1
|
Li D, Liu Y, Fu Q, Han R, Wu J, Zhang Q, Fang F, Zhu D. Effects of Cornus mas L. Supplementation on Anthropometric and Metabolic Characteristics in Patients With Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Phytother Res 2025; 39:1565-1577. [PMID: 39895218 DOI: 10.1002/ptr.8445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
The high prevalence of metabolic syndrome (MetS) is threatening the health of people around the world. The fruit of Cornus mas L. (CM) is rich in bioactive compounds that have the potential to promote health and improve chronic diseases associated with MetS. This systematic review aimed to compile data on the effects of CM supplementation on anthropometric and metabolic characteristics in patients with MetS. Scopus, Web of Sciences, PubMed, Embase, and the Cochrane library were employed to identify the eligible randomized controlled trials (RCTs) that assessed the effects of CM on anthropometric parameters, glycemia, and lipid profiles up to December 2024. The included articles were subjected to assessment using the Cochrane risk-of-bias tool and the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. A heterogeneity test was conducted on the included trials using the I 2 statistic. A random-effects model was applied based on the results of the heterogeneity tests, and the pooled data were presented as the mean difference with a 95% confidence interval (CI). A total of five RCTs were included in the analysis, with a total sample size of 313 human subjects. The results indicated that CM had a significant effect on lowering body mass index (BMI) (MD: -0.31; 95% CI: -0.46 to -0.16, p < 0.0001, I 2 = 15%), hip circumference (HC) (MD: -0.84; 95% CI: -1.31 to -0.37, p = 0.0005, I 2 = 19%), fasting blood glucose (FBG) (MD: -4.85; 95% CI: -7.80 to -1.91, p = 0.001, I 2 = 24%), and total cholesterol (TC) levels (MD: -13.40; 95% CI: -18.93 to -7.87, p < 0.00001, I 2 = 30%). Furthermore, a notable elevation in high-density lipoprotein cholesterol (HDL-c) was observed in CM interventions (MD: 2.08; 95% CI: 0.03-4.13, p = 0.05, I 2 = 0%). Compared to the control group, the reduction in insulin (MD: -3.20; 95% CI: -5.25 to -1.15, p = 0.002, I 2 = 83%), glycosylated hemoglobin A1c (HbA1C) (MD: -0.36; 95% CI: -0.67 to -0.04, p = 0.03, I 2 = 89%), triglyceride (TG) (MD: -36.47, 95% CI: -62.03 to -10.91, p = 0.005, I 2 = 76%), and low-density lipoprotein cholesterol (LDL-c) (MD: -15.35; 95% CI: -25.63 to -5.06, p = 0.003, I 2 = 52%) were observed in CM interventions, although there was considerable heterogeneity in the results. In conclusion, the present findings suggest the beneficial effects of CM supplementation on MetS and related disorders. However, in order to establish a robust link between CM and MetS, further trials with adequate sample sizes are warranted.
Collapse
Affiliation(s)
- Dong Li
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yuzhe Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qiang Fu
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Rui Han
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jinlin Wu
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Qinglan Zhang
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Fang Fang
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Danping Zhu
- Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
2
|
Pan J, Liang J, Xue Z, Meng X, Jia L. Effect of dietary anthocyanins on the risk factors related to metabolic syndrome: A systematic review and meta-analysis. PLoS One 2025; 20:e0315504. [PMID: 39928643 PMCID: PMC11809928 DOI: 10.1371/journal.pone.0315504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/25/2024] [Indexed: 02/12/2025] Open
Abstract
OBJECTIVE This meta-analysis aims to systematically investigate whether dietary anthocyanin supplementation can reduce metabolic syndrome (MetS)-related risk factors: abdominal obesity, dyslipidemia (low high-density lipoprotein cholesterol (HDL-C) and hypertriglyceridemia), hypertension, and hyperglycemia by conducting a meta-analysis of randomized controlled trials (RCTs). METHODS A systematic search of 5 electronic databases (PubMed, Web of Science, Scopus, Cochrane Library, and Embase) was conducted from inception until April 25, 2024. A total of 1213 studies were identified, of which randomized controlled trials involving subjects with MetS-related factors, comparing dietary anthocyanin supplementation with placebo, and reporting results on anthropometric, physiological, and metabolic markers relevant to this study were selected. Depending on the heterogeneity of the included studies, a fixed-effect model was applied for low heterogeneity (I2 < 50%), whereas a random-effects model was employed when substantial heterogeneity was present (I2 ≥ 50%). The weighted mean difference (WMD) and 95% confidence intervals (CI) were calculated. RESULTS This meta-analysis included 29 randomized controlled trials with 2006 participants. The results showed that dietary anthocyanins significantly improved various lipid and glycemic markers: HDL-C: increased by 0.05 mmol/L (95% CI: 0.01 to 0.10, p = 0.026), LDL-C: decreased by 0.18 mmol/L (95% CI: -0.28 to -0.08, p = 0.000), Triglycerides (TGs): reduced by 0.11 mmol/L (95% CI: -0.20 to -0.02, p = 0.021), Total cholesterol (TC): lowered by 0.34 mmol/L (95% CI: -0.49 to -0.18, p = 0.000), Fasting blood glucose (FBG): reduced by 0.29 mmol/L (95% CI: -0.46 to -0.12, p = 0.001), Glycated hemoglobin (HbA1c): decreased by 0.43% (95% CI: -0.74 to -0.13, p = 0.005). Weight: (WMD: -0.12 kg, 95% CI: -0.45 to 0.21, p = 0.473), Body mass index (BMI): (WMD: -0.12 kg/m2, 95% CI: -0.26 to 0.03, p = 0.12), Overall WC: (WMD: 0.18 cm, 95% CI: -0.51 to 0.87, p = 0.613), Systolic blood pressure (SBP): (WMD: -0.12 mmHg, 95% CI: -1.06 to 0.82, p = 0.801), Diastolic blood pressure (DBP): (WMD: 0.61 mmHg, 95% CI: -0.03 to 1.25, p = 0.061), Insulin levels: (WMD: -0.02 mU/L, 95% CI: -0.44 to 0.40, p = 0.932), HOMA-IR: (WMD: -0.11, 95% CI: -0.51 to 0.28, p = 0.573). Additionally, a 100 mg/day dosage of anthocyanins significantly reduced: Waist circumference (WC): by 0.55 cm (95% CI: -1.09 to -0.01, p = 0.047). Subgroup analyses based on intervention duration, anthocyanin dosage, health status, formulation, dosage frequency, physical activity levels, and baseline levels of corresponding markers revealed varying significances, particularly in relation to blood pressure. CONCLUSION Dietary anthocyanins effectively improve low HDL cholesterol, hypertriglyceridemia, and hyperglycemia, making them a promising adjunct for managing MetS. However, it is important to note that dietary anthocyanin interventions may raise systolic blood pressure (SBP) and diastolic blood pressure (DBP) depending on intervention dose, duration, participant health status, and formulation. Clinicians should fully consider these effects when recommending anthocyanin supplementation. Further long-term, well-designed, large-scale clinical trials are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Junyin Pan
- School of Pharmacy of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jingwen Liang
- School of Pharmacy of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Zhantu Xue
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Meng
- School of Pharmacy of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Liwei Jia
- School of Pharmacy of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Zhao Y, Wang L, Huang Y, Evans PC, Little PJ, Tian X, Weng J, Xu S. Anthocyanins in Vascular Health and Disease: Mechanisms of Action and Therapeutic Potential. J Cardiovasc Pharmacol 2024; 84:289-302. [PMID: 39240726 DOI: 10.1097/fjc.0000000000001602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/31/2024] [Indexed: 09/08/2024]
Abstract
ABSTRACT Unhealthy lifestyles have placed a significant burden on individuals' cardiovascular health. Anthocyanins are water-soluble flavonoid pigments found in a wide array of common foods and fruits. Anthocyanins have the potential to contribute to the prevention and treatment of cardiovascular disease by improving lipid profiles and vascular function, reducing blood glucose levels and blood pressure, and inhibiting inflammation. These actions have been demonstrated in numerous clinical and preclinical studies. At the cellular and molecular level, anthocyanins and their metabolites could protect endothelial cells from senescence, apoptosis, and inflammation by activating the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthases, silent information regulator 1 (SIRT1), or nuclear factor erythroid2-related factor 2 pathways and inhibiting the nuclear factor kappa B, Bax, or P38 mitogen-activated protein kinase pathways. Furthermore, anthocyanins prevent vascular smooth muscle cell from platelet-derived growth factor -induced or tumor necrosis factor-α-induced proliferation and migration by inhibiting the focal adhesion kinase and extracellular regulated protein kinases signaling pathways. Anthocyanins could also attenuate vascular inflammation by reducing the formation of oxidized lipids, preventing leukocyte adhesion and infiltration of the vessel wall, and macrophage phagocytosis of deposited lipids through reducing the expression of cluster of differentiation 36 and increasing the expression of ATP-binding cassette subfamily A member 1 and ATP-binding cassette subfamily G member 1. At the same time, anthocyanins could lower the risk of thrombosis by inhibiting platelet activation and aggregation through down-regulating P-selectin, transforming growth factor-1, and CD40L. Thus, the development of anthocyanin-based supplements or derivative drugs could provide new therapeutic approaches to the prevention and treatment of vascular diseases.
Collapse
Affiliation(s)
- Yaping Zhao
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Li Wang
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Yu Huang
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Paul C Evans
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Peter J Little
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xiaoyu Tian
- School of Pharmacy, The University of Queensland, Queensland, Australia; and
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| |
Collapse
|
4
|
Szczepaniak O, Jokiel M, Stuper-Szablewska K, Kobus-Cisowska J. Docking analysis of phenolic acid and flavonoids with selected TAS2R receptors and in vitro experiment. Sci Rep 2024; 14:15983. [PMID: 38987427 PMCID: PMC11236965 DOI: 10.1038/s41598-024-66861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Cornelian cherry fruits contain a wide range of phenolic acids, flavonoids, and other secondary metabolites. Selected flavonoids may inhibit the perceiving of bitterness, however, the full mechanism with all TAS2R bitter taste receptors is not known. The aim of the study was to determine the inhibitory effect of Cornus mas phenolics against the bitterness receptors TAS2R13 and TAS2R3 through functional in vitro assays and coupling studies. The overall effect was validated by analysing the inhibition of the receptors activity in cells treated with tested cornelian cherry extracts. The strength of interaction with both TAS2R receptors varied between studied compounds with different binding affinity. Most compounds bonded with the TAS2R3 receptor through a long-distant hydrophobic interaction with Trp89A and π-π orbital overlapping-between phenolic and tryptophane aromatic rings. For TAS2R13 observed were various mechanisms of interaction with the compounds. Nonetheless, naringin and quercetin had most similar binding affinity to chloroquine and denatonium-the model agonists for the receptor.
