1
|
Zečević N, Kocić J, Perović M, Stojsavljević A. Detrimental effects of cadmium on male infertility: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117623. [PMID: 39733596 DOI: 10.1016/j.ecoenv.2024.117623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Infertility has become a serious health and socio-economic-psychological problem globally. The harmful role of trace metals in male infertility is recognized but still not sufficiently explained. Herein, a comprehensive review was conducted to elucidate the detrimental role of cadmium (Cd) on male infertility, particularly on infertility with unknown (idiopathic) causes. Peer-reviewed studies from 2000 to 2024 dealing with seminal plasma and blood Cd levels of fertile and infertile men were retrieved were interrogated with regard to strict inclusion/exclusion criteria, and then were thoroughly reviewed and analyzed. Another aim of this review was to indicate the potential effects of Cd on changes in seminogram findings. A median range of seminal plasma Cd levels from 0.2 to 1.5 µg/L can be considered safe for men's fertility. This review strongly implies that Cd levels were notably higher in seminal plasma of infertile cases than controls. The review's data also indicate that exposure to tobacco smoke is a major source of elevated seminal and blood Cd levels in infertile men. Newer research points to the importance of Cd in lower levels from the environment on changes in seminogram findings, primarily count, motility of spermatozoa, and their morphology. Overall, this review implies that seminal plasma Cd levels could be a good indicator of semen quality. However, new, in-depth studies are needed to confirm or reject the causal relationship of Cd with male infertility.
Collapse
Affiliation(s)
- Nebojša Zečević
- Clinic for Gynecology and Obstetrics "Narodni front", Kraljice Natalije 62, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Doktora Subotića 8, Belgrade, Serbia; Special Hospital Belgrade, Human Reproduction Center, Antifašističke borbe 2a, Belgrade, Serbia
| | - Jovana Kocić
- Clinic for Gynecology and Obstetrics "Narodni front", Kraljice Natalije 62, Belgrade, Serbia
| | - Milan Perović
- Clinic for Gynecology and Obstetrics "Narodni front", Kraljice Natalije 62, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Doktora Subotića 8, Belgrade, Serbia
| | - Aleksandar Stojsavljević
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
2
|
Rahmani S, Najdegerami E, Razi M, Nikoo M. Potential therapeutic effects of shrimp protein hydrolysates on NAFLD-induced infertility disorders: Insights into redox balance, heat shock protein expression, and chromatin compaction in male rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:158-169. [PMID: 39850116 PMCID: PMC11756727 DOI: 10.22038/ijbms.2024.76649.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/31/2024] [Indexed: 01/25/2025]
Abstract
Objectives Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage. Materials and Methods The study divided rats into four groups: control, a group subjected to a high-fat diet (HFD) to induce NAFLD without supplementation, and two HFD-induced NAFLD groups receiving HP doses (20 and 300 mg/kg). After 70 days, the testicular total anti-oxidant capacity (TAC), malondialdehyde (MDA), glutathione (GSH), glutathione disulfide (GSSG), HSP70-2a, HSP90 expression, and TP mRNA levels were assessed. Results The results showed that HFD-induced NAFLD significantly increased GSH and MDA levels and disrupted the GSH/GSSG ratio (P<0.05) while also reducing HSP70-2a, HSP90, TP1, and TP2 expression (P<0.05). However, HP administration effectively restored testicular redox balance, reduced oxidative stress, and enhanced these protective proteins' expression compared to HFD (P<0.05). Conclusion NAFLD negatively affects the testicular redox system and HSP and TP expression, disrupting male fertility potential. In contrast, HP-treated rats showed a marked effect on NAFLD-induced damage by improving testicular anti-oxidant status and regulating the expression of HSPs and TP proteins. These findings suggest a potential therapeutic role for HP in safeguarding male fertility against the damaging effects of NAFLD.
Collapse
Affiliation(s)
- Somayyeh Rahmani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | | | - Mazdak Razi
- Division of Comparative Histology and Embryology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehdi Nikoo
- Artemia & Aquaculture Research Institute, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Amr A, Abdel Karim AE, Abd El-Wahed AA, El-Seedi HR, Augustyniak M, El Wakil A, El-Samad LM, Hassan MA. Liquid chromatography–mass spectrometry profiling of propolis and royal jelly and their ameliorative effects on cadmium-instigated pathological consequences in ovarian tissues of rats. Microchem J 2024; 207:111800. [DOI: 10.1016/j.microc.2024.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
|
4
|
Shi Y, Wang K, Ling H, Mao J, Xu B, Liu Z, Wang J. Quercetin attenuates cadmium-induced hepatotoxicity by suppressing oxidative stress and apoptosis in rat. J Trace Elem Med Biol 2024; 86:127554. [PMID: 39427560 DOI: 10.1016/j.jtemb.2024.127554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Cadmium (Cd) is considered a major industrial and environmental toxicant, threatening the health of aquatic organisms, plants, animals, and humans. Quercetin (Que) is a natural flavonoid with antioxidant properties. The purpose of this study was to investigate the role of the oxidative stress and apoptosis in Cd-induced hepatotoxicity and the protective effect of Que. METHODOLOGY Thirty-six male SD rats were randomly divided into 6 groups: control group, 1 mg/kg Cd group, 2 mg/kg Cd group, 1 mg/kg Cd+Que group, 2 mg/kg Cd + Que group, and a Que group. After a feeding period of 28 days, serum and liver tissue samples were collected to evaluate liver function, oxidative stress levels, liver histology, and apoptosis. RESULTS Experimental results confirmed that compared with the control group, the body weights of the Cd group significantly decreased. Additionally, there was a tremendous increased in the levels of ALT, AST, and LDH, and a significant decreased in the activities of SOD, CAT, and GSH content, while the level of MDA increased. Pathological sections of the liver showed that Cd-induced rats had ruptured liver tissue cells, exposed nuclei, and disturbed arrangement of hepatocyte cords. Cd exposure decreased the mRNA and protein expression of Nrf2 and NQO1 while increased the mRNA and protein expression of Keap1, thereby inducing oxidative stress. Meanwhile, Cd exposure increased the mRNA and protein expressions of Cytc, caspase-9, caspase-3, and Bax, while decreased the expression of Bcl-2. Conversely, after Que addition of alleviated liver injury and oxidative stress induced by Cd and inhibited apoptosis. CONCLUSION In conclusion, Que alleviates hepatic toxicity induced by Cd through suppression of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Yaning Shi
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China
| | - Hao Ling
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China
| | - Junbing Mao
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China
| | - Bing Xu
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China.
