1
|
Yin H, Wang Y, Chen Y, Shehzad Q, Xiao F. Association between red blood cell fatty acids composition and risk of esophageal cancer: a hospital-based case-control study. Lipids Health Dis 2025; 24:101. [PMID: 40114210 PMCID: PMC11924718 DOI: 10.1186/s12944-025-02531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND & aims: Esophageal cancer (EC) is a tumor type with high invasiveness and poor prognosis, attracting scientists' attention to its pathogenesis and etiology. Given the limited evidence and conflicting findings regarding the association between EC risk and RBC fatty acids, we aimed to evaluate this association. METHODS The study utilized gas chromatography to analyze RBC fatty acids in 158 EC patients and 224 controls. Multivariable conditional logistic regression and restricted cubic spline analysis were employed to assess the association between EC risk and RBC fatty acids, as well as to determine the odds ratio with a 95% confidence interval (OR, 95% CI) for this association. RESULTS Higher levels of total n-3 polyunsaturated fatty acids (n-3 PUFA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n-3 index were associated with lower odds of being an EC case [ORT3-T1 = 0.22 (0.12-0.41), ORT3-T1 = 0.29 (0.15-0.54), ORT3-T1 = 0.49 (0.27-0.88), and ORT3-T1 = 0.19 (0.09-0.35), respectively]. Total saturated fatty acids (SFA), particularly palmitic acid (C16:0), stearic acid (C18:0), and arachidonic acid (C20:4n-6) in high concentrations, were associated with higher odds of being an EC case [ORT1-T3 = 2.02 (1.11-3.70), ORT1-T3 = 2.10 (1.15-3.87), ORT1-T3 = 2.82 (1.53-5.30), and ORT1-T3 = 2.07 (1.12-3.86), respectively]. Total monounsaturated fatty acids (MUFA) and total trans fatty acids (TFA) showed no significant association with EC case status. CONCLUSION The different types of RBC fatty acids may significantly influence susceptibility to EC. Higher levels of total n-3 PUFA in RBC, specifically DHA and EPA, were associated with lower odds of being an EC case, while higher levels of C20:4n-6, C18:0, and C16:0 were associated with higher odds.
Collapse
Affiliation(s)
- Hongming Yin
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Yongjin Wang
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yujia Chen
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Qayyum Shehzad
- School of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Feng Xiao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
2
|
Wang Y, Wu G, Wang Y, Xiao F, Yin H, Yu L, Shehzad Q, Zhang H, Jin Q, Wang X. Association of erythrocyte fatty acid compositions with the risk of pancreatic cancer: A case-control study. Lipids 2025; 60:51-63. [PMID: 39397372 DOI: 10.1002/lipd.12420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies, which has attracted scientists to investigate its etiology and pathogenesis. Nevertheless, the association between erythrocyte fatty acids and PC risk remains unclear. This study aimed to evaluate the association between levels of erythrocyte fatty acids and PC risk. The erythrocyte fatty acid compositions of 105 PC patients and 120 controls were determined by gas chromatography. Cases and controls were frequency matched by age and sex. Multivariable conditional logistic regression model and restricted cubic spline were applied to estimate the odds ratio with 95% confidence interval (OR, 95% CI) of erythrocyte fatty acids and PC risk. Our main findings indicated a significant negative association between levels of erythrocyte total monounsaturated fatty acids (MUFA) and n-3 polyunsaturated fatty acids (n-3 PUFA) and the risk of PC (ORT3-T1 = 0.30 [0.14, 0.63] and ORT3-T1 = 0.15 [0.06, 0.33], respectively). In contrast, erythrocyte n-6 polyunsaturated fatty acids, specifically linoleic acid (LA) and arachidonic acid (AA) levels, were positively associated with PC incidence (RT1-T3 = 4.24 [1.97, 9.46] and ORT1-T3 = 4.53 [2.09, 10.20]). Total saturated fatty acid (SFA), especially high levels of palmitic acid (16:0), was positively associated with the risk of PC (ORT3-T1 = 3.25 [1.53, 7.08]). Our findings suggest that levels of different types of fatty acids in erythrocytes may significantly alter PC susceptibility. Protective factors against PC include unsaturated fatty acids such as n-3 PUFA and MUFA.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Research and Development, Jiahe Foods Industry Co., Ltd, Suzhou, China
| | - Feng Xiao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Hongming Yin
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Le Yu
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Department of Research and Development, Jiahe Foods Industry Co., Ltd, Suzhou, China
- Department of Dairy Technology and Equipment Research, National Center of Technology Innovation for Dairy, Hohhot, China
| | - Qayyum Shehzad
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Wen B, Han X, Gong J, Wang P, Sun W, Xu C, Shan A, Wang X, Luan H, Li S, Li R, Guo J, Chen R, Li C, Sun Y, Lv S, Wei C. Nutrition: A non-negligible factor in the pathogenesis and treatment of Alzheimer's disease. Alzheimers Dement 2025; 21:e14547. [PMID: 39868840 PMCID: PMC11863745 DOI: 10.1002/alz.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a degenerative disease characterized by progressive cognitive dysfunction. The strong link between nutrition and the occurrence and progression of AD pathology has been well documented. Poor nutritional status accelerates AD progress by potentially aggravating amyloid beta (Aβ) and tau deposition, exacerbating oxidative stress response, modulating the microbiota-gut-brain axis, and disrupting blood-brain barrier function. The advanced stage of AD tends to lead to malnutrition due to cognitive impairments, sensory dysfunctions, brain atrophy, and behavioral and psychological symptoms of dementia (BPSD). This, in turn, produces a vicious cycle between malnutrition and AD. This review discusses how nutritional factors and AD deteriorate each other from the early stage of AD to the terminal stages of AD, focusing on the potential of different levels of nutritional factors, ranging from micronutrients to diet patterns. This review provides novel insights into reducing the risk of AD, delaying its progression, and improving prognosis. HIGHLIGHTS: Two-fifths of Alzheimer's disease (AD) cases worldwide have been attributed to potentially modifiable risk factors. Up to ≈26% of community-dwelling patients with AD are malnourished, compared to 7%∼76% of institutionalized patients. Undernutrition effects the onset, progression, and prognosis of AD through multiple mechanisms. Various levels of nutritional supports were confirmed to be protective factors for AD via specific mechanisms.