Collapse
Affiliation(s)
- Oskar Szczepaniak
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, ul. Wojska Polskiego 28, 60-637, Poznań, Poland.
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, ul. Dojazd 11, 60-132, Poznań, Poland.
| | - Maria Jokiel
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066, Wrocław, Poland
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Poznań University of Life Sciences, ul. Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, ul. Wojska Polskiego 28, 60-637, Poznań, Poland
| |
Collapse
|
5
|
Pomianek T, Zagórska-Dziok M, Skóra B, Ziemlewska A, Nizioł-Łukaszewska Z, Wójciak M, Sowa I, Szychowski KA. Comparison of the Antioxidant and Cytoprotective Properties of Extracts from Different Cultivars of Cornus mas L. Int J Mol Sci 2024; 25:5495. [PMID: 38791533 PMCID: PMC11122231 DOI: 10.3390/ijms25105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Cornus mas L. is a rich source of vitamin C and polyphenols. Due to their health-benefit properties, C. mas L. extracts have been used in, e.g., dermatology and cosmetology, and as a food supplement. Peroxisome proliferator-activated receptor gamma (PPARγ) and its co-activator (PGC-1α) are now suspected to be the main target of active substances from C. mass extracts, especially polyphenols. Moreover, the PPARγ pathway is involved in the development of different diseases, such as type 2 diabetes mellitus (DM2), cancers, skin irritation, and inflammation. Therefore, the aim of the present study was to evaluate the PPARγ pathway activation by the most popular water and ethanol extracts from specific C. mas L. cultivars in an in vitro model of the human normal fibroblast (BJ) cell line. We analyzed the content of biologically active compounds in the extracts using the UPLC-DAD-MS technique and revealed the presence of many polyphenols, including gallic, quinic, protocatechuic, chlorogenic, and ellagic acids as well as iridoids, with loganic acid being the predominant component. In addition, the extracts contained cyanidin 3-O-galactoside, pelargonidin 3-O-glucoside, and quercetin 3-glucuronide. The water-ethanol dark red extract (DRE) showed the strongest antioxidant activity. Cytotoxicity was assessed in a normal skin cell line, and positive effects of all the extracts with concentrations ranging from 10 to 1000 µg/mL on the cells were shown. Our data show that the studied extracts activate the PPARγ/PGC-1α molecular pathway in BJ cells and, through this mechanism, initiate antioxidant response. Moreover, the activation of this molecular pathway may increase insulin sensitivity in DM2 and reduce skin irritation.
Collapse
Affiliation(s)
- Tadeusz Pomianek
- Department of Management, Faculty of Administration and Social Sciences, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.)
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland; (M.W.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland; (M.W.); (I.S.)
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| |
Collapse
|
6
|
Danielewski M, Rapak A, Kruszyńska A, Małodobra-Mazur M, Oleszkiewicz P, Dzimira S, Kucharska AZ, Słupski W, Matuszewska A, Nowak B, Szeląg A, Piórecki N, Zaleska-Dorobisz U, Sozański T. Cornelian Cherry ( Cornus mas L.) Fruit Extract Lowers SREBP-1c and C/EBPα in Liver and Alters Various PPAR-α, PPAR-γ, LXR-α Target Genes in Cholesterol-Rich Diet Rabbit Model. Int J Mol Sci 2024; 25:1199. [PMID: 38256272 PMCID: PMC10816641 DOI: 10.3390/ijms25021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits, abundant in iridoids and anthocyanins, are natural products with proven beneficial impacts on the functions of the cardiovascular system and the liver. This study aims to assess and compare whether and to what extent two different doses of resin-purified cornelian cherry extract (10 mg/kg b.w. or 50 mg/kg b.w.) applied in a cholesterol-rich diet rabbit model affect the levels of sterol regulatory element-binding protein 1c (SREBP-1c) and CCAAT/enhancer binding protein α (C/EBPα), and various liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) target genes. Moreover, the aim is to evaluate the resistive index (RI) of common carotid arteries (CCAs) and aortas, and histopathological changes in CCAs. For this purpose, the levels of SREBP-1c, C/EBPα, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), fatty acid synthase (FAS), endothelial lipase (LIPG), carnitine palmitoyltransferase 1A (CPT1A), and adiponectin receptor 2 (AdipoR2) in liver tissue were measured. Also, the levels of lipoprotein lipase (LPL), visceral adipose tissue-derived serine protease inhibitor (Vaspin), and retinol-binding protein 4 (RBP4) in visceral adipose tissue were measured. The RI of CCAs and aortas, and histopathological changes in CCAs, were indicated. The oral administration of the cornelian cherry extract decreased the SREBP-1c and C/EBPα in both doses. The dose of 10 mg/kg b.w. increased ABCA1 and decreased FAS, CPT1A, and RBP4, and the dose of 50 mg/kg b.w. enhanced ABCG1 and AdipoR2. Mitigations in atheromatous changes in rabbits' CCAs were also observed. The obtained outcomes were compared to the results of our previous works. The beneficial results confirm that cornelian cherry fruit extract may constitute a potentially effective product in the prevention and treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Andrzej Rapak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Angelika Kruszyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland;
| | - Paweł Oleszkiewicz
- Department of Radiology and Imaging Diagnostics II, Lower Silesian Center of Oncology, Pulmonology and Hematology, Grabiszynska 105, 53-439 Wroclaw, Poland;
| | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wroclaw, Poland;
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chelmonskiego 37, 51-630 Wroclaw, Poland;
| | - Wojciech Słupski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland;
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, Cicha 2A, 35-326 Rzeszow, Poland
| | - Urszula Zaleska-Dorobisz
- Department of General and Pediatric Radiology, Wroclaw Medical University, M. Sklodowskiej-Curie 50/52, 50-369 Wroclaw, Poland;
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
7
|
