1
|
Feng X, Deng M, Zhang L, Pan Q. Impact of gut microbiota and associated mechanisms on postprandial glucose levels in patients with diabetes. J Transl Int Med 2023; 11:363-371. [PMID: 38130636 PMCID: PMC10732577 DOI: 10.2478/jtim-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Diabetes and its complications are serious medical and global burdens, often manifesting as postprandial hyperglycemia. In recent years, considerable research attention has focused on relationships between the gut microbiota and circulating postprandial glucose (PPG). Different population studies have suggested that PPG is closely related to the gut microbiota which may impact PPG via short-chain fatty acids (SCFAs), bile acids (BAs) and trimethylamine N-oxide (TMAO). Studies now show that gut microbiota models can predict PPG, with individualized nutrition intervention strategies used to regulate gut microbiota and improve glucose metabolism to facilitate the precision treatment of diabetes. However, few studies have been conducted in patients with diabetes. Therefore, little is known about the relationships between the gut microbiota and PPG in this cohort. Thus, more research is required to identify key gut microbiota and associated metabolites and pathways impacting PPG to provide potential therapeutic targets for PPG.
Collapse
Affiliation(s)
- Xinyuan Feng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Mingqun Deng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| |
Collapse
|
2
|
Bedsaul-Fryer JR, van Zutphen-Küffer KG, Monroy-Gomez J, Clayton DE, Gavin-Smith B, Worth C, Schwab CN, Freymond M, Surowska A, Bhering Martins L, Senn-Jakobsen C, Kraemer K. Precision Nutrition Opportunities to Help Mitigate Nutrition and Health Challenges in Low- and Middle-Income Countries: An Expert Opinion Survey. Nutrients 2023; 15:3247. [PMID: 37513665 PMCID: PMC10385361 DOI: 10.3390/nu15143247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Precision nutrition involves several data collection methods and tools that aim to better inform nutritional recommendations and improve dietary intake, nutritional status, and health outcomes. While the benefits of collecting precise data and designing well-informed interventions are vast, it is presently unclear whether precision nutrition is a relevant approach for tackling nutrition challenges facing populations in low- and middle-income countries (LMIC), considering infrastructure, affordability, and accessibility of approaches. The Swiss Food & Nutrition Valley (SFNV) Precision Nutrition for LMIC project working group assessed the relevance of precision nutrition for LMIC by first conducting an expert opinion survey and then hosting a workshop with nutrition leaders who live or work in LMIC. The experts were interviewed to discuss four topics: nutritional problems, current solutions, precision nutrition, and collaboration. Furthermore, the SFNV Precision Nutrition for LMIC Virtual Workshop gathered a wider group of nutrition leaders to further discuss precision nutrition relevance and opportunities. Our study revealed that precision public health nutrition, which has a clear focus on the stratification of at-risk groups, may offer relevant support for nutrition and health issues in LMIC. However, funding, affordability, resources, awareness, training, suitable tools, and safety are essential prerequisites for implementation and to equitably address nutrition challenges in low-resource communities.
Collapse
Affiliation(s)
| | - Kesso G. van Zutphen-Küffer
- Sight and Life, P.O. Box 2116, 4002 Basel, Switzerland; (K.G.v.Z.-K.); (J.M.-G.); (M.F.)
- Department of Human Nutrition & Health, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jimena Monroy-Gomez
- Sight and Life, P.O. Box 2116, 4002 Basel, Switzerland; (K.G.v.Z.-K.); (J.M.-G.); (M.F.)
| | - Diane E. Clayton
- York Consumer Health, Route Du Charmin 15, 1648 Hauteville, Switzerland;
| | - Breda Gavin-Smith
- Sight and Life, P.O. Box 2116, 4002 Basel, Switzerland; (K.G.v.Z.-K.); (J.M.-G.); (M.F.)
| | - Céline Worth
- Nestlé, Corporate R&D, Av. Nestlé 55, 1800 Vevey, Switzerland;
| | - Christian Nils Schwab
- Integrative Food and Nutrition Center, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015 Lausanne, Switzerland;
| | - Mathilda Freymond
- Sight and Life, P.O. Box 2116, 4002 Basel, Switzerland; (K.G.v.Z.-K.); (J.M.-G.); (M.F.)
| | - Anna Surowska
- EssentialTech Centre, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015 Lausanne, Switzerland;
| | - Laís Bhering Martins
- Swiss Food & Nutrition Valley, EPFL Innovation Park, Station 12, 1015 Lausanne, Switzerland; (L.B.M.); (C.S.-J.)
| | - Christina Senn-Jakobsen
- Swiss Food & Nutrition Valley, EPFL Innovation Park, Station 12, 1015 Lausanne, Switzerland; (L.B.M.); (C.S.-J.)
| | - Klaus Kraemer
- Sight and Life, P.O. Box 2116, 4002 Basel, Switzerland; (K.G.v.Z.-K.); (J.M.-G.); (M.F.)