Collapse
Affiliation(s)
- Boye Wen
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Xiaodong Han
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Jin Gong
- College of Integrated Traditional Chinese and Western MedicineChangchun University of Chinese MedicineJingyue National High‐tech Industrial Development ZoneChangchunChina
| | - Pin Wang
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Wenxian Sun
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Chang Xu
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Aidi Shan
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Xin Wang
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Heya Luan
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Shaoqi Li
- College of Integrated Traditional Chinese and Western MedicineChangchun University of Chinese MedicineJingyue National High‐tech Industrial Development ZoneChangchunChina
| | - Ruina Li
- School of Biological Science and Medical EngineeringBeihang UniversityHaidian DistrictBeijingChina
| | - Jinxuan Guo
- College of Integrated Traditional Chinese and Western MedicineChangchun University of Chinese MedicineJingyue National High‐tech Industrial Development ZoneChangchunChina
| | - Runqi Chen
- School of Biological Science and Medical EngineeringBeihang UniversityHaidian DistrictBeijingChina
| | - Chuqiao Li
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Yao Sun
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Sirong Lv
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| |
Collapse
|
4
|
Conti F, McCue JJ, DiTuro P, Galpin AJ, Wood TR. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients 2024; 16:2430. [PMID: 39125311 PMCID: PMC11314487 DOI: 10.3390/nu16152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Traumatic brain injuries (TBIs) constitute a significant public health issue and a major source of disability and death in the United States and worldwide. TBIs are strongly associated with high morbidity and mortality rates, resulting in a host of negative health outcomes and long-term complications and placing a heavy financial burden on healthcare systems. One promising avenue for the prevention and treatment of brain injuries is the design of TBI-specific supplementation and dietary protocols centred around nutraceuticals and biochemical compounds whose mechanisms of action have been shown to interfere with, and potentially alleviate, some of the neurophysiological processes triggered by TBI. For example, evidence suggests that creatine monohydrate and omega-3 fatty acids (DHA and EPA) help decrease inflammation, reduce neural damage and maintain adequate energy supply to the brain following injury. Similarly, melatonin supplementation may improve some of the sleep disturbances often experienced post-TBI. The scope of this narrative review is to summarise the available literature on the neuroprotective effects of selected nutrients in the context of TBI-related outcomes and provide an evidence-based overview of supplementation and dietary protocols that may be considered in individuals affected by-or at high risk for-concussion and more severe head traumas. Prophylactic and/or therapeutic compounds under investigation include creatine monohydrate, omega-3 fatty acids, BCAAs, riboflavin, choline, magnesium, berry anthocyanins, Boswellia serrata, enzogenol, N-Acetylcysteine and melatonin. Results from this analysis are also placed in the context of assessing and addressing important health-related and physiological parameters in the peri-impact period such as premorbid nutrient and metabolic health status, blood glucose regulation and thermoregulation following injury, caffeine consumption and sleep behaviours. As clinical evidence in this research field is rapidly emerging, a comprehensive approach including appropriate nutritional interventions has the potential to mitigate some of the physical, neurological, and emotional damage inflicted by TBIs, promote timely and effective recovery, and inform policymakers in the development of prevention strategies.
Collapse
Affiliation(s)
- Federica Conti
- School of Physics, University of Sydney, Sydney, NSW 2050, Australia;
| | - Jackson J. McCue
- School of Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Paul DiTuro
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew J. Galpin
- Center for Sport Performance, California State University, Fullerton, CA 92831, USA;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
5
|
Kalaria R, Maestre G, Mahinrad S, Acosta DM, Akinyemi RO, Alladi S, Allegri RF, Arshad F, Babalola DO, Baiyewu O, Bak TH, Bellaj T, Brodie‐Mends DK, Carrillo MC, Celestin K, Damasceno A, de Silva RK, de Silva R, Djibuti M, Dreyer AJ, Ellajosyula R, Farombi TH, Friedland RP, Garza N, Gbessemehlan A, Georgiou EE, Govia I, Grinberg LT, Guerchet M, Gugssa SA, Gumikiriza‐Onoria JL, Hogervorst E, Hornberger M, Ibanez A, Ihara M, Issac TG, Jönsson L, Karanja WM, Lee JH, Leroi I, Livingston G, Manes FF, Mbakile‐Mahlanza L, Miller BL, Musyimi CW, Mutiso VN, Nakasujja N, Ndetei DM, Nightingale S, Novotni G, Nyamayaro P, Nyame S, Ogeng'o JA, Ogunniyi A, de Oliveira MO, Okubadejo NU, Orrell M, Paddick S, Pericak‐Vance MA, Pirtosek Z, Potocnik FCV, Raman R, Rizig M, Rosselli M, Salokhiddinov M, Satizabal CL, Sepulveda‐Falla D, Seshadri S, Sexton CE, Skoog I, George‐Hyslop PHS, Suemoto CK, Thapa P, Udeh‐Momoh CT, Valcour V, Vance JM, Varghese M, Vera JH, Walker RW, Zetterberg H, Zewde YZ, Ismail O. The 2022 symposium on dementia and brain aging in low- and middle-income countries: Highlights on research, diagnosis, care, and impact. Alzheimers Dement 2024; 20:4290-4314. [PMID: 38696263 PMCID: PMC11180946 DOI: 10.1002/alz.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 05/04/2024]
Abstract
Two of every three persons living with dementia reside in low- and middle-income countries (LMICs). The projected increase in global dementia rates is expected to affect LMICs disproportionately. However, the majority of global dementia care costs occur in high-income countries (HICs), with dementia research predominantly focusing on HICs. This imbalance necessitates LMIC-focused research to ensure that characterization of dementia accurately reflects the involvement and specificities of diverse populations. Development of effective preventive, diagnostic, and therapeutic approaches for dementia in LMICs requires targeted, personalized, and harmonized efforts. Our article represents timely discussions at the 2022 Symposium on Dementia and Brain Aging in LMICs that identified the foremost opportunities to advance dementia research, differential diagnosis, use of neuropsychometric tools, awareness, and treatment options. We highlight key topics discussed at the meeting and provide future recommendations to foster a more equitable landscape for dementia prevention, diagnosis, care, policy, and management in LMICs. HIGHLIGHTS: Two-thirds of persons with dementia live in LMICs, yet research and costs are skewed toward HICs. LMICs expect dementia prevalence to more than double, accompanied by socioeconomic disparities. The 2022 Symposium on Dementia in LMICs addressed advances in research, diagnosis, prevention, and policy. The Nairobi Declaration urges global action to enhance dementia outcomes in LMICs.