Szot I, Łysiak GP, Sosnowska B, Chojdak-Łukasiewicz J. Health-Promoting Properties of Anthocyanins from Cornelian Cherry ( Cornus mas L.) Fruits. Molecules 2024; 29:449. [PMID: 38257363 PMCID: PMC10818799 DOI: 10.3390/molecules29020449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The cornelian cherry is a plant that annually provides fruits, drupe-type, ranging in color from yellow through pink, red, carmine, and almost black. Cornelian cherry bears abundant fruit in temperate climate conditions, which means that its dark-colored fruits can be treated as an excellent source of anthocyanins. After consuming, anthocyanins have a protective function in the human body. Raw fruit extracts and their pure isolates, rich in anthocyanins, have a wide spectrum of health-promoting properties. This review focuses on the health-promoting properties of anthocyanins from fruits of cornelian cherry, documented in research conducted in vitro, in vivo, and in humans. The results obtained so far confirm the beneficial effects of anthocyanins on the blood parameters, whose values are important in predicting and assessing the risk and progression of cardiovascular and metabolic diseases. A beneficial effect on molecular and histopathological changes in target organs such as the heart, brain, kidneys, and liver has also been demonstrated. Anthocyanins from cornelian cherry have a strong antioxidant effect, which explains their protective effects on organs and anticancer effects. Moreover, they have antiglycemic, antihyperlipidemic, anti-inflammatory, and antimicrobial properties. The work highlights the perspectives and directions of necessary research.
Collapse
Affiliation(s)
- Iwona Szot
- Subdepartment of Pomology, Nursery and Enology, Institute of Horticulture Production, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland;
| | - Grzegorz P. Łysiak
- Department of Ornamental Plants, Dendrology and Pomology, Faculty of Horticulture and Landscape Architecture, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland;
| | - Bożena Sosnowska
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | | |
Collapse
|
8
|
Domínguez-Avila JA. Dietary Phenolic Compounds Exert Some of Their Health-Promoting Bioactivities by Targeting Liver X Receptor (LXR) and Retinoid X Receptor (RXR). Foods 2023; 12:4205. [PMID: 38231664 DOI: 10.3390/foods12234205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Consuming foods of vegetable origin has been shown to exert multiple health-related effects, many of them attributed to their phenolic compounds. These molecules are known for being bioactive across multiple cells and organs, with documented changes in gene expression being commonly reported. Nuclear receptors are signal transducers capable of regulating gene expression in response to endogenous and/or exogenous ligands. Liver X receptor (LXR) and retinoid X receptor (RXR) are two important nuclear receptors that can be acted on by phenolic compounds, thereby modifying gene expression and potentially exerting numerous subsequent bioactivities. The present work summarizes recent evidence of the effects of the phenolic compounds that are exerted by targeting LXR and/or RXR. The data show that, when LXR is being targeted, changes in lipid metabolism are commonly observed, due to its ability to regulate genes relevant to this process. The effects vary widely when RXR is the target since it is involved in processes like cell proliferation, vitamin D metabolism, and multiple others by forming heterodimers with other transcription factors that regulate said processes. The evidence therefore shows that phenolic compounds can exert multiple bioactivities, with a mechanism of action based, at least in part, on their ability to modulate the cell at the molecular level by acting on nuclear receptors. The data point to a promising and novel area of study that links diet and health, although various unknowns justify further experimentation to reveal the precise way in which a given phenolic can interact with a nuclear receptor.
Collapse
Affiliation(s)
- J Abraham Domínguez-Avila
- CONAHCYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Hermosillo 83304, SO, Mexico
| |
Collapse
|
9
|
Zhao H, Wang D, Xing C, Lv B, Wang X, He B. Pioglitazone can improve liver sex hormone-binding globulin levels and lipid metabolism in polycystic ovary syndrome by regulating hepatocyte nuclear factor-4α. J Steroid Biochem Mol Biol 2023; 229:106265. [PMID: 36737028 DOI: 10.1016/j.jsbmb.2023.106265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive and metabolic disorder that is closely correlated with insulin resistance. Sex hormone-binding globulin (SHBG) is an important carrier for regulating androgen activity and is affected by insulin level, which is related to metabolic abnormalities and long-term prognosis of PCOS. Insulin sensitizer pioglitazone can improve the SHBG level and dyslipidaemia in PCOS, but the mechanism remains unclear. We investigated liver SHBG expression, liver lipid levels, and the effects and potential mechanisms of pioglitazone on reproductive and metabolic disorders in a rat model of polycystic ovary syndrome with insulin resistance (PCOS-IR). PCOS-IR was induced by letrozole and a high-fat diet. Metformin was used as a positive control. Additionally, dihydrotestosterone and oleic acid combined with palmitic acid were used to induce the HepG2 cell models with IR. The cells were exposed to pioglitazone alone or in combination with a hepatocyte nuclear factor (HNF)- 4α inhibitor. Changes in biochemical characteristics were analysed using an enzyme-linked immunosorbent assay. Vaginal smears were used to analyse the oestrous cycle, and ovarian histology was used to analyse the changes in ovarian morphology. The degree of IR in vivo and in vitro was measured using the hyperinsulinaemic-euglycaemic clamp and glucose oxidase techniques. The levels of key anabolism-related proteins, including SHBG, HNF-4α, and peroxidase proliferator-activated receptor (PPAR-γ), were measured using western blots. Pioglitazone and metformin significantly increased the SHBG levels in the sera and livers. Compared to metformin, pioglitazone significantly improved the lipid droplet deposition, triglyceride (TG) and total cholesterol (TC) levels, HNF-4α protein expression, and weights of the livers in the PCOS-IR rats. After applying pioglitazone with an HNF-4α inhibitor in the PCOS-IR cell models, we found that pioglitazone may increase SHBG and improve IR, TG, and TC levels by upregulating HNF-4α. Similar to metformin, pioglitazone also restored the oestrous cycle and ovarian morphology, ameliorated IR and hyperandrogenaemia in the PCOS-IR rats. Our findings hint at the value of HNF-4α in the treatment of PCOS by PIO, which could shed light on potential targets that may be used in treatments for PCOS with metabolic disorders.