| |
Collapse
|
5
|
Davidova S, Milushev V, Satchanska G. The Mechanisms of Cadmium Toxicity in Living Organisms. TOXICS 2024; 12:875. [PMID: 39771090 PMCID: PMC11679562 DOI: 10.3390/toxics12120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025]
Abstract
Cadmium (Cd) is a toxic metal primarily found as a by-product of zinc production. Cd was a proven carcinogen, and exposure to this metal has been linked to various adverse health effects, which were first reported in the mid-19th century and thoroughly investigated by the 20th century. The toxicokinetics and dynamics of Cd reveal its propensity for long biological retention and predominant storage in soft tissues. Until the 1950s, Cd pollution was caused by industrial activities, whereas nowadays, the main source is phosphate fertilizers, which strongly contaminate soil and water and affect human health and ecosystems. Cd enters the human body mainly through ingestion and inhalation, with food and tobacco smoke being the primary sources. It accumulates in various organs, particularly the kidney and liver, and is known to cause severe health problems, including renal dysfunction, bone diseases, cardiovascular problems, and many others. On a cellular level, Cd disrupts numerous biological processes, inducing oxidative stress generation and DNA damage. This comprehensive review explores Cd pollution, accumulation, distribution, and biological impacts on bacteria, fungi, edible mushrooms, plants, animals, and humans on a molecular level. Molecular aspects of carcinogenesis, apoptosis, autophagy, specific gene expression, stress protein synthesis, and ROS formation caused by Cd were discussed as well. This paper also summarizes how Cd is removed from contaminated environments and the human body.
Collapse
Affiliation(s)
- Slavena Davidova
- UPIZ Educational and Research Laboratory of Biology-MF-NBU, New Bulgarian University, 1618 Sofia, Bulgaria; (S.D.); (V.M.)
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd., 1618 Sofia, Bulgaria
| | - Viktor Milushev
- UPIZ Educational and Research Laboratory of Biology-MF-NBU, New Bulgarian University, 1618 Sofia, Bulgaria; (S.D.); (V.M.)
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd., 1618 Sofia, Bulgaria
| | - Galina Satchanska
- UPIZ Educational and Research Laboratory of Biology-MF-NBU, New Bulgarian University, 1618 Sofia, Bulgaria; (S.D.); (V.M.)
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd., 1618 Sofia, Bulgaria
| |
Collapse
|
6
|
Ko SH. Effects of Heat Stress-Induced Sex Hormone Dysregulation on Reproduction and Growth in Male Adolescents and Beneficial Foods. Nutrients 2024; 16:3032. [PMID: 39275346 PMCID: PMC11397449 DOI: 10.3390/nu16173032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/16/2024] Open
Abstract
Heat stress due to climate warming can significantly affect the synthesis of sex hormones in male adolescents, which can impair the ability of the hypothalamus to secrete gonadotropin-releasing hormone on the hypothalamic-pituitary-gonadal axis, which leads to a decrease in luteinizing hormone and follicle-stimulating hormone, which ultimately negatively affects spermatogenesis and testosterone synthesis. For optimal spermatogenesis, the testicular temperature should be 2-6 °C lower than body temperature. Heat stress directly affects the testes, damaging them and reducing testosterone synthesis. Additionally, chronic heat stress abnormally increases the level of aromatase in Leydig cells, which increases estradiol synthesis while decreasing testosterone, leading to an imbalance of sex hormones and spermatogenesis failure. Low levels of testosterone in male adolescents lead to delayed puberty and incomplete sexual maturation, negatively affect height growth and bone mineral density, and can lead to a decrease in lean body mass and an increase in fat mass. In order for male adolescents to acquire healthy reproductive capacity, it is recommended to provide sufficient nutrition and energy, avoid exposure to heat stress, and provide foods and supplements to prevent or repair testosterone reduction, germ cell damage, and sperm count reduction caused by heat stress so that they can enter a healthy adulthood.
Collapse
Affiliation(s)
- Seong-Hee Ko
- Major in Food Science and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
7
|
Amr A, Karim AEA, Augustyniak M, Wakil AE, El-Samad LM, Hassan MA. Efficacy of propolis and royal jelly in attenuating cadmium-induced spermatogenesis and steroidogenesis dysregulation, causing infertility in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53052-53073. [PMID: 39172338 DOI: 10.1007/s11356-024-34673-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Bee-derived pharmaceutical products, including propolis (PRO) and royal jelly (ROJ), possess outstanding pharmacological properties. However, their efficiency in counteracting the deleterious influences of cadmium (Cd) in testes and the relevant mechanisms entail further investigations. Therefore, this study sheds light on the therapeutic efficacy of PRO and ROJ against testicular dysfunction and infertility induced by Cd. Toward this end, 30 mature male Wistar albino rats were randomly divided into six groups (5 animals/group), including (I) control, (II) Cd, (III) PRO, (IV) ROJ, (V) PRO + Cd, and (VI) ROJ + Cd groups. Furthermore, antioxidant factors, semen quality, hormonal levels, steroidogenic enzymes, and genotoxicity were assessed. Moreover, histopathological and ultrastructural attributes and offspring rates were investigated. The Cd-treated group revealed marked reductions in reduced glutathione (GSH), total antioxidant capacity (TAC), and superoxide dismutase (SOD) with an amplification of lipid peroxidation in testes, indicating disruption of the antioxidant defense system. Furthermore, myeloperoxidase (MPO) activity and DNA damage were significantly heightened, implying inflammation and genotoxicity, respectively. Moreover, steroidogenic enzymes, including 17β-Hydroxy Steroid Dehydrogenase 3 (HSD17b3), 3β-Hydroxy Steroid Dehydrogenase 2 (HSD3b2), 17α-hydroxylase/17,20-lyase (CYP17A1), and steroid 5α-reductase 2 (SRD5A2) were markedly diminished accompanied with disorders in luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone. Besides, spermatozoa quality was reduced, associated with a diminution in the diameter of seminiferous tubules. By contrast, PRO or ROJ significantly protected and/or counteracted the Cd-induced pathophysiological consequences, ameliorating antioxidant and inflammatory biomarkers, steroidogenic enzymes, hormonal levels, and sperm properties, along with lessening DNA impairments. Critically, histological and ultrastructural analyses manifested several anomalies in the testicular tissues of the Cd-administered group, including the Leydig and Sertoli cells and spermatozoa. Conversely, PRO or ROJ sustained testicular tissues' structure, enhancing spermatozoa integrity and productivity. Interestingly, treatment with PRO or ROJ improved fertility indices through offspring rates compared to the Cd-animal group. Our data suggest that PRO is a more effective countermeasure than ROJ against Cd toxicity for securing the delicate testicular microenvironment for spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Alaa Amr