Collapse
Grants
- K24 AG053435 NIA NIH HHS
- P30AG066506 National Institute of Aging (NIA)
- P01 HD035897 NICHD NIH HHS
- R13 AG066391 NIA NIH HHS
- International Society for Neurochemistry
- National Council for Scientific and Technological Development
- R01 AG075775 NIA NIH HHS
- Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden
- U19 AG074865 NIA NIH HHS
- UH3 NS100605 NINDS NIH HHS
- R01AG072547 Multi partner Consortium for Dementia Research in Latino America-Dominican Republic (LATAM-FINGERS)
- ASP/06/RE/2012/18 University of Sri Jayewardenepura, Sri Lanka
- D43 TW011532 FIC NIH HHS
- UF1 NS125513 NINDS NIH HHS
- 2019-02397 Swedish Research Council
- FLR/R1/191813 UK Royal Society/African Academy of Sciences
- R01 AG054076 NIA NIH HHS
- GOK: Government of Karnataka
- R56 AG074467 NIA NIH HHS
- R21 AG069252 NIA NIH HHS
- RF1 AG059421 NIA NIH HHS
- R56 AG061837 NIA NIH HHS
- Global Brain Health Institute (GBHI)
- 1R01AG068472-01 National Institute of Aging (NIA)
- FCG/R1/201034 UK Royal Society/African Academy of Sciences
- Appel à Projet des Equipes Émergentes et Labellisées scheme (APREL)
- Alzheimer's Drug Discovery Foundation (ADDF)
- R01 AG062588 NIA NIH HHS
- 1R01AG070883 University of Wisconsin, Madison
- U01 HG010273 NHGRI NIH HHS
- R25 TW011214 FIC NIH HHS
- ASP/06/RE/2013/28 University of Sri Jayewardenepura, Sri Lanka
- R01 AG052496 NIA NIH HHS
- R01 AG080468 NIA NIH HHS
- RBM: Rotary Bangalore Midtown
- U19 AG068054 NIA NIH HHS
- ADSF-21-831376-C Alzheimer Drug Discovery Foundation
- ADSF-21-831377-C Alzheimer Drug Discovery Foundation
- Canadian Institute of Health Research
- U19 AG078558 NIA NIH HHS
- 1P30AG066546-01A1 National Institutes of Health (NIH)
- RF1 AG059018 NIA NIH HHS
- National Research Foundation (NRF)
- P30 AG062422 NIA NIH HHS
- LSIPL: M/s Lowes Services India Private Limited
- UKDRI-1003 UK Dementia Research Institute at UCL
- U19AG074865 Multi partner Consortium for Dementia Research in Latino America-Dominican Republic (LATAM-FINGERS)
- P01 AG019724 NIA NIH HHS
- National Institute for Health and Care Research, United Kingdom
- R01 AG066524 NIA NIH HHS
- RF1 AG063507 NIA NIH HHS
- WCUP/Ph.D./19B 2013 University of Sri Jayewardenepura (USJ), Sri Lanka
- WCUP/Ph.D./19/2013 University of Sri Jayewardenepura (USJ), Sri Lanka
- GBHI ALZ UK-21-724359 Pilot Award for Global Brain Health Leaders
- R01AG080468-01 National Institute of Aging (NIA)
- U01 AG058589 NIA NIH HHS
- R01 AG057234 NIA NIH HHS
- SP/CIN/2016/02) Ministry of Primary Industries, Sri Lanka
- R01 AG072547 NIA NIH HHS
- U01 AG051412 NIA NIH HHS
- P30 AG059305 NIA NIH HHS
- Alzheimer's Association, USA
- R35 AG072362 NIA NIH HHS
- R01 NS050915 NINDS NIH HHS
- P30 AG066546 NIA NIH HHS
- 2022-01018 Swedish Research Council
- U19 AG063893 NIA NIH HHS
- ALFGBG-71320 Swedish State Support for Clinical Research
- U01 AG052409 NIA NIH HHS
- 1R13AG066391-01 National Institutes of Health (NIH)
- R01 AG21051 NIH and the Fogarty International Center [FIC]
- DP1AG069870 National Institutes of Health (NIH)
- Marie Skłodowska-Curie
- U19 AG078109 NIA NIH HHS
- Chinese Neuroscience Society, China
- RF1 AG061872 NIA NIH HHS
- DP1 AG069870 NIA NIH HHS
- P30 AG066506 NIA NIH HHS
- Wellcome Trust
- U01HG010273 Multi partner Consortium for Dementia Research in Latino America-Dominican Republic (LATAM-FINGERS)
- JPND2021-00694 European Union Joint Programme - Neurodegenerative Disease Research
- ASP/06/RE/2010/07 University of Sri Jayewardenepura, Sri Lanka
- Rainwater Charitable Foundation - The Bluefield project to cure FTD, and Global Brain Health Institute
- 101053962 European Union's Horizon Europe
- R01 AG058464 NIA NIH HHS
- R01 AG068472 NIA NIH HHS
- Michael J. Fox Foundation for Parkinson's Research, USA
- UL1 TR001873 NCATS NIH HHS
- SG-21-814756 National Institutes of Health (NIH)
- 201809-2016862 Alzheimer Drug Discovery Foundation
- UK National Health Service, Newcastle University,
- R01 AG058918 NIA NIH HHS
- National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- ADSF-21-831381-C Alzheimer Drug Discovery Foundation
- R01 AG070864 NIA NIH HHS
- Wellcome Trust, UK
- Health Professionals Education Partnership Initiative Ethiopia
- ANR-09-MNPS-009-01 French National Research Agency
- R01 AG062562 NIA NIH HHS
- AXA Research Fund
- ICMR: Indian Council for Medical Research
- R01 AG070883 NIA NIH HHS
- International Society for Neurochemistry
- French National Research Agency
- AXA Research Fund
- National Center for Advancing Translational Sciences
- National Council for Scientific and Technological Development
- Swedish Research Council
Collapse
Affiliation(s)
- Raj Kalaria
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Gladys Maestre
- Departments of Neuroscience and Human GeneticsUniversity of Texas Rio Grande ValleyOne W. University BlvdBrownsvilleTexasUSA
| | - Simin Mahinrad
- Division of Medical and Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| | - Daisy M. Acosta
- Universidad Nacional Pedro Henriquez Urena (UNPHU)Santo DomingoDominican Republic
| | - Rufus Olusola Akinyemi
- Neuroscience and Ageing Research UnitInstitute for Advanced Medical Research and TrainingCollege of MedicineUniversity of IbadanIbadanOyoNigeria
| | - Suvarna Alladi
- Department of NeurologyNational Institute of Mental Health and NeurosciencesBengaluruKarnatakaIndia
| | - Ricardo F. Allegri
- Fleni Neurological InstituteBuenos AiresArgentina
- Department of NeurosciencesUniversidad de la Costa (CUC)BarranquillaColombia
| | - Faheem Arshad
- Department of NeurologyNational Institute of Mental Health and NeurosciencesBengaluruKarnatakaIndia
| | | | | | | | | | | | - Maria C. Carrillo
- Division of Medical and Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| | - Kaputu‐Kalala‐Malu Celestin
- Department of NeurologyCentre Neuropsychopathologique (CNPP)Kinshasa University Teaching HospitalUniversity of KinshasaKinshasaRepublic Democratic of the Congo
| | | | - Ranil Karunamuni de Silva
- Interdisciplinary Centre for Innovation in Biotechnology and NeuroscienceFaculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
- Institute for Combinatorial Advanced Research and Education (KDU‐CARE)General Sir John Kotelawala Defence UniversityRatmalanaSri Lanka
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of ClinicalMovement NeuroscienceUCL Queen Square Institute of NeurologyLondonUK
| | - Mamuka Djibuti
- Partnership for Research and Action for Health (PRAH)TbilisiGeorgia
| | | | - Ratnavalli Ellajosyula
- Cognitive Neurology ClinicManipal Hospitaland Annasawmy Mudaliar HospitalBengaluruKarnatakaIndia
- Manipal Academy of Higher Education (MAHE)ManipalKarnatakaIndia
| | | | | | - Noe Garza
- Department of Neuroscience and Human GeneticsUniversity of Texas Rio Grande ValleyHarlingenTexasUSA
| | - Antoine Gbessemehlan
- Inserm U1094, IRD U270University of LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of Chronic Diseases in Tropical ZoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
- Inserm, Bordeaux Population Health Research CenterUniversity of BordeauxBordeauxFrance
| | - Eliza Eleni‐Zacharoula Georgiou
- Department of PsychiatryPatras University General HospitalFaculty of Medicine, School of Health SciencesUniversity of PatrasPatrasGreece
| | - Ishtar Govia
- Caribbean Institute for Health ResearchThe University of the West Indies, JamaicaWest IndiesJamaica
- Institute for Global HealthUniversity College LondonLondonUK
| | - Lea T. Grinberg