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Bush JR, Baisley J, Harding SV, Alfa MJ. Consumption of Solnul ™ Resistant Potato Starch Produces a Prebiotic Effect in a Randomized, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:nu15071582. [PMID: 37049425 PMCID: PMC10097138 DOI: 10.3390/nu15071582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The effects of resistant starch at high doses have been well-characterized, but the potential prebiotic effects of resistant starch at doses comparable to oligosaccharide prebiotics have not been evaluated. A three-arm randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the effect of 3.5 g and 7 g daily doses of Solnul™ resistant potato starch (RPS) on beneficial populations of gut bacteria and stool consistency after a 4-week period. The relative abundance of Bifidobacterium and Akkermansia was determined by employing 16Sv4 sequencing of stool samples. To assess the effect of RPS on laxation and bowel movements, stools were recorded and scored using the Bristol Stool Form Scale. Participants consuming 3.5 g/day of RPS experienced significantly greater changes in Bifidobacterium and Akkermansia compared to the placebo after 4 weeks. The number of diarrhea- and constipation-associated bowel movements were both significantly lower in the 3.5 g RPS arm compared to the placebo group. Participants consuming 7 g of RPS responded similarly to those in the 3.5 g arm. Our analyses demonstrate that Solnul™ RPS has a prebiotic effect when consumed for 4 weeks at the 3.5 g per day dose, stimulating increases in beneficial health-associated bacteria and reducing diarrhea- and constipation-associated bowel movements when compared to the placebo group.
Collapse
Affiliation(s)
- Jason R Bush
- MSP Starch Products Inc., Carberry, MB R0K 0H0, Canada
| | - Joshua Baisley
- Nutrasource Pharmaceutical and Nutraceutical Services, Guelph, ON N1G 0B4, Canada
| | - Scott V Harding
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | | |
Collapse
|
4
|
Guizar-Heredia R, Noriega LG, Rivera AL, Resendis-Antonio O, Guevara-Cruz M, Torres N, Tovar AR. A New Approach to Personalized Nutrition: Postprandial Glycemic Response and its Relationship to Gut Microbiota. Arch Med Res 2023; 54:176-188. [PMID: 36990891 DOI: 10.1016/j.arcmed.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
A prolonged and elevated postprandial glucose response (PPGR) is now considered a main factor contributing for the development of metabolic syndrome and type 2 diabetes, which could be prevented by dietary interventions. However, dietary recommendations to prevent alterations in PPGR have not always been successful. New evidence has supported that PPGR is not only dependent of dietary factors like the content of carbohydrates, or the glycemic index of the foods, but is also dependent on genetics, body composition, gut microbiota, among others. In recent years, continuous glucose monitoring has made it possible to establish predictions on the effect of different dietary foods on PPGRs through machine learning methods, which use algorithms that integrate genetic, biochemical, physiological and gut microbiota variables for identifying associations between them and clinical variables with aim of personalize dietary recommendations. This has allowed to improve the concept of personalized nutrition, since it is now possible to recommend through these predictions specific dietary foods to prevent elevated PPGRs that are highly variable among individuals. Additional components that can enrich the predictive algorithms are findings of nutrigenomics, nutrigenetics and metabolomics. Thus, this review aims to summarize the evidence of the components that integrate personalized nutrition focused on the prevention of PPGRs, and to show the future of personalized nutrition by laying the groundwork for the development of individualized dietary management and its impact on the improvement of metabolic diseases.
Collapse
|
5
|
Álvarez-Mercado AI, Plaza-Diaz J. Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health. Nutrients 2022; 14:4116. [PMID: 36235768 PMCID: PMC9573424 DOI: 10.3390/nu14194116] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022] Open
Abstract
A polysaccharide is a macromolecule composed of more than ten monosaccharides with a wide distribution and high structural diversity and complexity in nature. Certain polysaccharides are immunomodulators and play key roles in the regulation of immune responses during the progression of some diseases. In addition to stimulating the growth of certain intestinal bacteria, polysaccharides may also promote health benefits by modulating the gut microbiota. In the last years, studies about the triad gut microbiota-polysaccharides-health have increased exponentially. In consequence, in the present review, we aim to summarize recent knowledge about the function of dietary polysaccharides on gut microbiota composition and how these effects affect host health.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
6
|
Hernández-Calderón P, Wiedemann L, Benítez-Páez A. The microbiota composition drives personalized nutrition: Gut microbes as predictive biomarkers for the success of weight loss diets. Front Nutr 2022; 9:1006747. [PMID: 36211501 PMCID: PMC9537590 DOI: 10.3389/fnut.2022.1006747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
The investigation of the human gut microbiome during recent years has permitted us to understand its relevance for human health at a systemic level, making it possible to establish different functional axes (e.g., the gut-brain, gut-liver, and gut-lung axes), which support the organ-like status conferred to this microecological component of our body. The human gut microbiota is extremely variable but modifiable via diet, a fact that allows targeting of microbes through defined dietary strategies to uncover cost-effective therapies to minimize the burden of non-communicable diseases such as pandemic obesity and overweight and its metabolic comorbidities. Nevertheless, randomly controlled dietary interventions regularly exhibit low to moderate degrees of success in weight control, making their implementation difficult in clinical practice. Here, we review the predictive value of the baseline gut microbiota configurations to anticipate the success of dietary interventions aimed at weight loss, mostly based on caloric restriction regimes and oral fiber supplementation. This emergent research concept fits into precision medicine by considering different diet patterns and adopting the best one, based on the individual microbiota composition, to reach significant adiposity reduction and improve metabolic status. We review the results from this fresh perspective of investigation, taking into account studies released very recently. We also discuss some future outlooks in the field and potential pitfalls to overcome with the aim of gaining knowledge in the field and achieving breakthroughs in personalized nutrition.
Collapse
|