- Department of Zoology, Faculty of Science, Alexandria University, 21568, Alexandria, Egypt
| | - Ahmed E Abdel Karim
- Department of Zoology, Faculty of Science, Alexandria University, 21568, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, 21526, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, 21568, Alexandria, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
8
|
Urzì Brancati V, Aliquò F, Freni J, Pantano A, Galipò E, Puzzolo D, Minutoli L, Marini HR, Campo GM, D’Ascola A. The Effects of Seleno-Methionine in Cadmium-Challenged Human Primary Chondrocytes. Pharmaceuticals (Basel) 2024; 17:936. [PMID: 39065786 PMCID: PMC11280455 DOI: 10.3390/ph17070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) is a potentially toxic element able to interfere with cellular functions and lead to disease or even death. Cd accumulation has been demonstrated in cartilage, where it can induce damage in joints. The aim of this study was to evaluate the effect of CdCl2 on primary cultures of human chondrocytes and the possible protective effect of seleno-methionine (Se-Met). Human primary articular chondrocytes were cultured and treated as follows: control groups, cells challenged with 7.5 μM and 10 μM CdCl2 alone, and cells pretreated with 10 and 20 μM Se-Met and then challenged with 7.5 μM and 10 μM CdCl2. Twenty-four hours after incubation, cell viability, histological evaluation with hematoxylin-eosin stain, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were performed. Furthermore, reverse transcription-PCR was carried out to evaluate mRNA levels of BAX, BAK1, CASP-3, and CASP-9. After CdCl2 challenge at both doses, a reduced cell viability and an overexpression of BAX, BAK1, CASP-3, and CASP-9 genes, as well as a high number of TUNEL-positive cells, were demonstrated, all parameters becoming higher as the dose of CdCl2 was increased. The pretreatment with Se-Met lowered the expression of all considered genes, improved cell viability and morphological changes, and reduced the number of TUNEL-positive cells. It was concluded that Se-Met plays a protective role against CdCl2-induced structural and functional changes in chondrocytes in vitro, as it improved cell viability and showed a positive role in the context of the apoptotic pathways. It is therefore suggested that a translational, multifaceted approach, with plant-based diets, bioactive functional foods, nutraceuticals, micronutrients, and drugs, is possibly advisable in situations of environmental pollution caused by potentially toxic elements.
Collapse
Affiliation(s)
- Valentina Urzì Brancati
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (F.A.); (J.F.); (D.P.)
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (F.A.); (J.F.); (D.P.)
| | - Alice Pantano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Erika Galipò
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (F.A.); (J.F.); (D.P.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Giuseppe Maurizio Campo
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Angela D’Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| |
Collapse
|
9
|
Li XW, Li S, Yang Y, Talukder M, Xu XW, Li CX, Zhang C, Li XN, Li JL. The FAK/occludin/ZO-1 complex is critical for cadmium-induced testicular damage by disruption of the integrity of the blood-testis barrier in chickens. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134126. [PMID: 38554509 DOI: 10.1016/j.jhazmat.2024.134126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Cadmium (Cd) is a well-known testis toxicant. The blood-testis barrier (BTB) is a crucial component of the testis. Cd can disrupt the integrity of the BTB and reproductive function. However, the mechanism of Cd-induced disruption of BTB and testicular damage has not been fully elucidated. Here, our study investigates the effects of Cd on BTB integrity and testicular dysfunction. 80 (aged 1 day) Hy-Line white variety chickens were randomly designed into 4 groups and treated for 90 days, as follows: control group (essential diet), 35 Cd, 70 Cd and 140 Cd groups (35, 70 and 140 mg/kg Cd). The results found that Cd exposure diminished volume of the testes and induced histopathological lesions in the testes. Exposure to Cd induced an inflammatory response, disrupted the structure and function of the FAK/occludin/ZO-1 protein complex and disrupted the tight junction and adherens junction in the BTB. In addition, Cd exposure reduced the expression of steroid-related proteins and inhibited testosterone synthesis. Taken together, these data elucidate that Cd disrupts the integrity of the BTB and further inhibits spermatogenesis by dissociating the FAK/occludin/ZO-1 complex, which provides a basis for further investigation into the mechanisms of Cd-induced impairment of male reproductive function and pharmacological protection.
Collapse
Affiliation(s)
- Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Sheng Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Milton Talukder
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Xiang-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
10
|
Rhouma MB, Venditti M, Haddadi A, Knani L, Chouchene L, Boughammoura S, Reiter RJ, Minucci S, Messaoudi I. Melatonin counteracts cadmium-induced rat testicular toxicity via the mechanistic target rapamycin (mTOR) pathway. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:470-482. [PMID: 38433718 DOI: 10.1002/jez.2792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 03/05/2024]
Abstract
The protective action of melatonin (MLT) against the harmful effects of cadmium (Cd) on testicular activity in rats has been documented previously; however, the involved molecular mechanisms have yet to be elucidated. Herein, we investigate the involvement of the mammalian target of rapamycin (mTOR) on the ability of MLT to counteract the damage induced by Cd on the rat testicular activity. Our study confirmed that Cd has harmful effects on the testes of rats and the protective action exerted by MLT. We reported, for the first time, that the addition of rapamycin (Rapa), a specific mTOR inhibitor, to animals co-treated with Cd and MLT completely abolished the beneficial effects exerted by MLT, indicating that the mTOR pathway partially modulates its helpful effects on Cd testicular toxicity. Interestingly, Rapa-alone treatment, provoking mTOR inhibition, produced altered morphological parameters, increased autophagy of germ and somatic cells, and reduced serum testosterone concentration. In addition, mTOR inhibition also reduced protein levels of markers of steroidogenesis (3β-Hydroxysteroid dehydrogenase) and blood-testis barrier integrity (occludin and connexin 43). Finally, Rapa altered sperm parameters as well as the ability of mature spermatozoa to perform a proper acrosome reaction. Although further investigation is needed to better clarify the molecular pathway involved in MLT action, we confirm that MLT alleviating Cd effects can be used as a supplement to enhance testicular function and improve male gamete quality.