- Department of Neurology and PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of Sao PauloR. da Reitoria, R. Cidade UniversitáriaSão PauloSao PauloBrazil
| | - Maëlenn Guerchet
- Inserm U1094, IRD U270University of LimogesCHU Limoges, EpiMaCT ‐ Epidemiology of Chronic Diseases in Tropical ZoneInstitute of Epidemiology and Tropical NeurologyOmegaHealthLimogesFrance
| | - Seid Ali Gugssa
- Department of NeurologySchool of MedicineAddis Ababa UniversityAddis AbabaEthiopia
| | | | - Eef Hogervorst
- Loughborough UniversityLoughboroughUK
- Respati UniversityYogyakartaIndonesia
| | | | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat)Universidad Adolfo IbanezPeñalolénSantiagoChile
- Global Brain Health Institute (GBHI)University California San Francisco (UCSF)San FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
- Cognitive Neuroscience Center (CNC)Universidad de San Andrés, and National Scientific and Technical Research Council (CONICET)VictoriaProvincia de Buenos AiresArgentina
| | - Masafumi Ihara
- Department of NeurologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Thomas Gregor Issac
- Centre for Brain ResearchIndian Institute of Science (IISc)BengaluruKarnatakaIndia
| | - Linus Jönsson
- Department of NeurobiologyCare Science and Society, section for NeurogeriatricsKarolinska Institute, SolnavägenSolnaSweden
| | - Wambui M. Karanja
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
- Brain and Mind InstituteAga Khan UniversityNairobiKenya
| | - Joseph H. Lee
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging BrainDepartments of Neurology and EpidemiologyColumbia UniversityNew YorkNew YorkUSA
| | - Iracema Leroi
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
| | | | - Facundo Francisco Manes
- Institute of Cognitive and Translational Neuroscience (INCYT)INECO FoundationFavaloro UniversityBuenos AiresArgentina
| | - Lingani Mbakile‐Mahlanza
- Global Brain Health Institute (GBHI)University California San Francisco (UCSF)San FranciscoCaliforniaUSA
- University of BotswanaGaboroneBotswana
| | - Bruce L. Miller
- Department of NeurologyMemory and Aging CenterUniversity of California San Francisco Weill Institute for NeurosciencesSan FranciscoCaliforniaUSA
| | | | - Victoria N. Mutiso
- Africa Mental Health Research and Training FoundationNairobiKenya
- Department of PsychiatryUniversity of NairobiNairobiKenya
- World Psychiatric Association Collaborating Centre for Research and TrainingNairobiKenya
| | | | - David M. Ndetei
- Africa Mental Health Research and Training FoundationNairobiKenya
- Department of PsychiatryUniversity of NairobiNairobiKenya
- World Psychiatric Association Collaborating Centre for Research and TrainingNairobiKenya
| | - Sam Nightingale
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Gabriela Novotni
- University Clinic of NeurologyMedical Faculty University Ss Cyril and Methodius Institute for Alzheimer's Disease and NeuroscienceSkopjeNorth Macedonia
| | - Primrose Nyamayaro
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
- Faculty of Medicine and Health SciencesUniversity of ZimbabweHarareZimbabwe
| | - Solomon Nyame
- Kintampo Health Research CentreGhana Health ServiceHospital RoadNear Kintampo‐north Municipal HospitalKintampoGhana
| | | | | | - Maira Okada de Oliveira
- Global Brain Health Institute (GBHI)University California San Francisco (UCSF)San FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
- Department of Psychiatry at Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Cognitive Neurology and Behavioral Unit (GNCC)University of Sao PauloR. da Reitoria, R. Cidade UniversitáriaSão PauloSao PauloBrazil
| | - Njideka U. Okubadejo
- Neurology UnitDepartment of MedicineFaculty of Clinical SciencesCollege of MedicineUniversity of LagosYabaLagosNigeria
| | - Martin Orrell
- Institute of Mental HealthUniversity of NottinghamNottinghamUK
| | - Stella‐Maria Paddick
- Newcastle UniversityNewcastle upon TyneUK
- Gateshead Health NHS Foundation TrustSheriff HillTyne and WearUK
| | - Margaret A. Pericak‐Vance
- John P Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiCoral GablesFloridaUSA
- Dr. John T Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineCoral GablesFloridaUSA
| | - Zvezdan Pirtosek
- Faculty of MedicineUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Felix Claude Victor Potocnik
- Old Age Psychiatry Unit, Depth PsychiatryStellenbosch UniversityWestern Cape, Stellenbosch CentralStellenboschSouth Africa
| | - Rema Raman
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mie Rizig
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | - Mónica Rosselli
- Department of PsychologyCharles E. Schmidt College of ScienceFlorida Atlantic UniversityBoca RatonFloridaUSA
- Florida Alzheimer's Disease Research CenterGainesvilleFloridaUSA
| | | | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Diego Sepulveda‐Falla
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and South Texas ADRCUT Health San AntonioSan AntonioTexasUSA
- University of Texas Health Sciences CenterSan AntonioTexasUSA
| | - Claire E. Sexton
- Division of Medical and Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| | - Ingmar Skoog
- Institute of Neuroscience and FysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Peter H. St George‐Hyslop
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainDepartment of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Cambridge Institute for Medical Research and Department of Clinical NeurosciencesSchool of Clinical MedicineUniversity of CambridgeAddenbrookes Biomedical CampusTrumpingtonCambridgeUK
- Department of Medicine (Neurology)Temerty Faculty of MedicineUniversity of Torontoand University Health Network27 King's College CirTorontoOntarioCanada
| | - Claudia Kimie Suemoto
- Division of GeriatricsUniversity of Sao Paulo Medical SchoolR. da Reitoria, R. Cidade UniversitáriaSão PauloSao PauloBrazil
| | - Prekshy Thapa
- Global Brain Health Institute (GBHI)Trinity College DublinLloyd Building Trinity College DublinDublinIreland
| | - Chinedu Theresa Udeh‐Momoh
- Global Brain Health Institute (GBHI)University California San Francisco (UCSF)San FranciscoCaliforniaUSA
- FINGERS Brain Health Institutec/o Stockholms SjukhemStockholmSweden
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of NeurobiologyCare Sciences and Society (NVS)Division of Clinical GeriatricsKarolinska Institute, SolnavägenSolnaSweden
- Imarisha Centre for Brain health and AgingBrain and Mind InstituteAga Khan UniversityNairobiKenya
| | - Victor Valcour
- Memory and Aging CenterDepartment of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jeffery M. Vance
- John P Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiCoral GablesFloridaUSA
| | - Mathew Varghese
- St. John's Medical CollegeSarjapur ‐ Marathahalli Rd, beside Bank Of Baroda, John Nagar, KoramangalaBengaluruKarnatakaIndia
| | - Jaime H. Vera
- Department of Global Health and InfectionBrighton and Sussex Medical SchoolBrightonUK
| | - Richard W. Walker
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGöteborgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen Square, Queen SquareLondonUK
- UK Dementia Research Institute at UCLUniversity College LondonLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yared Z. Zewde
- Department of NeurologySchool of MedicineAddis Ababa UniversityAddis AbabaEthiopia
| | - Ozama Ismail
- Division of Medical and Scientific RelationsAlzheimer's AssociationChicagoIllinoisUSA
| |
Collapse
|
6
|