Collapse
Affiliation(s)
- Han Zhao
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Dongxu Wang
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Chuan Xing
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Bo Lv
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Xiaochen Wang
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
10
|
Phytochemical Profile, Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts. Pharmaceuticals (Basel) 2023; 16:ph16030420. [PMID: 36986519 PMCID: PMC10058959 DOI: 10.3390/ph16030420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Cornus mas L. is characterized by an increased quantity of bioactive compounds, namely polyphenols, monoterpenes, organic acids, vitamin C and lipophilic compounds such as carotenoids, being anciently used in the treatment of various diseases. This paper’s objectives were to characterize the phytochemical profile of Cornus mas L. fruits and to evaluate the in vitro antioxidant, antimicrobial and cytoprotective effects on renal cells exposed to gentamicin. As such, two ethanolic extracts were obtained. The resulting extracts were used to assess the total polyphenols, flavonoids and carotenoids through spectral and chromatographic methods. The antioxidant capacity was assessed using DPPH and FRAP assays. Due to the high content of phenolic compounds analyzed in fruits and the results obtained regarding antioxidant capacity, we decided to further use the ethanolic extract to investigate the in vitro antimicrobial and cytoprotective effects on renal cells stressed with gentamicin. The antimicrobial activity was assessed using agar well diffusion and broth microdilution methods, with great results regarding Pseudomonas aeruginosa. The cytotoxic activity was assessed using MTT and Annexin-V assays. According to the findings, extract-treated cells had a higher cell viability. However, at high concentrations, viability was shown to decline, most likely due to the extract and gentamicin’s additive effects.
Collapse
|
11
|
Danielewski M, Gomułkiewicz A, Kucharska AZ, Matuszewska A, Nowak B, Piórecki N, Trocha M, Szandruk-Bender M, Jawień P, Szeląg A, Dzięgiel P, Sozański T. Cornelian Cherry ( Cornus mas L.) Iridoid and Anthocyanin-Rich Extract Reduces Various Oxidation, Inflammation, and Adhesion Markers in a Cholesterol-Rich Diet Rabbit Model. Int J Mol Sci 2023; 24:ijms24043890. [PMID: 36835296 PMCID: PMC9959706 DOI: 10.3390/ijms24043890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Atherogenesis leads to the development of atherosclerosis, a progressive chronic disease characterized by subendothelial lipoprotein retention and endothelial impairment in the arterial wall. It develops mainly as a result of inflammation and also many other complex processes, which arise from, among others, oxidation and adhesion. Cornelian cherry (Cornus mas L.) fruits are abundant in iridoids and anthocyanins-compounds with potent antioxidant and anti-inflammatory activity. This study aimed to determine the effect of two different doses (10 mg and 50 mg per kg of body weight, respectively) of iridoid and anthocyanin-rich resin-purified Cornelian cherry extract on the markers that are important in the progress of inflammation, cell proliferation and adhesion, immune system cell infiltration, and atherosclerotic lesion development in a cholesterol-rich diet rabbit model. We used biobank blood and liver samples that were collected during the previous original experiment. We assessed the mRNA expression of MMP-1, MMP-9, IL-6, NOX, and VCAM-1 in the aorta, and the serum levels of VCAM-1, ICAM-1, CRP, PON-1, MCP-1, and PCT. The application of the Cornelian cherry extract at a dose of 50 mg/kg bw resulted in a significant reduction in MMP-1, IL-6, and NOX mRNA expression in the aorta and a decrease in VCAM-1, ICAM-1, PON-1, and PCT serum levels. The administration of a 10 mg/kg bw dose caused a significant decrease in serum ICAM-1, PON-1, and MCP-1. The results indicate the potential usefulness of the Cornelian cherry extract in the prevention or treatment of atherogenesis-related cardiovascular diseases, such as atherosclerosis or metabolic syndrome.
Collapse
Affiliation(s)
- Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
- Correspondence: (M.D.); (T.S.)