Collapse
Affiliation(s)
- Mariem B Rhouma
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Asma Haddadi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Latifa Knani
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Lina Chouchene
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Sana Boughammoura
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas, USA
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressourcés, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| |
Collapse
|
11
|
Chen N, Wan X, Wang M, Li Y, Wang X, Zeng L, Zhou J, Zhang Y, Cheng S, Shen Y. Cross-talk between Vimentin and autophagy regulates blood-testis barrier disruption induced by cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123625. [PMID: 38401636 DOI: 10.1016/j.envpol.2024.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The blood-testis barrier (BTB) plays a vital role in mammalian spermatogenesis by separating the seminiferous epithelium into an adluminal and a basal compartment. Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. We observed that Cd can induce BTB disruption, leading to apoptosis of testicular cells. However, the molecular mechanisms contributing to BTB injury induced by Cd have not yet been fully clarified. Vimentin (Vim) is an important desmosome-like junction protein that mediates robust adhesion in the BTB. In this study, we investigated how Vim responds to Cd. We found that Cd treatment led to a significant decrease in Vim expression, accompanied by a marked increase in LC3-II expression and a higer number of autophagosomes. Interestingly, we also observed that Cd-induced autophagy was associated with decreased Vim activity and enhanced apoptosis of testicular cells. To further investigate the role of autophagy in Vim regulation under Cd exposure, we treated cells with an autophagy inhibitor called 3-MA. We found that 3-MA treatment enhanced Vim expression and improved the disruption of the BTB under Cd exposure. Additionally, the inhibition of Vim confirmed the role of autophagy in modulating Vim expression. These results reveal a previously unknown regulatory mechanism of Cd involving the interplay between a heavy metal and a protein.
Collapse
Affiliation(s)
- Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Xiaoyan Wan
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, PR China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yamin Li
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xiaofei Wang
- Center for Reproductive Medicine, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, Hubei, PR China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, PR China
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shun Cheng
- College of Zhixing, Hubei University, Wuhan, 430011, PR China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
12
|
Li Y, Liu J, Ran N, Zheng C, Wang P, Li J, Fang Y, Fang D, Ma Y. Potential pathological mechanisms and pharmacological interventions for cadmium-induced miscarriage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116118. [PMID: 38367606 DOI: 10.1016/j.ecoenv.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The prevalence of cadmium (Cd) contamination has emerged as a significant global concern. Exposure to Cd during pregnancy is associated with adverse pregnancy outcomes, including miscarriage. However, there is currently a lack of comprehensive summaries on Cd-induced miscarriage. Therefore, it is imperative to further strengthen research into in vivo studies, clinical status, pathological mechanisms, and pharmacological interventions for Cd-induced miscarriage. This study systematically presents the current knowledge on animal models and clinical trials investigating Cd exposure-induced miscarriage. The underlying mechanisms involving oxidative stress, inflammation, endocrine disruption, and placental dysfunction caused by Cd-induced miscarriage are also extensively discussed. Additionally, potential drug interventions such as melatonin, vitamin C, and vitamin E are highlighted for their pharmacological role in mitigating adverse pregnancy outcomes induced by Cd.
Collapse
Affiliation(s)
- Yufei Li
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Juan Liu
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Na Ran
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Changwu Zheng
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - PingPing Wang
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Jiayi Li
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Yumeng Fang
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Danna Fang
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Yeling Ma
- Medical College, Shaoxing University, Zhejiang 312000, China.
| |
Collapse
|
13
|
Yin G, Wang Z, Li P, Cao Y, Zhou Z, Wu W, Li X, Lou Q. Tim-3 deficiency aggravates cadmium nephrotoxicity via regulation of NF-κB signaling and mitochondrial damage. Int Immunopharmacol 2024; 128:111434. [PMID: 38176346 DOI: 10.1016/j.intimp.2023.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Kidney is the target organ of serious cadmium injury. Kidney damage caused by cadmium exposure is greatly influenced by the inflammatory response and mitochondrial damage. T cell immunoglobulin domain and mucin domain 3 (Tim-3) is an essential protein that functions as a negative immunological checkpoint to regulate inflammatory responses. Mice were given cadmium treatments at various dosages (0, 1.5, 3, 4.5 mg/kg) and times (0, 3, 5, 7 days) to assess the effects of cadmium on kidney damage. We found that the optimal way to induce kidney injury in mice was to inject 4.5 mg/kg of cadmium intraperitoneally for five days. It is interesting that giving mice 4.5 mg/kg of cadmium intravenously for seven days drastically lowered their survival rate. After cadmium exposure, Tim-3 knockout mice exhibited higher blood concentrations of urea nitrogen and creatinine compared to control mice. Tim-3 impacted the expression of oxidative stress-associated genes such as UDP glucuronosyltransferase family 1 member A9 (Ugt1a9), oxidative stress-induced growth inhibitor 2 (Osgin2), and S100 calcium binding protein A8 (S100a8), according to RNA-seq and real-time RT-PCR data. Tim-3 deficiency also resulted in activated nuclear factor-kappa B (NF-κB) signaling pathway. The NF-κB inhibitor 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) significantly alleviated cell apoptosis, oxidative stress response, and renal tubule inflammation in Tim-3 knockout mice exposed to cadmium. Furthermore, cadmium caused obvious B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) translocation from cytoplasm to mitochondria, which can be inhibited by TPCA-1. In conclusion, Tim-3 prevented mitochondrial damage and NF-κB signaling activation, hence providing protection against cadmium nephrotoxicity.