Dicklin MR, Anthony JC, Winters BL, Maki KC. ω-3 Polyunsaturated Fatty Acid Status Testing in Humans: A Narrative Review of Commercially Available Options. J Nutr 2024; 154:1487-1504. [PMID: 38522783 DOI: 10.1016/j.tjnut.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
There is an increasing body of evidence supporting a link between low intakes of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) and numerous diseases and health conditions. However, few people are achieving the levels of fish/seafood or eicosapentaenoic acid and docosahexaenoic acid intake recommended in national and international guidelines. Knowledge of a person's ω-3 LCPUFA status will benefit the interpretation of research results and could be expected to lead to an increased effort to increase intake. Dietary intake survey methods are often used as a surrogate for measuring ω-3 PUFA tissue status and its impact on health and functional outcomes. However, because individuals vary widely in their ability to digest and absorb ω-3 PUFA, analytical testing of biological samples is desirable to accurately evaluate ω-3 PUFA status. Adipose tissue is the reference biospecimen for measuring tissue fatty acids, but less-invasive methods, such as measurements in whole blood or its components (e.g., plasma, serum, red blood cell membranes) or breast milk are often used. Numerous commercial laboratories provide fatty acid testing of blood and breast milk samples by different methods and present their results in a variety of reports such as a full fatty acid profile, ω-3 and ω-6 fatty acid profiles, fatty acid ratios, as well as the Omega-3 Index, the Holman Omega-3 Test, OmegaScore, and OmegaCheck, among others. This narrative review provides information about the different ways to measure ω-3 LCPUFA status (including both dietary assessments and selected commercially available analytical tests of blood and breast milk samples) and discusses evidence linking increased ω-3 LCPUFA intake or status to improved health, focusing on cardiovascular, neurological, pregnancy, and eye health, in support of recommendations to increase ω-3 LCPUFA intake and testing.
Collapse
Affiliation(s)
| | | | | | - Kevin C Maki
- Midwest Biomedical Research, Addison, IL, United States; Indiana University School of Public Health, Bloomington, IN, United States.
| |
Collapse
|
7
|
Annevelink CE, Westra J, Sala-Vila A, Harris WS, Tintle NL, Shearer GC. A Genome-Wide Interaction Study of Erythrocyte ω-3 Polyunsaturated Fatty Acid Species and Memory in the Framingham Heart Study Offspring Cohort. J Nutr 2024; 154:1640-1651. [PMID: 38141771 PMCID: PMC11347816 DOI: 10.1016/j.tjnut.2023.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Cognitive decline, and more specifically Alzheimer's disease, continues to increase in prevalence globally, with few, if any, adequate preventative approaches. Several tests of cognition are utilized in the diagnosis of cognitive decline that assess executive function, short- and long-term memory, cognitive flexibility, and speech and motor control. Recent studies have separately investigated the genetic component of both cognitive health, using these measures, and circulating fatty acids. OBJECTIVES We aimed to examine the potential moderating effect of main species of ω-3 polyunsaturated fatty acids (PUFAs) on an individual's genetically conferred risk of cognitive decline. METHODS The Offspring cohort from the Framingham Heart Study was cross-sectionally analyzed in this genome-wide interaction study (GWIS). Our sample included all individuals with red blood cell ω-3 PUFA, genetic, cognitive testing (via Trail Making Tests [TMTs]), and covariate data (N = 1620). We used linear mixed effects models to predict each of the 3 cognitive measures (TMT A, TMT B, and TMT D) by each ω-3 PUFA, single nucleotide polymorphism (SNP) (0, 1, or 2 minor alleles), ω-3 PUFA by SNP interaction term, and adjusting for sex, age, education, APOE ε4 genotype status, and kinship (relatedness). RESULTS Our analysis identified 31 unique SNPs from 24 genes reaching an exploratory significance threshold of 1×10-5. Fourteen of the 24 genes have been previously associated with the brain/cognition, and 5 genes have been previously associated with circulating lipids. Importantly, 8 of the genes we identified, DAB1, SORCS2, SERINC5, OSBPL3, CPA6, DLG2, MUC19, and RGMA, have been associated with both cognition and circulating lipids. We identified 22 unique SNPs for which individuals with the minor alleles benefit substantially from increased ω-3 fatty acid concentrations and 9 unique SNPs for which the common homozygote benefits. CONCLUSIONS In this GWIS of ω-3 PUFA species on cognitive outcomes, we identified 8 unique genes with plausible biology suggesting individuals with specific polymorphisms may have greater potential to benefit from increased ω-3 PUFA intake. Additional replication in prospective settings with more diverse samples is needed.
Collapse
Affiliation(s)
- Carmen E Annevelink
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jason Westra
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States
| | - Aleix Sala-Vila
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Cardiovascular Risk and Nutrition, Hospital del Mar Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - William S Harris
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
| | - Nathan L Tintle
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Department of Population Health Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, United States
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
8
|
O'Keefe EL, O'Keefe JH, Tintle NL, Westra J, Albuisson L, Harris WS. Circulating Docosahexaenoic Acid and Risk of All-Cause and Cause-Specific Mortality. Mayo Clin Proc 2024; 99:534-541. [PMID: 38506781 PMCID: PMC11432052 DOI: 10.1016/j.mayocp.2023.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To assess the associations of docosahexaenoic acid (DHA), a marine omega-3 fatty acid, with long-term all-cause mortality, cardiovascular (CV) mortality, and cancer mortality. PATIENTS AND METHODS We analyzed data from UK Biobank, which included 117,702 subjects with baseline plasma DHA levels and 12.7 years of follow-up between April 2007 and December 2021. Associations with risk for mortality endpoints were analyzed categorically by quintile of DHA plasma levels. RESULTS Comparing the lowest to highest quintiles of circulating levels of DHA, there was 21% lower risk of all-cause mortality (HR, 0.79; 95% CI, 0.74 to 0.85; P<.0001). In a secondary analysis, we merged the UK Biobank findings with those from a recent FORCE (Fatty Acid and Outcome Research Consortium) meta-analysis that included 17 prospective cohort studies and 42,702 individuals examining DHA and mortality associations. The cumulative sample population included 160,404 individuals and 24,342 deaths during a median of 14 years of follow-up. After multivariable adjustment for relevant risk factors comparing the lowest to the highest quintiles of DHA, there was 17% lower risk of all-cause mortality (95% CI, 0.79 to 0.87; P<.0001), 21% lower risk for CV disease mortality (95% CI, 0.73 to 0.87; P<.001), 17% lower risk for cancer mortality (95% CI, 0.77 to 0.89; P<.0001), and 15% lower risk for all other mortality (95% CI, 0.79 to 0.91; P<.001). CONCLUSION Higher DHA levels were associated with significant risk reductions in all-cause mortality, as well as reduced risks for deaths due to CV disease, cancer, and all other causes. The findings strengthen the hypothesis that DHA, a marine-sourced omega-3, may support CV health and lifespan.
