguez-López
- Laboratorio de Biología Molecular, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Angel Miliar-García
- Laboratorio de Biología Molecular, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07320, Mexico
| | - María Eugenia Jaramillo-Flores
- Laboratorio de Polímeros, Department de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Wilfrido Massieu s/n esq. Manuel I. Stampa. Col. Unidad Profesional Adolfo López Mateos, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07738, Mexico
| |
Collapse
|
8
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
9
|
Arnone D, Chabot C, Heba AC, Kökten T, Caron B, Hansmannel F, Dreumont N, Ananthakrishnan AN, Quilliot D, Peyrin-Biroulet L. Sugars and Gastrointestinal Health. Clin Gastroenterol Hepatol 2022; 20:1912-1924.e7. [PMID: 34902573 DOI: 10.1016/j.cgh.2021.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
Sugar overconsumption is linked to a rise in the incidence of noncommunicable diseases such as diabetes, cardiovascular diseases, and cancer. This increased incidence is becoming a real public health problem that is more severe than infectious diseases, contributing to 35 million deaths annually. Excessive intake of free sugars can cause many of the same health problems as excessive alcohol consumption. Many recent international recommendations have expressed concerns about sugar consumption in Westernized societies, as current consumption levels represent quantities with no precedent during hominin evolution. In both adults and children, the World Health Organization strongly recommends reducing free sugar intake to <10% of total energy intake and suggests a further reduction to below 5%. Most studies have focused on the deleterious effects of Western dietary patterns on global health and the intestine. Whereas excessive dietary fat consumption is well studied, the specific impact of sugar is poorly described, while refined sugars represent up to 40% of caloric intake within industrialized countries. However, high sugar intake is associated with multiple tissue and organ dysfunctions. Both hyperglycemia and excessive sugar intake disrupt the intestinal barrier, thus increasing gut permeability and causing profound gut microbiota dysbiosis, which results in a disturbance in mucosal immunity that enhances infection susceptibility. This review aims to highlight the roles of different types of dietary carbohydrates and the consequences of their excessive intake for intestinal homeostasis.
Collapse
Affiliation(s)
- Djésia Arnone
- Délégation à la Recherche Clinique et de l'Innovation, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France; Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Caroline Chabot
- Inserm U1256, Pediatric Hepato-Gastroenterology and Nutrition Unit, Department of Child Medicine and Clinical Genetics, Université de Lorraine, Nancy, France
| | - Anne-Charlotte Heba
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Tunay Kökten
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France
| | - Franck Hansmannel
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | - Natacha Dreumont
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France
| | | | - Didier Quilliot
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France; Department of Diabetology-Endocrinology-Nutrition, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France
| | - Laurent Peyrin-Biroulet
- Inserm U1256 "Nutrition - Genetics and exposure to environmental risks," Université de Lorraine, Nancy, France; Department of Gastroenterology, Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Nancy, France.
| |
Collapse
|
10
|
Behl T, Kumar S, Singh S, Bhatia S, Albarrati A, Albratty M, Meraya AM, Najmi A, Bungau S. Reviving the mutual impact of SARS-COV-2 and obesity on patients: From morbidity to mortality. Biomed Pharmacother 2022; 151:113178. [PMID: 35644117 PMCID: PMC9127128 DOI: 10.1016/j.biopha.2022.113178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/25/2023] Open
Abstract
Obesity-related metabolic dysfunction, endothelium imbalance, chronic inflammation, immune dysregulation, and its comorbidities may all have a role in systemic inflammation, leading to the pulmonary fibrosis and cytokine storm, which leads to failure of lung function, which is a hallmark of severe SARS-CoV-2 infection. Obesity may also disrupt the function of mucociliary escalators and cooperation of epithelial cell's motile cilia in the airway, limiting the clearance of the coronavirus that causes severe acute respiratory syndrome (SARS-CoV-2). Adipose tissues in obese patients have a greater number of proteases and receptors for SARS-CoV-2 admittance, proposing that they could serve as an accelerator and reservoir for this virus, boosting immunological response and systemic inflammation. Lastly, anti-inflammatory cytokines such as anti-IL-6 and the infusion of mesenchymal stem cells could be used as a modulation therapy of immunity to help COVID-19 patients. Obesity, on the other hand, is linked to the progress of COVID-19 through a variety of molecular pathways, and obese people are part of the SARS-CoV-2 susceptible individuals, necessitating more protective measures.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ali Albarrati
- Rehabilitation Health Sciences College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania.