Collapse
Affiliation(s)
- Guanyi Yin
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Zhonghang Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Peiyao Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Yaping Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Ziou Zhou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Wenbin Wu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Xuemiao Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Qiang Lou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
14
|
Xie J, Wang J, Shao J, Fang H, Liu Y, Xiao X, Wen X, Guan X, Su Z, Duan P, Chen H, Chen C. Transcriptomic characterization of interactions between sodium selenite and coenzyme Q10 on preventing cadmium-induced testicular defects. Food Chem Toxicol 2023; 182:114180. [PMID: 37967787 DOI: 10.1016/j.fct.2023.114180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The effect of heavy metal cadmium (Cd) on testicular function is recognized. However, the mechanism involved is not well-established. In the present study, we analyzed the testicular transcriptomic changes induced by acute Cd exposure of adult rats with and without supplementation of antioxidants selenium (Se) and/or coenzyme Q10 (CoQ). Cd significantly decreased serum testosterone and two steroidogenic proteins SCARB1 and STAR. RNA-Seq analyses of testicular RNAs revealed specific activation of oxidative stress-, inflammation-, MAPK- and NF-κB-related signaling molecules. In addition, Cd treatment down-regulated gene for I, III and IV complexes of mitochondrial electron transport chain and up-regulated genes for NADPH-oxidase, major cascade in ROS production. The decrease in steroidogenesis and increase in inflammation may result from oxidative stress since supplementation of Se and CoQ, but not with either alone, almost completely prevented these changes, including overall alterations in transcriptome. Cd exposure induced total of 1192 differentially expressed genes (DEGs), which was reduced to 29 without considering confounding factors associated with Se/CoQ, a 97.6% protection rate. In conclusion, Cd exposure inhibited Leydig cell steroidogenesis by down-regulating SCARB1 and STAR through increasing oxidative stress and inflammation, but Se plus CoQ synergistically prevented all the changes induced by the Cd exposure.
Collapse
Affiliation(s)
- Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiexia Wang
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Shao
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hangping Fang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Liu
- Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Xiao
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhijian Su
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haolin Chen
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Congde Chen
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Wang H, Zhang J, Ma D, Zhao Z, Yan B, Wang F. The role of red ginseng in men's reproductive health: a literature review. Basic Clin Androl 2023; 33:27. [PMID: 37880595 PMCID: PMC10601307 DOI: 10.1186/s12610-023-00203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Red ginseng (RG) is a traditional herb commonly used in China, Korea, and other East Asian countries. Recently, it has demonstrated a better clinical value in men's reproductive health (MRH). The present review aimed to examine the effects of RG treatment on MRH. RESULTS Overall, 42 articles related to RG application in MRH were reviewed, of which 31 were animal experiments and 11 were clinical studies. Furthermore, this review analyzed the use of RG in some male reproductive diseases in clinical trials and determined the associated mechanisms of action. The mechanism of action of RG in MRH may be related to oxidative stress, regulation of sex hormones and spermatogenesis-related proteins, and anti-inflammation. CONCLUSIONS The application of RG for the treatment of male infertility, erectile dysfunction, and prostate diseases has the potential to contribute to MRH.
Collapse
Affiliation(s)
- Hao Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jiwei Zhang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Dongyue Ma
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ziwei Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Bin Yan
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
16
|
Tuncer SÇ, Küçükler S, Gür C, Aygörmez S, Kandemir FM. Effects of chrysin in cadmium-induced testicular toxicity in the rat; role of multi-pathway regulation. Mol Biol Rep 2023; 50:8305-8318. [PMID: 37592178 DOI: 10.1007/s11033-023-08715-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Cadmium (Cd) is a strong toxic agent and causes serious damage to testicular tissues. Chrysin (CHR) is a natural flavonoid with many effective properties, especially antioxidant, anti-inflammatory and anti-apoptotic properties. The current study describes new evidence for the ameliorative effects of CHR on oxidative stress, apoptosis, autophagy and inflammation pathways in Cd-induced testicular tissue toxicity. METHODS Thirty-five male Wistar rats were divided into five groups, control, Cd, CHR, Cd + CHR25, and Cd + CHR50. Cd was administered alone at a dose of 25 mg/kg body weight or in combination with CHR 25 mg/kg and CHR 50 mg/kg for 7 days. Cd and CHR were administered orally. Biochemical, molecular, and histological methods were used to investigate inflammation, apoptosis, autophagy, and oxidant pathways in testicular tissue. RESULTS Cd increased lipid peroxidation, JAK-2/STAT-3 levels, inflammation-related NF-κB, TNF-α, IL-1β, IL-6, COX-2, and iNOS levels, AKT-2, FOXO1, Bax, Apaf-1 and Caspase-3 levels, autophagic Beclin-1, LC3A and LC3B. The Cd also caused a decrease in the activities of antioxidant enzymes and GSH levels, antiapoptotic Bcl-2 levels. CHR, on the other hand, had the opposite effect of all these Cd-induced changes. CONCLUSIONS Overall, the data of this study indicate that testicular damage associated with Cd toxicity could be ameliorated by CHR administration.
Collapse
Affiliation(s)
- Sibel Çiğdem Tuncer
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Türkiye.