Collapse
Affiliation(s)
- Evan L O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA
| | - James H O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA.
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, College of Nursing, University of Illinois - Chicago, Chicago, IL, USA
| | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | | | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
9
|
Sala-Vila A, Tintle N, Westra J, Harris WS. Plasma Omega-3 Fatty Acids and Risk for Incident Dementia in the UK Biobank Study: A Closer Look. Nutrients 2023; 15:4896. [PMID: 38068754 PMCID: PMC10708484 DOI: 10.3390/nu15234896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Dietary omega-3 fatty acids are promising nutrients in dementia. Several prospective cohort studies have examined the relationships between circulating omega-3 (an objective biomarker of dietary intake) and incident dementia, the largest to date being a report from the UK Biobank (n = 102,722). Given the recent release of new metabolomics data from baseline samples from the UK Biobank, we re-examined the association in a much larger sample (n = 267,312) and also focused on associations with total omega-3, docosahexaenoic acid (DHA), and non-DHA omega-3. Using Cox regression models, we observed that the total omega-3 status was inversely related to the risk of Alzheimer's (Q5 vs. Q1, hazard ratio [95% confidence interval] = 0.87 [0.76; 1.00]) and all-cause dementia (Q5 vs. Q1, 0.79 [0.72; 0.87]). The strongest associations were observed for total omega-3 (and non-DHA omega-3) and all-cause dementia. In prespecified strata, we found stronger associations in men, and in those aged ≥60 years at baseline (vs. those aged 50-59). Thus, in the largest study to date on this topic, we confirmed the favorable relationships between DHA and risk for dementia, and we also found evidence that non-DHA omega-3 may be beneficial. Finally, we have better defined the populations most likely to benefit from omega-3-based interventions.
Collapse
Affiliation(s)
- Aleix Sala-Vila
- The Fatty Acid Research Institute, Sioux Falls, SD 57106, USA; (N.T.); (J.W.); (W.S.H.)
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Nathan Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD 57106, USA; (N.T.); (J.W.); (W.S.H.)
- Department of Population Health Nursing Science, College of Nursing, University of Illinois—Chicago, Chicago, IL 60612, USA
| | - Jason Westra
- The Fatty Acid Research Institute, Sioux Falls, SD 57106, USA; (N.T.); (J.W.); (W.S.H.)
| | - William S. Harris
- The Fatty Acid Research Institute, Sioux Falls, SD 57106, USA; (N.T.); (J.W.); (W.S.H.)
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
10
|
Papandreou C. Nutrition, Metabolites, and Human Health. Nutrients 2023; 15:4286. [PMID: 37836568 PMCID: PMC10574397 DOI: 10.3390/nu15194286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
The field of metabolomics and related "omics" techniques allows for the identification of a vast array of molecules within biospecimens [...].
Collapse
Affiliation(s)
- Christopher Papandreou
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain;
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University (HMU), 72300 Siteia, Greece
| |
Collapse
|
11
|
Antao HS, Sacadura-Leite E, Bandarra NM, Figueira ML. Omega-3 index as risk factor in psychiatric diseases: a narrative review. Front Psychiatry 2023; 14:1200403. [PMID: 37575565 PMCID: PMC10416246 DOI: 10.3389/fpsyt.2023.1200403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Numerous studies have described associations between the omega-3 index (defined as the RBC percentage of EPA and DHA) and mental conditions, but no risk stratification or target value has gathered consensus so far. This narrative review aims to summarize the published data on the association between omega-3 index and mental illness and to contribute to the concept of an omega-3 index in the field of mental health. The bibliographic searches have been carried out in PubMed, Scopus and Web of Science databases to find relevant English language original research studies related to that association. The study search and selection process were registered in a PRISMA flow. Thirty-six studies were included in this review examining the links between omega-3 index and postpartum depression (3), major depression (15), major depression and bipolar disorder (1), bipolar disorder (4), schizophrenia and major depression (1), schizophrenia and other psychosis (5) and dementia (7). Thirty of these studies found either significant differences in omega-3 index between patients and controls or inverse relationships between omega-3 index and disease severity. The published evidence is compelling enough to suggest omega-3 index as a risk factor for some psychiatric diseases, specifically, major depression, postpartum depression, psychosis, and dementia. In occidental populations, we propose a risk threshold of (a) 4-5% in major depression and dementia, (b) 5% in postpartum depression, and (c) 4% for psychosis transition.
Collapse
Affiliation(s)
| | - Ema Sacadura-Leite
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- CISP – Centro de Investigação em Saúde Pública, ENSP, Lisbon, Portugal
- Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
| | | | | |
Collapse
|
12
|
Hartnett KB, Ferguson BJ, Hecht PM, Schuster LE, Shenker JI, Mehr DR, Fritsche KL, Belury MA, Scharre DW, Horwitz AJ, Kille BM, Sutton BE, Tatum PE, Greenlief CM, Beversdorf DQ. Potential Neuroprotective Effects of Dietary Omega-3 Fatty Acids on Stress in Alzheimer's Disease. Biomolecules 2023; 13:1096. [PMID: 37509132 PMCID: PMC10377362 DOI: 10.3390/biom13071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND A large number of individual potentially modifiable factors are associated with risk for Alzheimer's disease (AD). However, less is known about the interactions between the individual factors. METHODS In order to begin to examine the relationship between a pair of factors, we performed a pilot study, surveying patients with AD and controls for stress exposure and dietary omega-3 fatty acid intake to explore their relationship for risk of AD. RESULTS For individuals with the greatest stress exposure, omega-3 fatty acid intake was significantly greater in healthy controls than in AD patients. There was no difference among those with low stress exposure. CONCLUSIONS These initial results begin to suggest that omega-3 fatty acids may mitigate AD risk in the setting of greater stress exposure. This will need to be examined with larger populations and other pairs of risk factors to better understand these important relationships. Examining how individual risk factors interact will ultimately be important for learning how to optimally decrease the risk of AD.