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a, 50-368 Wroclaw, Poland
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, A. Towarnickiego 3, 35-959 Rzeszow, Poland
| | - Małgorzata Trocha
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Marta Szandruk-Bender
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25/27, 50-375 Wroclaw, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, I.J. Paderewskiego 35, 51-612 Wroclaw, Poland
| | - Tomasz Sozański
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
- Correspondence: (M.D.); (T.S.)
| |
Collapse
|
12
|
Câmara JS, Locatelli M, Pereira JAM, Oliveira H, Arlorio M, Fernandes I, Perestrelo R, Freitas V, Bordiga M. Behind the Scenes of Anthocyanins-From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022; 14:5133. [PMID: 36501163 PMCID: PMC9738495 DOI: 10.3390/nu14235133] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anthocyanins are widespread and biologically active water-soluble phenolic pigments responsible for a wide range of vivid colours, from red (acidic conditions) to purplish blue (basic conditions), present in fruits, vegetables, and coloured grains. The pigments' stability and colours are influenced mainly by pH but also by structure, temperature, and light. The colour-stabilizing mechanisms of plants are determined by inter- and intramolecular co-pigmentation and metal complexation, driven by van der Waals, π-π stacking, hydrogen bonding, and metal-ligand interactions. This group of flavonoids is well-known to have potent anti-inflammatory and antioxidant effects, which explains the biological effects associated with them. Therefore, this review provides an overview of the role of anthocyanins as natural colorants, showing they are less harmful than conventional colorants, with several technological potential applications in different industrial fields, namely in the textile and food industries, as well as in the development of photosensitizers for dye-sensitized solar cells, as new photosensitizers in photodynamic therapy, pharmaceuticals, and in the cosmetic industry, mainly on the formulation of skin care formulations, sunscreen filters, nail colorants, skin & hair cleansing products, amongst others. In addition, we will unveil some of the latest studies about the health benefits of anthocyanins, mainly focusing on the protection against the most prevalent human diseases mediated by oxidative stress, namely cardiovascular and neurodegenerative diseases, cancer, and diabetes. The contribution of anthocyanins to visual health is also very relevant and will be briefly explored.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marco Arlorio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
13
|
Ahmed YM, Orfali R, Abdelwahab NS, Hassan HM, Rateb ME, AboulMagd AM. Partial Synthetic PPARƳ Derivative Ameliorates Aorta Injury in Experimental Diabetic Rats Mediated by Activation of miR-126-5p Pi3k/AKT/PDK 1/mTOR Expression. Pharmaceuticals (Basel) 2022; 15:1175. [PMID: 36297290 PMCID: PMC9607084 DOI: 10.3390/ph15101175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a world wild health care issue marked by insulin resistance, a risk factor for the metabolic disorder that exaggerates endothelial dysfunction, increasing the risk of cardiovascular complications. Peroxisome proliferator-activated receptor PPAR) agonists have therapeutically mitigated hyperlipidemia and hyperglycemia in T2D patients. Therefore, we aimed to experimentally investigate the efficacy of newly designed synthetic PPARα/Ƴ partial agonists on a High-Fat Diet (HFD)/streptozotocin (STZ)-induced T2D. Female Wistar rats (200 ± 25 g body weight) were divided into four groups. The experimental groups were fed the HFD for three consecutive weeks before STZ injection (45 mg/kg/i.p) to induce T2D. Standard reference PPARƳ agonist pioglitazone and the partial synthetic PPARƳ (PIO; 20 mg/kg/BW, orally) were administered orally for 2 weeks after 72 h of STZ injection. The aorta tissue was isolated for biological ELISA, qRT-PCR, and Western blotting investigations for vascular inflammatory endothelial mediators endothelin-1 (ET-1), intracellular adhesion molecule 1 (ICAM-1), E-selectin, and anti-inflammatory vasoactive intestinal polypeptide (VIP), as well as microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR, endothelial Nitric Oxide Synthase (eNOS) immunohistochemical staining all are coupled with and histopathological examination. Our results revealed that HFD/STZ-induced T2D increased fasting blood glucose, ET-1, ICAM-1, E-selectin, and VIP levels, while decreasing the expression of both microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR phosphorylation. In contrast, the partial synthetic PPARƳ derivative evidenced a vascular alteration significantly more than reference PIO via decreasing (ET-1), ICAM-1, E-selectin, and VIP, along with increased expression of microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR. In conclusion, the partial synthetic PPARƳ derivative significantly affected HFD/STZ-induced T2D with vascular complications in the rat aorta.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nada S. Abdelwahab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Asmaa M. AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| |
Collapse
|
14
|
Liu X, Yu Z, Zhou HH, Feng Y, Bu Y, Zhai D, Zhang G, Ding S, Wang E, Mi Y, Wan Z. Effect of flavonoid intake on circulating levels of adiponectin and leptin: A systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res 2022; 36:4139-4154. [PMID: 36117321 DOI: 10.1002/ptr.7617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/09/2022]
Abstract
This meta-analysis of randomized controlled trials (RCTs) was conducted to explore the effects of flavonoid intake on adiponectin and leptin levels. The PubMed, EMBASE, and Cochrane Library databases were searched on March 1, 2021. Random-effects, subgroup, sensitivity, and meta-regression analyses were conducted on 40 publications. Flavonoid intake significantly increased circulating adiponectin (0.54 μg/ml, 95% CI [0.20, 0.88], p = .002; I2 = 86.4%) and significantly reduced leptin levels (weighted mean difference: -0.79 ng/ml, 95% CI [-1.33, -0.25], p = .004; I2 = 87.7%). Subgroup analysis demonstrated that flavonoid intervention produced a significant elevation in adiponectin levels only in studies that lasted more than 12 weeks, conducted in Asian regions, were parallel-designed, involved obese or overweight participants and participants with type 2 diabetes mellitus (T2DM) or cardiovascular diseases, used tea catechins, and used a dietary supplement intervention. A significantly negative effect on leptin levels was observed in studies conducted in Asian countries, with healthy participants and participants with T2DM, used whole food interventions, and involved participants with lower baseline leptin levels. In conclusion, flavonoid intake significantly increased circulating adiponectin and decreased leptin levels; however, study heterogeneity was very high. Future well-designed trials are required to address heterogeneous study designs and clarify the efficacy of plants in regulating adiponectin and leptin levels.