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Cihan Gür
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Serpil Aygörmez
- Department of Veterinary Biochemistry, Faculty of Veterinary, Kafkas University, Kars, Türkiye
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Türkiye
| |
Collapse
|
17
|
Doroudian M, Thibault ME, Gailer J. N-Acetylcysteine Displaces Glutathionyl-Moieties from Hg 2+ and MeHg + to Form More Hydrophobic Complexes at Near-Physiological Conditions. Molecules 2023; 28:6762. [PMID: 37836605 PMCID: PMC10574133 DOI: 10.3390/molecules28196762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The anthropogenic release of Hg is associated with an increased human exposure risk. Since Hg2+ and MeHg+ have a high affinity for thiols, their interaction with L-glutathione (GSH) within mammalian cells is fundamentally involved in their toxicological chemistry and excretion. To gain insight into the interaction of these mercurials with multiple small molecular weight thiols, we have investigated their competitive interactions with GSH and N-acetylcysteine (NAC) at near-physiological conditions, using a liquid chromatographic approach. This approach involved the injection of each mercurial onto a reversed-phase (RP)-HPLC column (37 °C) using a PBS buffer mobile phase containing 5.0 mM GSH to simulate cytosolic conditions with Hg being detected in the column effluent by an inductively coupled plasma atomic emission spectrometer (ICP-AES). When the 5.0 mM GSH mobile phase was amended with up to 10 mM NAC, gradually increasing retention times of both mercurials were observed. To explain this behavior, the experiment with 5.0 mM NAC and 5.0 mM GSH was replicated using 50 mM Tris buffer (pH 7.4), and the Hg-containing fractions were analyzed by electrospray ionization mass spectrometry. The results revealed the presence of Hg(GS)(NAC) and Hg(NAC)2 for Hg2+ and MeHg(GS) and MeHg(NAC) for MeHg+, which suggests that the coordination/displacement of GS-moieties from each mercurial by the more hydrophobic NAC can explain their retention behavior. Since the biotransformations of both mercurials were observed at near-physiological conditions, they are of toxicological relevance as they provide a biomolecular explanation for some results that were obtained when animals were administered with each mercurial and NAC.
Collapse
Affiliation(s)
| | | | - Jürgen Gailer
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada; (M.D.); (M.E.T.)
| |
Collapse
|
18
|
Cengiz M, Gür B, Sezer CV, Cengiz BP, Gür F, Bayrakdar A, Ayhancı A. Alternations in interleukin-1β and nuclear factor kappa beta activity (NF-kB) in rat liver due to the co-exposure of Cadmium and Arsenic: Protective role of curcumin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104218. [PMID: 37451528 DOI: 10.1016/j.etap.2023.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Cadmium chloride (Cd) and sodium arsenite (As) are two prominent examples of non-biodegradable substances that accumulate in ecosystems, pose a serious risk to human health and are not biodegradable. Although the toxicity caused by individual use of Cd and As is known, the toxicity of combined use (Cd+As) to mammals is poorly understood. The present study aims to investigate the hepatoprotective effect of curcumin (CUR), a naturally occurring bioactive component isolated from the root stem of Curcuma longa Linn., in preventing liver damage caused by a Cd+As mixture. A group of 30 Sprague-Dawley rats were subjected to intraperitoneal administration of Cd+As (0.44 mg/kg+5.55 mg/kg i.p.) and CUR (100 or 200 mg/kg) for a period of 14 days. The experimental results showed that the animals treated with Cd+As exhibited changes in liver biochemical parameters, inflammation and oxidative stress at the end of the experiment. Administration of CUR significantly reduced inflammation, oxidative stress and lipid peroxidation in the Cd+As plus CUR groups compared to the Cd+As group. Furthermore, histological examination of the liver tissue showed that administration of CUR had led to a significant reduction in the liver damage observed in the Cd+As group. The present study provides scientific evidence for the protective effects of CUR against lipid peroxidation, inflammation, oxidative stress and liver damage induced by Cd+As in the liver of rats. The results of our in vivo experiments were confirmed by those of our molecular modelling studies, which showed that CUR can enhance the diminished antioxidant capacity caused by Cd+As.
Collapse
Affiliation(s)
- Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, Siirt, Turkey.
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, Iğdır, Turkey.
| | - Canan Vejselova Sezer
- Department of Biology, Faculty of Science, Eskişehir Technical University, 26470 Eskişehir, Turkey
| | - Betül Peker Cengiz
- Department of Pathology, Eskişehir Yunus Emre State Hospital, Eskişehir, Turkey
| | - Fatma Gür
- Department of Dental Prosthesis Technology, Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Alpaslan Bayrakdar
- Vocational School of Higher Education for Healthcare Services, Iğdır University, Iğdır, Turkey
| | - Adnan Ayhancı
- Department of Biology, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
19
|
Marini HR, Bellone F, Catalano A, Squadrito G, Micali A, Puzzolo D, Freni J, Pallio G, Minutoli L. Nutraceuticals as Alternative Approach against Cadmium-Induced Kidney Damage: A Narrative Review. Metabolites 2023; 13:722. [PMID: 37367879 PMCID: PMC10303146 DOI: 10.3390/metabo13060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is the kidney, where it accumulates. In the present narrative review, we assessed experimental and clinical data dealing with the mechanisms of kidney morphological and functional damage caused by Cd and the state of the art about possible therapeutic managements. Intriguingly, skeleton fragility related to Cd exposure has been demonstrated to be induced both by a direct Cd toxic effect on bone mineralization and by renal failure. Our team and other research groups studied the possible pathophysiological molecular pathways induced by Cd, such as lipid peroxidation, inflammation, programmed cell death, and hormonal kidney discrepancy, that, through further molecular crosstalk, trigger serious glomerular and tubular injury, leading to chronic kidney disease (CKD). Moreover, CKD is associated with the presence of dysbiosis, and the results of recent studies have confirmed the altered composition and functions of the gut microbial communities in CKD. Therefore, as recent knowledge demonstrates a strong connection between diet, food components, and CKD management, and also taking into account that gut microbiota are very sensitive to these biological factors and environmental pollutants, nutraceuticals, mainly present in foods typical of the Mediterranean diet, can be considered a safe therapeutic strategy in Cd-induced kidney damage and, accordingly, could help in the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy;
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (D.P.); (J.F.)