Collapse
Affiliation(s)
- Kaitlyn B Hartnett
- School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Bradley J Ferguson
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65212, USA
- Department of Health Psychology, University of Missouri-Columbia, Columbia, MO 65212, USA
- Department of Neurology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Patrick M Hecht
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Luke E Schuster
- School of Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Joel I Shenker
- Department of Neurology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - David R Mehr
- Family & Community Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Martha A Belury
- Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Douglas W Scharre
- Department of Neurology, Ohio State University, Columbus, OH 43210, USA
| | | | | | - Briann E Sutton
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Paul E Tatum
- Division of Palliative Medicine; Washington University. St. Louis, MO 63110, USA
| | | | - David Q Beversdorf
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65212, USA
- Department of Neurology, University of Missouri-Columbia, Columbia, MO 65212, USA
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Psychological Sciences, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
13
|
Kim JP, Nho K, Wang T, Huynh K, Arnold M, Risacher SL, Bice PJ, Han X, Kristal BS, Blach C, Baillie R, Kastenmüller G, Meikle PJ, Saykin AJ, Kaddurah-Daouk R. Circulating lipid profiles are associated with cross-sectional and longitudinal changes of central biomarkers for Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.12.23291054. [PMID: 37398438 PMCID: PMC10312871 DOI: 10.1101/2023.06.12.23291054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Investigating the association of lipidome profiles with central Alzheimer's disease (AD) biomarkers, including amyloid/tau/neurodegeneration (A/T/N), can provide a holistic view between the lipidome and AD. We performed cross-sectional and longitudinal association analysis of serum lipidome profiles with AD biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort (N=1,395). We identified lipid species, classes, and network modules that were significantly associated with cross-sectional and longitudinal changes of A/T/N biomarkers for AD. Notably, we identified the lysoalkylphosphatidylcholine (LPC(O)) as associated with "A/N" biomarkers at baseline at lipid species, class, and module levels. Also, GM3 ganglioside showed significant association with baseline levels and longitudinal changes of the "N" biomarkers at species and class levels. Our study of circulating lipids and central AD biomarkers enabled identification of lipids that play potential roles in the cascade of AD pathogenesis. Our results suggest dysregulation of lipid metabolic pathways as precursors to AD development and progression.
Collapse
Affiliation(s)
- Jun Pyo Kim
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Neurology, Samsung Medical Center, Seoul, Korea
| | - Kwangsik Nho
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
- Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paula J Bice
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Bruce S Kristal
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
- Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Andrew J Saykin
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Wei BZ, Li L, Dong CW, Tan CC, Xu W. The Relationship of Omega-3 Fatty Acids with Dementia and Cognitive Decline: Evidence from Prospective Cohort Studies of Supplementation, Dietary Intake, and Blood Markers. Am J Clin Nutr 2023; 117:1096-1109. [PMID: 37028557 PMCID: PMC10447496 DOI: 10.1016/j.ajcnut.2023.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Previous data have linked omega-3 fatty acids with risk of dementia. We aimed to assess the longitudinal relationships of omega-3 polyunsaturated fatty acid intake as well as blood biomarkers with risk of Alzheimer's disease (AD), dementia, or cognitive decline. Longitudinal data were derived from 1135 participants without dementia (mean age = 73 y) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to evaluate the associations of omega-3 fatty acid supplementation and blood biomarkers with incident AD during the 6-y follow-up. A meta-analysis of published cohort studies was further conducted to test the longitudinal relationships of dietary intake of omega-3 and its peripheral markers with all-cause dementia or cognitive decline. Causal dose-response analyses were conducted using the robust error meta-regression model. In the ADNI cohort, long-term users of omega-3 fatty acid supplements exhibited a 64% reduced risk of AD (hazard ratio: 0.36, 95% confidence interval: 0.18, 0.72; P = 0.004). After incorporating 48 longitudinal studies involving 103,651 participants, a moderate-to-high level of evidence suggested that dietary intake of omega-3 fatty acids could lower risk of all-cause dementia or cognitive decline by ∼20%, especially for docosahexaenoic acid (DHA) intake (relative risk [RR]: 0.82, I2 = 63.6%, P = 0.001) and for studies that were adjusted for apolipoprotein APOE ε4 status (RR: 0.83, I2 = 65%, P = 0.006). Each increment of 0.1 g/d of DHA or eicosapentaenoic acid (EPA) intake was associated with an 8% ∼ 9.9% (Plinear < 0.0005) lower risk of cognitive decline. Moderate-to-high levels of evidence indicated that elevated levels of plasma EPA (RR: 0.88, I2 = 38.1%) and erythrocyte membrane DHA (RR: 0.94, I2 = 0.4%) were associated with a lower risk of cognitive decline. Dietary intake or long-term supplementation of omega-3 fatty acids may help reduce risk of AD or cognitive decline.
Collapse
Affiliation(s)
- Bao-Zhen Wei
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Li
- Department of Neurology, Linyi People's Hospital, Qingdao University, Qingdao, China
| | - Cheng-Wen Dong
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
15
|
Smith AD, Refsum H. Reader Response: Association Between Dietary Habits in Midlife With Dementia Incidence Over a 20-Year Period. Neurology 2023; 100:935. [PMID: 37156628 PMCID: PMC10186216 DOI: 10.1212/wnl.0000000000207355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023] Open
|
16
|
Chaaba R, Bouaziz A, Ben Amor A, Mnif W, Hammami M, Mehri S. Fatty Acid Profile and Genetic Variants of Proteins Involved in Fatty Acid Metabolism Could Be Considered as Disease Predictor. Diagnostics (Basel) 2023; 13:979. [PMID: 36900123 PMCID: PMC10001328 DOI: 10.3390/diagnostics13050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Circulating fatty acids (FA) have an endogenous or exogenous origin and are metabolized under the effect of many enzymes. They play crucial roles in many mechanisms: cell signaling, modulation of gene expression, etc., which leads to the hypothesis that their perturbation could be the cause of disease development. FA in erythrocytes and plasma rather than dietary FA could be used as a biomarker for many diseases. Cardiovascular disease was associated with elevated trans FA and decreased DHA and EPA. Increased arachidonic acid and decreased Docosahexaenoic Acids (DHA) were associated with Alzheimer's disease. Low Arachidonic acid and DHA are associated with neonatal morbidities and mortality. Decreased saturated fatty acids (SFA), increased monounsaturated FA (MUFA) and polyunsaturated FA (PUFA) (C18:2 n-6 and C20:3 n-6) are associated with cancer. Additionally, genetic polymorphisms in genes coding for enzymes implicated in FA metabolism are associated with disease development. FA desaturase (FADS1 and FADS2) polymorphisms are associated with Alzheimer's disease, Acute Coronary Syndrome, Autism spectrum disorder and obesity. Polymorphisms in FA elongase (ELOVL2) are associated with Alzheimer's disease, Autism spectrum disorder and obesity. FA-binding protein polymorphism is associated with dyslipidemia, type 2 diabetes, metabolic syndrome, obesity, hypertension, non-alcoholic fatty liver disease, peripheral atherosclerosis combined with type 2 diabetes and polycystic ovary syndrome. Acetyl-coenzyme A carboxylase polymorphisms are associated with diabetes, obesity and diabetic nephropathy. FA profile and genetic variants of proteins implicated in FA metabolism could be considered as disease biomarkers and may help with the prevention and management of diseases.
Collapse
Affiliation(s)
- Raja Chaaba
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
| | - Aicha Bouaziz
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Bio-Resources, Integrative Biology & Valorization (BIOLIVAL, LR14ES06), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Asma Ben Amor
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Faculty of Medicine, “Ibn El Jazzar” University of Sousse, Sousse 4054, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Mohamed Hammami
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| | - Sounira Mehri
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| |
Collapse
|
17
|
Beversdorf DQ, Crosby HW, Shenker JI. Complementary and Alternative Medicine Approaches in Alzheimer Disease and Other Neurocognitive Disorders. MISSOURI MEDICINE 2023; 120:70-78. [PMID: 36860601 PMCID: PMC9970340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As our population ages, there is interest in delaying or intervening in cognitive decline. While newer agents are under development, agents in mainstream use do not impact the course of diseases that cause cognitive decline. This increases interest in alternative strategies. Even as we welcome possible new disease-modifying agents, they are likely to remain costly. Herein, we review the evidence behind other complementary and alternative strategies for cognitive enhancement and prevention of cognitive decline.