Collapse
Affiliation(s)
- Xinxin Liu
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Huan-Huan Zhou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yang Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Bu
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Desheng Zhai
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Guofu Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Shibin Ding
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Erhui Wang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Yang Mi
- Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxiao Wan
- College of Public Health, Zhengzhou University, Zhengzhou, China.,School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Moldovan R, Mitrea DR, Florea A, Chiş IC, Suciu Ş, David L, Moldovan BE, Mureşan LE, Lenghel M, Ungur RA, Opriş RV, Decea N, Clichici SV. Effects of Gold Nanoparticles Functionalized with Bioactive Compounds from Cornus mas Fruit on Aorta Ultrastructural and Biochemical Changes in Rats on a Hyperlipid Diet-A Preliminary Study. Antioxidants (Basel) 2022; 11:antiox11071343. [PMID: 35883833 PMCID: PMC9311980 DOI: 10.3390/antiox11071343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Cornus mas L. extract (CM) presents hypolipidemic, antioxidant and anti-inflammatory activity. Gold nanoparticles (AuNPs) are considered potent delivery systems and may be used to release pharmaceutical compounds at the level of injury. In our study, we used gold nanoparticles functionalized with bioactive compounds from Cornus mas L. (AuNPsCM) in an experimental model of a high-fat diet (HFD), and we assessed their effects on aorta wall but also in the serum, as compared to Cornus mas (CM) administration. Sprague Dawley female rats were fed for 9 months with an HFD. During the last month of the experiment, we randomly allocated the animals into three groups that received, by oral gavage: saline solution, CM solution (0.158 mg/mL polyphenols) or AuNPsCM solution (260 μg Au/kg/day), while a Control group received a standard diet and saline solution. At the end of the experiment, we performed an ultrasonography of the aorta and left ventricle and a histology and transmission electron microscopy of the aorta walls; we investigated the oxidative stress and inflammation in aorta homogenates and in serum and, in addition, the lipid profile. AuNPsCM presented better effects in comparison with the natural extract (CM) on lipid peroxidation (p < 0.01) and TNF-alpha (p < 0.001) in aorta homogenates. In serum, both CM and AuNPsCM decreased the triglycerides (p < 0.001) and C-reactive protein (CM, p < 0.01; AuNPsCM, p < 0.001) and increased the antioxidant protection (p < 0.001), in comparison with the HFD group. In intima, AuNPsCM produced ultrastructural lesions, with the disorganization of intima and subendothelial connective layer, whereas CM administration preserved the intima normal aspect, but with a thinned subendothelial connective layer. AuNPsCM oral administration presented certain antioxidant, anti-inflammatory and hypolipidemic effects in an experimental model of HFD, but with a negative impact on the ultrastructure of aorta walls, highlighted by the intima disorganization.
Collapse
Affiliation(s)
- Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Daniela-Rodica Mitrea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
- Correspondence:
| | - Adrian Florea
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (A.F.); (R.V.O.)
| | - Irina-Camelia Chiş
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Şoimiţa Suciu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Luminiţa David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (B.E.M.)
| | - Bianca Elena Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (B.E.M.)
| | - Laura Elena Mureşan
- Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania;
| | - Manuela Lenghel
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Rodica Ana Ungur
- Department of Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Răzvan Vlad Opriş
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (A.F.); (R.V.O.)
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Simona Valeria Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| |
Collapse
|
16
|
Małodobra-Mazur M, Cierzniak A, Ryba M, Sozański T, Piórecki N, Kucharska AZ. Cornus mas L. Increases Glucose Uptake and the Expression of PPARG in Insulin-Resistant Adipocytes. Nutrients 2022; 14:nu14112307. [PMID: 35684107 PMCID: PMC9183168 DOI: 10.3390/nu14112307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cornus mas L., also known as cornelian cherry (CM), is a species that has long been cultivated in many different countries. In numerous scientific reports, cornelian cherry is used to treat numerous diseases and conditions. The presented study evaluated the effect of red and yellow Cornus mas L. extract on insulin sensitivity in adipocytes. 3T3-L1 fibroblasts as well as human SAT-derived and VAT-derived adipocytes were differentiated in vitro, and insulin resistance was induced using palmitic acid (16:0). The effect of CM fruit extract was analyzed in terms of glucose uptake and insulin signaling gene expression. In the glucose uptake test after insulin stimulation, a significant increase in glucose uptake was demonstrated in cells treated with CM fruit extracts. Furthermore, CM fruit extracts increased the expression of insulin signaling genes in adipocytes stimulated with insulin in control cells and adipocytes treated with CM extract. Additionally, a significant increase in peroxisome proliferator activated receptor gamma (PPARG) expression was observed in cells supplemented with CM extract. In conclusion, studies have shown that CM fruits can overcome insulin resistance and thus they have a positive effect on cell metabolism.
Collapse
Affiliation(s)
- Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland; (A.C.); (M.R.)