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (D.P.); (J.F.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| |
Collapse
|
20
|
Ali W, Bian Y, Ali H, Sun J, Zhu J, Ma Y, Liu Z, Zou H. Cadmium-induced impairment of spermatozoa development by reducing exosomal-MVBs secretion: a novel pathway. Aging (Albany NY) 2023; 15:204675. [PMID: 37220720 DOI: 10.18632/aging.204675] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/15/2023] [Indexed: 05/25/2023]
Abstract
Cadmium is a heavy environmental pollutant that presents a high risk to male-fertility and targets the different cellular and steroidogenic supporting germ cells networks during spermatogenesis. However, the mechanism accounting for its toxicity in multivesicular bodies (MVBs) biogenesis, and exosomal secretion associated with spermatozoa remains obscure. In the current study, the light and electron microscopy revealed that, the Sertoli cells perform a dynamic role with secretion of well-developed early endosomes (Ee) and MVBs pathway associated with spermatozoa during spermatogenesis. In addition, some apical blebs containing nano-scale exosomes located on the cell surface and after fragmentation nano-scale exosomes were directly linked with spermatozoa in the luminal compartment of seminiferous tubules, indicating normal spermatogenesis. Controversially, the cadmium treated group showed limited and deformed spermatozoa with damaging acromion process and mid-peace, and the cytoplasmic vacuolization of spermatids. After cadmium treatment, there is very limited biogenesis of MVBs inside the cytoplasm of Sertoli cells, and no obvious secretions of nano-scale exosomes interacted with spermatozoa. Interestingly, the cadmium treated group demonstrated relatively higher formation of autophagosomes and autolysosome, and the autophagosomes were enveloped by MVBs that later formed the amphisome which degraded by lysosomes, indicating the hypo-spermatogenesis. Moreover, cadmium declined the exosomal protein cluster of differentiation (CD63) and increased the autophagy-related proteins microtubule-associated light chain (LC3), sequestosome 1 (P62) and lysosomal-associated membrane protein 2 (LAMP2) expression level were confirmed by Western blotting. These results provide rich information regarding how cadmium is capable of triggering impaired spermatozoa development during spermatogenesis by reduction of MVBs pathway through high activation of autophagic pathway. This study explores the toxicant effect of cadmium on nano-scale exosomes secretion interacting with spermatozoa.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Yusheng Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Hina Ali
- University of Health Sciences, Lahore 54651, Punjab, Pakistan
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P.R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P.R China
| |
Collapse
|
21
|
Della Torre S. Diet and Fertility Status: Relevance in Health and Disease. Nutrients 2023; 15:nu15071669. [PMID: 37049511 PMCID: PMC10097215 DOI: 10.3390/nu15071669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
The prevalence of obesity and other metabolic disorders is increasing worldwide [...].
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
22
|
Shen Y, You Y, Zhu K, Li G, Huang X, Chen D, Yang F, Dong L, Li J, Yu X. The traditional Chinese medicine Qiangjing tablet prevents blood-testis barrier injury induced by CdCl 2 through the PI3K/Akt/Rictor signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:591-603. [PMID: 36370150 DOI: 10.1002/tox.23706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Environmental contaminants such as cadmium (Cd) may have a deleterious impact on sperm and reduce male fertility by compromising the blood-testis barrier (BTB). Hence, the effects of the traditional Chinese medicine Qiangjing tablet (QJP) on sperm quality and BTB alterations induced by Cd in mouse testes were examined. METHODS Adult KM mice challenged with Cd chloride were examined, QJP was administered to mice as an oral drug by gavage, and the experiments lasted 2 weeks. Testicular and epididymal weights, sperm quality, anti-sperm antibodies (AsAb), hormone levels, and histology were evaluated. Changes in the levels of N-cadherin, occludin, ZO-1, claudin-11, F-actin, and β-tubulin and their mRNAs were evaluated. The effects of QJP on the PI3K/Akt/Rictor pathway were evaluated. RESULTS CdCl2 decreased reproductive organ weight, sperm quality, and testosterone (T) levels; increased AsAb, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels; induced structural damage in testicles with BTB disruption; increased BTB permeability; and decreased N-cadherin, occludin, ZO-1, claudin-11, F-actin, and β-tubulin expression. After treatment, QJP blocked the effects of Cd on reproductive organ weight, sperm quality, and T; mitigated germinal epithelium compartment alterations; decreased AsAb, FSH, and LH levels; and preserved BTB ultrastructure and function. In addition, QJP induced increases in N-cadherin, occludin, ZO-1, claudin-11, F-actin, and β-tubulin levels and the expression of their mRNAs through the PI3K/Akt/Rictor pathway. After the application of JRAB2011, the levels of a specific mTORC2 suppressor, Rictor, and the BTB-protective effect of QJP were greatly reduced. CONCLUSIONS We demonstrated the effect of QJP against Cd-induced damage to the BTB, and the results indicate that QJP may play a significant role in opposing the effects of Cd through the PI3K/Akt/Rictor pathway.
Collapse
Affiliation(s)
- Yifeng Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaodong You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangsen Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaopeng Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Diang Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Yang
- Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Dong
- Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junjun Li
- Chengdu Fifth People's Hospital/The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xujun Yu
- Chengdu Fifth People's Hospital/The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Yin Y, Li H, Qin Y, Chen T, Zhang Z, Lu G, Shen J, Shen M. Moxibustion mitigates mitochondrial dysfunction and NLRP3 inflammatory activation in cyclophosphamide-induced premature ovarian insufficiency rats. Life Sci 2023; 314:121283. [PMID: 36528078 DOI: 10.1016/j.lfs.2022.121283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
AIMS This study aimed to investigate the protective effects of moxibustion on ovarian dysfunction in rats with cyclophosphamide (Cy)-induced premature ovarian insufficiency (POI). It also aimed at revealing its potential mechanisms and emphasizing its role in mitigating the mitochondrial dysfunction and NLRP3 inflammatory activation. MATERIALS AND METHODS POI models were established by the intraperitoneal administration of Cy using female Sprague-Dawley rats. Moxibustion (BL23 or CV4, CV8) was used to treat POI models for fifteen days. Vaginal smears, enzyme-linked immunosorbent assay, hematoxylin-eosin, tunnel staining, flow cytometry analysis, immunohistochemistry staining, qRT-PCR, and western blotting were conducted to evaluate the ovarian function, mitochondrial dysfunction, and NLRP3 inflammatory activation in this study. KEY FINDINGS Moxibustion could improve the disorder of the estrous cycles and reproductive hormone levels, promote follicular growth, reduce the number of atresia follicles, and alleviate the apoptosis of ovarian granulosa cells (GCs) in rats with POI. Furthermore, moxibustion mitigated the mitochondrial damage, reversed the elevated serum levels of IL-18 and IL-1β, and decreased their protein expression in the ovaries of rats with POI. Moxibustion significantly inhibited the expression of the mRNAs and proteins of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase 1, and gasdermin D (GSDMD) in the ovaries of rats with POI. SIGNIFICANCE These results supported that moxibustion may ameliorate Cy-induced POI by mitigating the mitochondrial dysfunction and NLRP3 inflammatory activation. Targeted treatment of mitochondrial damage and NLRP3 inflammatory activation may be a novel therapeutic strategy for POI.