| |
Collapse
|
11
|
Receptor Mediated Effects of Advanced Glycation End Products (AGEs) on Innate and Adaptative Immunity: Relevance for Food Allergy. Nutrients 2022; 14:nu14020371. [PMID: 35057553 PMCID: PMC8778532 DOI: 10.3390/nu14020371] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
As of late, evidence has been emerging that the Maillard reaction (MR, also referred to as glycation) affects the structure and function of food proteins. MR induces the conformational and chemical modification of food proteins, not only on the level of IgG/IgE recognition, but also by increasing the interaction and recognition of these modified proteins by antigen-presenting cells (APCs). This affects their biological properties, including digestibility, bioavailability, immunogenicity, and ultimately their allergenicity. APCs possess various receptors that recognize glycation structures, which include receptor for advanced glycation end products (RAGE), scavenger receptors (SRs), galectin-3 and CD36. Through these receptors, glycation structures may influence the recognition, uptake and antigen-processing of food allergens by dendritic cells (DCs) and monocytes. This may lead to enhanced cytokine production and maturation of DCs, and may also induce adaptive immune responses to the antigens/allergens as a result of antigen uptake, processing and presentation to T cells. Here, we aim to review the current literature on the immunogenicity of AGEs originating from food (exogenous or dietary AGEs) in relation to AGEs that are formed within the body (endogenous AGEs), their interactions with receptors present on immune cells, and their effects on the activation of the innate as well as the adaptive immune system. Finally, we review the clinical relevance of AGEs in food allergies.
Collapse
|
12
|
Exposure of Caenorhabditis elegans to Dietary Nε-Carboxymethyllysine Emphasizes Endocytosis as a New Route for Intestinal Absorption of Advanced Glycation End Products. Nutrients 2021; 13:nu13124398. [PMID: 34959950 PMCID: PMC8705817 DOI: 10.3390/nu13124398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
The impact of dietary advanced glycation end products (dAGEs) on human health has been discussed in many studies but, to date, no consensual pathophysiological process has been demonstrated. The intestinal absorption pathways which have so far been described for dAGEs, the passive diffusion of free AGE adducts and transport of glycated di-tripeptides by the peptide transporter 1 (PEPT-1), are not compatible with certain pathophysiological processes described. To get new insight into the intestinal absorption pathways and the pathophysiological mechanisms of dAGEs, we initiated an in vivo study with a so-called simple animal model with a complete digestive tract, Caenorhabditis elegans. Dietary bacteria were chemically modified with glyoxylic acid to mainly produce Nε-carboxymethyllysine (CML) and used to feed the worms. We performed different immunotechniques using an anti-CML antibody for the relative quantification of ingested CML and localization of this AGE in the worms’ intestine. The relative expression of genes encoding different biological processes such as response to stresses and intestinal digestion were determined. The physiological development of the worms was verified. All the results were compared with those obtained with the control bacteria. The results revealed a new route for the intestinal absorption of dietary CML (dCML), endocytosis, which could be mediated by scavenger receptors. The exposure of worms to dCML induced a reproductive defect and a transcriptional response reflecting oxidative, carbonyl and protein folding stresses. These data, in particular the demonstration of endocytosis of dCML by enterocytes, open up new perspectives to better characterize the pathophysiological mechanisms of dAGEs.
Collapse
|