- Correspondence:
| | - Aneta Cierzniak
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland; (A.C.); (M.R.)
| | - Martyna Ryba
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland; (A.C.); (M.R.)
| | - Tomasz Sozański
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland;
| | - Narcyz Piórecki
- Institute of Physical Culture Sciences, Medical College, University of Rzeszów, Towarnickiego 3, 35-959 Rzeszów, Poland;
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chełmońskiego 37, 51-630 Wrocław, Poland;
| |
Collapse
|
17
|
Olędzka A, Cichocka K, Woliński K, Melzig MF, Czerwińska ME. Potentially Bio-Accessible Metabolites from an Extract of Cornus mas Fruit after Gastrointestinal Digestion In Vitro and Gut Microbiota Ex Vivo Treatment. Nutrients 2022; 14:nu14112287. [PMID: 35684087 PMCID: PMC9183047 DOI: 10.3390/nu14112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Targeting pancreatic lipase and α-amylase by digestion-derived fractions of ethanolic-aqueous (60%, v/v) extract from Cornus mas fruit (CM) in relation to the control and prevention of metabolic disorders, including diabetes, was the first purpose of the present study. Taking into consideration the significance of bio-accessibility of compounds, we attempted to identify metabolites of CM after gastrointestinal digestion in vitro, as well as their kinetic changes upon gut microbiota treatment. The digestion of extract was simulated with digestive enzymes in vitro and human gut microbiota ex vivo (1 h, 3 h, 6 h, 24 h), followed by chromatographic analysis using the UHPLC-DAD-MSn method. The effect of fractions from gastrointestinal digestion in vitro on the activity of pancreatic lipase and α-amylase was studied with fluorescence-based assays. The gastric and intestinal fractions obtained after in vitro digestion of CM inhibited pancreatic lipase and α-amylase. Loganic acid as the main constituent of the extract was digested in the experimental conditions in contrast to cornuside. It was found in most analytes such as salivary, gastric, intestinal, and even colon (fecal slurry, FS) fractions. In all fractions, kaempferol hexoside and reduced forms of kaempferol, such as aromadendrin, and benzoic acid were assigned. The signals of tannins were detected in all fractions. Cornusiin A was tentatively assigned in the gastric fraction. The metabolites originating from kinetic analytes have been classified mainly as phenolic acids, hydrolyzable tannins, and flavonoids. Phenolic acids (protocatechuic acid, gallic acid), tannins (digalloylglucose, tri-O-galloyl-β-D-glucose), and flavonoids (aromadendrin, dihydroquercetin) were detected in the late phases of digestion in fecal slurry suspension. Cornuside was found in FS analyte after 3 h incubation. It was not detected in the samples after 6 and 24 h incubation with FS. In conclusion, cornuside, aromadendrin, and phenolic acids may be potentially bio-accessible compounds of CM. The presence of plants' secondary metabolites in the intestinal fractions allows us to indicate them as responsible for decreasing glucose and lipid absorption.
Collapse
Affiliation(s)
- Agata Olędzka
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; (A.O.); (K.C.)
| | - Katarzyna Cichocka
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; (A.O.); (K.C.)
| | - Konrad Woliński
- Polish Academy of Sciences Botanical Garden, Centre for Biological Diversity Conservation in Powsin, 2 Prawdziwka Street, 02-973 Warsaw, Poland;
| | - Matthias F. Melzig
- Institute of Pharmacy, Freie Universitaet Berlin, 2+4 Koenigin-Luise Street, 14195 Berlin, Germany;
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
18
|
Sengul M, Unver H, Topdas EF, Akbulut M, Coklar H, Yilmaz B. Evaluation of antioxidant properties and phenolic and aromatic profiles of cornelian cherry pestil samples prepared with sucrose and stevia addition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Memnune Sengul
- Department of Food Engineering Faculty of Agriculture, Ataturk University Erzurum Turkey
| | - Hacer Unver
- Department of Food Engineering Faculty of Agriculture, Ataturk University Erzurum Turkey
| | - Elif Feyza Topdas
- Department of Food Engineering Faculty of Agriculture, Ataturk University Erzurum Turkey
| | - Mehmet Akbulut
- Department of Food Engineering Faculty of Agriculture, Selcuk University Konya Turkey
| | - Hacer Coklar
- Department of Food Engineering Faculty of Agriculture, Selcuk University Konya Turkey
| | - Bilal Yilmaz
- Department of Analytical Chemistry Faculty of Pharmacy, Ataturk University Erzurum Turkey
| |
Collapse
|
19
|
Song Y, Li S, He C. PPARγ Gene Polymorphisms, Metabolic Disorders, and Coronary Artery Disease. Front Cardiovasc Med 2022; 9:808929. [PMID: 35402540 PMCID: PMC8984027 DOI: 10.3389/fcvm.2022.808929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Being activated by endogenous and exogenous ligands, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) enhances insulin sensitivity, promotes adipocyte differentiation, stimulates adipogenesis, and has the properties of anti-atherosclerosis, anti-inflammation, and anti-oxidation. The Human PPARγ gene (PPARG) contains thousands of polymorphic loci, among them two polymorphisms (rs10865710 and rs7649970) in the promoter region and two polymorphisms (rs1801282 and rs3856806) in the exonic region were widely reported to be significantly associated with coronary artery disease (CAD). Mechanistically, PPARG polymorphisms lead to abnormal expression of PPARG gene and/or dysfunction of PPARγ protein, causing metabolic disorders such as hypercholesterolemia and hypertriglyceridemia, and thereby increasing susceptibility to CAD.
Collapse
Affiliation(s)
- Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Chuan He,
| |
Collapse
|
20
|
Nowak B, Matuszewska A, Szeląg A, Danielewski M, Dziewiszek W, Nikodem A, Filipiak J, Jędrzejuk D, Bolanowski M, Kucharska AZ, Piórecki N, Piasecki T, Sozański T. Cornelian cherry (Cornus mas L.) extract reduces cardiovascular risk and prevents bone loss in ovariectomized Wistar rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|