Collapse
Affiliation(s)
- Yaoli Yin
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongxiao Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yantong Qin
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Chen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhizi Zhang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ge Lu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Meihong Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, China.
| |
Collapse
|
24
|
Effectiveness of Withania frutescens root extract on testicular damage induced by lead acetate in adult albino rats. Reprod Toxicol 2023; 115:102-110. [PMID: 36535557 DOI: 10.1016/j.reprotox.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Withania frutescens was used previously in traditherapy against poisoning, gastric ulceration, and dysentery treatments. Because no previous studies reporting on its therapeutic effects on male reproductive system and fertility disorders, this study aims to examine its effect on lead induced testicular damages as well as sperm count and hormonal status in rats. The present study is performed to determine their phytochemical compositions using GC-MS analysis, their antioxidant and anti-inflammatory activities in-vitro using spectrophotometry and then to estimate testosterone levels, sperm count, histopathological features, as well as spermatogenesis (TDI) and spermiogenesis (SPI) indices. The experiment is conducted for three months using four groups (Group A: control rats; Group B: exposed rats to lead-acetate; Group C: exposed rats to lead-acetate and 200 mg/kg of W. frutescens extract; Group D: treated rats with 200 mg/kg of W. frutescens extract). The obtained results show a total of 10 identified components from GC-MS analysis. Whereas a total phenolic content of 63.23 ± 3.82 GAE/g of extract, 25.16 ± 1.21 µg/mL of anti-free radical activity, and reducing power of 163.19 ± 6.01 µg/mL. A high anti-inflammatory activity is determined by hemolysis inhibition (IC50 =12.71 ± 1.06 µg/mL) and protein denaturation inhibition (IC50 =6.8 ± 1.23 µg/mL). Besides, lead exposure causes histological alterations in testis and decreases serum testosterone level, sperm count, and TDI and SPI indices. W. frutescens treated and co-treated animals showed no toxic effects throughout the experiment. However, it is found to improve testosterone level, increase sperm count, attenuate the testicular histopathological effect of lead, and increase TDI and SPI. These findings . these findings suggest that W. frutescens is a better source of bioactive compounds, which play an effective role against lead testicular damages. Furthermore, this natural extract can be utilized potentially in pharmaceutical and medicinal applications.
Collapse
|
25
|
Liu M, Dai Y, Song C, Wang J, Liu Y, Wang Q. Structural Characterization of a Pleurotus sajor-caju Polysaccharide and Its Neuroprotection Related to the Inhibition of Oxidative Stress. Nutrients 2022; 14:nu14194047. [PMID: 36235700 PMCID: PMC9573675 DOI: 10.3390/nu14194047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
A novel polysaccharide PSP2-1 was isolated and purified from Pleurotus sajor-caju. The structural characterization data displayed that the molecular weight of PSP2-1 was 44.9 kDa, and PSP2-1 consisted of fucose, galactose, glucose, and mannose. The methylation results showed that the glycosidic bonds of PSP2-1 included T-Fuc, 1,6-Gal, T-Glc, 1,6-Glc, 1,3,6-Glc, 1,3-Man, 1,2,6-Man, and T-Man. Neuroprotective studies indicated that PSP2-1 significantly improved the cell viability of the H2O2-induced oxidatively damaged neuronal cell HT22, reduced the release of LDH, inhibited apoptosis and release of cytochrome c, and alleviated the decline of mitochondrial membrane potential and ROS accumulation. Furthermore, PSP2-1 decreased the phosphorylation levels of cleaved PARP and cleaved caspase-3, and increased the ratio of bcl-2/bax. Additionally, PSP2-1 could inhibit the phosphorylation of MAPK family members including JNK, p38, and Erk. Finally, animal experiments showed that PSP2-1 could improve the oxidative stress injury and the learning and memory ability of mice with aging induced by D-galactose. Our results confirmed that PSP2-1 significantly ameliorated the oxidative stress injury, inhibited the apoptosis in H2O2-induced neuronal cells via MAPK pathway, and also improved cognition in mice with aging induced by D-galactose. Our research gives the foundation for the functional food application of P. sajor-caju polysaccharides in the future.
Collapse
Affiliation(s)
- Mengdi Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yingdi Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Chengming Song
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jia Wang
- Guang’anmen Hospital China Academy of Chinese Medical Sciences Respiratory Department, Beijing 100053, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (Q.W.); Tel./Fax: +86-431-84532989 (Y.L.); +86-431-84533269 (Q.W.)
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (Q.W.); Tel./Fax: +86-431-84532989 (Y.L.); +86-431-84533269 (Q.W.)
| |
Collapse
|
26
|
Alharbi SA, Asad M, Abdelsalam KEA, Ibrahim MA, Chandy S. Beneficial Effect of Methanolic Extract of Frankincense (Boswellia Sacra) on Testis Mediated through Suppression of Oxidative Stress and Apoptosis. Molecules 2022; 27:molecules27154699. [PMID: 35897864 PMCID: PMC9332498 DOI: 10.3390/molecules27154699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Boswellia sacra oleo gum resin (Burseraceae) commonly known as frankincense is traditionally used in many countries for its beneficial effect on male fertility. This study explores its effect on the male reproductive system after a 60-day repeated administration at two different doses to rats (in vivo) and on human Leydig cells (in vitro). The methanolic extract of B. sacra was analyzed for the presence of various constituents by preliminary phytochemical analysis and gas chromatography-mass spectrometry (GC-MS) while quantitative analysis of boswellic acids was done by high-performance liquid chromatography (HPLC). Administration of B. sacra extract to rats elevated the serum testosterone levels with an associated reduction in serum levels of FSH and LH. An increase in the activity of antioxidant enzymes, superoxide dismutase and catalase, was seen. A dose-dependent increase in the sperm count and sperm motility was also observed. The in vivo results were supported by changes in the expression of the Bcl-2 gene and caspase-3 gene in human Leydig cells in vitro. The results of this study support the traditional use of B. sacra to increase male fertility.
Collapse
|