Collapse
Affiliation(s)
- David Q Beversdorf
- Departments of Neurology, Radiology, and Psychological Sciences, and is the William and Nancy Thompson Endowed Chair in Radiology, , University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Haley W Crosby
- Fourth-year medical student at the School of Medicine, , University of Missouri-Columbia School of Medicine, Columbia, Missouri
| | - Joel I Shenker
- Department of Neurology, University of Missouri-Columbia School of Medicine, Columbia, Missouri
| |
Collapse
|
18
|
Rouch L, Virecoulon Giudici K, Cantet C, Guyonnet S, Delrieu J, Legrand P, Catheline D, Andrieu S, Weiner M, de Souto Barreto P, Vellas B. Associations of erythrocyte omega-3 fatty acids with cognition, brain imaging and biomarkers in the Alzheimer's disease neuroimaging initiative: cross-sectional and longitudinal retrospective analyses. Am J Clin Nutr 2022; 116:1492-1506. [PMID: 36253968 PMCID: PMC9761759 DOI: 10.1093/ajcn/nqac236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The association between omega-3 (ω-3) PUFAs and cognition, brain imaging and biomarkers is still not fully established. OBJECTIVES The aim was to analyze the cross-sectional and retrospective longitudinal associations between erythrocyte ω-3 index and cognition, brain imaging, and biomarkers among older adults. METHODS A total of 832 Alzheimer's Disease Neuroimaging Initiative 3 (ADNI-3) participants, with a mean (SD) age of 74.0 (7.9) y, 50.8% female, 55.9% cognitively normal, 32.7% with mild cognitive impairment, and 11.4% with Alzheimer disease (AD) were included. A low ω-3 index (%EPA + %DHA) was defined as the lowest quartile (≤3.70%). Cognitive tests [composite score, AD Assessment Scale Cognitive (ADAS-Cog), Wechsler Memory Scale (WMS), Trail Making Test, Category Fluency, Mini-Mental State Examination, Montreal Cognitive Assessment] and brain variables [hippocampal volume, white matter hyperintensities (WMHs), positron emission tomography (PET) amyloid-β (Aβ) and tau] were considered as outcomes in regression models. RESULTS Low ω-3 index was not associated with cognition, hippocampal, and WMH volume or brain Aβ and tau after adjustment for demographics, ApoEε4, cardiovascular disease, BMI, and total intracranial volume in the cross-sectional analysis. In the retrospective analysis, low ω-3 index was associated with greater Aβ accumulation (adjusted β = 0.02; 95% CI: 0.01, 0.03; P = 0.003). The composite cognitive score did not differ between groups; however, low ω-3 index was significantly associated with greater WMS-delayed recall cognitive decline (adjusted β = -1.18; 95% CI: -2.16, -0.19; P = 0.019), but unexpectedly lower total ADAS-Cog cognitive decline. Low ω-3 index was cross-sectionally associated with lower WMS performance (adjusted β = -1.81, SE = 0.73, P = 0.014) and higher tau accumulation among ApoE ε4 carriers. CONCLUSIONS Longitudinally, low ω-3 index was associated with greater Aβ accumulation and WMS cognitive decline but unexpectedly with lower total ADAS-Cog cognitive decline. Although no associations were cross-sectionally found in the whole population, low ω-3 index was associated with lower WMS cognition and higher tau accumulation among ApoE ε4 carriers. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is registered at clinicaltrials.gov as NCT00106899.
Collapse
Affiliation(s)
- Laure Rouch
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital, Toulouse, Franc
| | | | - Christelle Cantet
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital, Toulouse, Franc
| | - Sophie Guyonnet
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital, Toulouse, Franc
- CERPOP Centre d'Epidémiologie et de Recherche en Santé des Populations, Institut National de la Santé et de la Recherche Médicale 1295, University of Toulouse, Toulouse, France
| | - Julien Delrieu
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital, Toulouse, Franc
- CERPOP Centre d'Epidémiologie et de Recherche en Santé des Populations, Institut National de la Santé et de la Recherche Médicale 1295, University of Toulouse, Toulouse, France
- Toulouse NeuroImaging Center, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, UPS, Toulouse, France
| | - Philippe Legrand
- Laboratory of Biochemistry and Human Nutrition, Institut Agro, Institut National de la Santé et de la Recherche Médicale 1241, Rennes, France
| | - Daniel Catheline
- Laboratory of Biochemistry and Human Nutrition, Institut Agro, Institut National de la Santé et de la Recherche Médicale 1241, Rennes, France
| | - Sandrine Andrieu
- CERPOP Centre d'Epidémiologie et de Recherche en Santé des Populations, Institut National de la Santé et de la Recherche Médicale 1295, University of Toulouse, Toulouse, France
- Department of Epidemiology and Public Health, Toulouse University Hospital, Toulouse, France
| | - Michael Weiner
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital, Toulouse, Franc
- CERPOP Centre d'Epidémiologie et de Recherche en Santé des Populations, Institut National de la Santé et de la Recherche Médicale 1295, University of Toulouse, Toulouse, France
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital, Toulouse, Franc
- CERPOP Centre d'Epidémiologie et de Recherche en Santé des Populations, Institut National de la Santé et de la Recherche Médicale 1295, University of Toulouse, Toulouse, France
| | | |
Collapse
|
19
|
Katonova A, Sheardova K, Amlerova J, Angelucci F, Hort J. Effect of a Vegan Diet on Alzheimer's Disease. Int J Mol Sci 2022; 23:14924. [PMID: 36499257 PMCID: PMC9738978 DOI: 10.3390/ijms232314924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
There is evidence indicating that a vegan diet could be beneficial in the prevention of neurodegenerative disorders, including Alzheimer's disease (AD). The purpose of this review is to summarize the current knowledge on the positive and negative aspects of a vegan diet regarding the risk of AD. Regarding AD prevention, a vegan diet includes low levels of saturated fats and cholesterol, contributing to a healthy blood lipid profile. Furthermore, it is rich in phytonutrients, such as vitamins, antioxidants, and dietary fiber, that may help prevent cognitive decline. Moreover, a vegan diet contributes to the assumption of quercetin, a natural inhibitor of monoamine oxidase (MAO), which can contribute to maintaining mental health and reducing AD risk. Nonetheless, the data available do not allow an assessment of whether strict veganism is beneficial for AD prevention compared with vegetarianism or other diets. A vegan diet lacks specific vitamins and micronutrients and may result in nutritional deficiencies. Vegans not supplementing micronutrients are more prone to vitamin B12, vitamin D, and DHA deficiencies, which have been linked to AD. Thus, an evaluation of the net effect of a vegan diet on AD prevention and/or progression should be ascertained by taking into account all the positive and negative effects described here.
Collapse
Affiliation(s)
- Alzbeta Katonova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Katerina Sheardova
- International Clinical Research Centre, St. Anne’s University Hospital, 602 00 Brno, Czech Republic
| | - Jana Amlerova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| |
Collapse
|