1
|
Karimzadeh K, Unniappan S, Zahmatkesh A. Spirulina platensis Peptide-Loaded Nanoliposomes Alleviate Hepatic Lipid Accumulation in Male Wistar Rats by Influencing Redox Homeostasis and Lipid Metabolism via the AMPK Signaling Pathway. Appl Biochem Biotechnol 2025; 197:1696-1725. [PMID: 39601973 DOI: 10.1007/s12010-024-05089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Spirulina platensis low-molecular-weight peptides (SP) have been reported to exhibit antioxidant and hepatoprotective properties. However, the limited bioavailability and solubility of SPs limit their potential applications. In this study, to examine the potential anti-obesity effects and underlying mechanisms of SPs, high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) model rats were treated with SPs and SP-loaded nanoliposomes. Furthermore, hepatic biochemical parameters, inflammatory markers, histopathological changes, and genes involved in AMPK signaling were analyzed. SP-loaded nanoliposomes demonstrated a spherical shape with slower and sustained SP release. SP and SP-loaded nanoliposomes mitigated hepatic damage by lowering serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and increasing hepatic antioxidant enzymes, which are manifested in improving histopathological findings. In addition, notably, SP-loaded nanoliposomes downregulated lipogenic fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) in the liver. Meanwhile, an upregulation of phosphorylated AMP-activated protein kinase (P-AMPK), lipid acid oxidation-related genes carnitine palmitoyltransferase-1 (CPT-1), and peroxisome proliferator-activated receptor alpha (PPAR-α) was found in the rat liver. This data implies that SP and SP-loaded nanoliposomes exhibit protective potential in rats against the HFD-induced NAFLD, which is mediated through the activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Katayoon Karimzadeh
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Asgar Zahmatkesh
- Aquaculture Department, Gilan Agricultural and Natural Resources Research and Education Center, AREEO, Rasht, Iran
| |
Collapse
|
2
|
Jiang M, Tao X, Pang Y, Qin Z, Song E, Song Y. Copper oxide nanoparticles induce non-alcoholic fatty liver disease by disrupting bile acid homeostasis and perturbing the intestinal microbial homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136416. [PMID: 39531819 DOI: 10.1016/j.jhazmat.2024.136416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The wide application of copper oxide nanoparticles (CuO NPs) in various fields such as medicine, food, agriculture, and animal husbandry can result in direct or indirect oral exposure of CuO NPs to the human body. Therefore, the research on the biosafety of CuO NPs is crucially important. However, previous research mainly concentrated on CuO NPs-induced oxidative stress, rather than the dysregulation of metabolic homeostasis. Our current finding indicates that CuO NPs can enter the systemic circulation and accumulate in the liver by being adopted by the colon and disrupting the intestinal barrier. Subsequently, CuO NPs can impair bile acid (BA) homeostasis through increased reabsorption of bile acids (BAs), ultimately leading to non-alcoholic fatty liver disease (NAFLD). Additionally, the direct stimulation from CuO NPs, damage to the gut barrier, and disruption of BA homeostasis can also disrupt microbial homeostasis in the intestines, including alterations in the composition and biological functions of gut microbiota, thereby triggering NAFLD. These findings deepen our understanding of the biosafety of CuO NPs and provide evidence for their role in disrupting physiological homeostasis.
Collapse
Affiliation(s)
- Muran Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China; Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, China.
| | - Yingxin Pang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Zongmin Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
3
|
Ki W, Renchinkhand G, Bae H, Nam MS. Antioxidant, Antihypertensive, and Anti-Inflammatory Activities of Long-Term Ripened Cheddar Cheese Water-Soluble Extract. Food Sci Anim Resour 2024; 44:1373-1388. [PMID: 39554823 PMCID: PMC11564144 DOI: 10.5851/kosfa.2024.e83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 11/19/2024] Open
Abstract
During cheese ripening, the proteins in the cheese are broken down, and various functional peptides are produced. This research aimed to investigate the changes in peptides and their physiological activities during the long-term maturation of Cheddar cheese. Young (YC), medium (MC), and 3-year-aged extra-sharp (EC) Cheddar cheeses were extracted with water, and bioactive peptides were identified using ultra performance liquid chromatography-high resolution mass spectrometer. Peptides reported to have antioxidant, angiotensin-converting enzyme (ACE)-inhibitory, and anti-inflammatory effects were identified and evaluated in the extracts. MC and EC showed stronger antioxidant activity than YC. The 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid inhibition rates of MC and EC were similar, but EC exhibited a higher 2,2-diphenyl-1-picrylhydrazyl inhibition rate. The antihypertensive effect was found to increase owing to the appearance of peptides with ACE-inhibitory activity in MC and EC. Quantitative real time polymerase chain reaction and immunoblot were run to evaluate the anti-inflammatory effects. YC did not show anti-inflammatory activity, but MC and EC were shown to effectively inhibit inflammatory mRNA expression. The immunoblot results showed that EC did not inhibit IκBα phosphorylation, but had an inhibitory effect at the mRNA expression level. Overall, the peptides contained in aged Cheddar cheese were shown to have excellent antioxidant, anti-inflammatory, and antihypertensive activities, and long-term ripening appeared to have a positive effect on these activities. This is presumed to have affected not only the already identified peptides but also unknown peptides; therefore, it is expected that the discovery of bioactive peptides will be possible through additional research.
Collapse
Affiliation(s)
- Woojin Ki
- Department of Dairy Science, College of
Agriculture & Life Sciences, Chungnam National
University, Daejeon 34134, Korea
| | - Gereltuya Renchinkhand
- Department of Biology, School of Arts and
Sciences, National University of Mongolia, Ulaanbaatar 14201,
Mongolia
| | - Hyoungcheol Bae
- Department of Dairy Science, College of
Agriculture & Life Sciences, Chungnam National
University, Daejeon 34134, Korea
| | - Myoung Soo Nam
- Department of Dairy Science, College of
Agriculture & Life Sciences, Chungnam National
University, Daejeon 34134, Korea
| |
Collapse
|
4
|
Ki W, Renchinkhand G, Bae H, Nam MS. Evaluation of Physiological Activity of Long-Term Ripened Gouda Water Extract. Foods 2024; 13:3446. [PMID: 39517230 PMCID: PMC11545096 DOI: 10.3390/foods13213446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated peptide changes and their bioactive functions through the long-term ripening of Gouda. Young Gouda (YG), medium Gouda (MG), and extra-sharp Gouda (EG) water extracts were prepared and functional peptides were recognized using liquid chromatography-high-resolution mass spectrometry. Two peptides with ACE-inhibitory effects (IQP and LQP) were identified in YG, while in MG and EG were identified eight (EL, IVP, VP, LPP, VIP, IPP, VPP, and VVPP) and six (EL, YL, VP, IR, YPEL, and DKIHPF) functional peptides, respectively. MG (70.26%) and EG (46.81%) showed stronger antioxidant activity than YG (25.99%) in ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) inhibition, though the DPPH (2,2-diphenyl-1-picrylhydrazyl) inhibition rate decreased with ripening. The antihypertensive effect increased in MG (79.76%) and EG (94.50%) due to ACE-inhibitory peptides. Measurements of inflammatory mRNA expression levels and immunoblotting were conducted to assess the anti-inflammatory properties. MG and EG suppressed the transcription of IL-1β and IL-6 mRNA. Immunoblotting indicated that EG suppressed IκBα phosphorylation to 57%. The enhancement of bioactive function in the water-soluble part of long-term ripened Gouda cheese may have affected identified peptides as well as unknown peptides. Further studies are expected to aid in discovering these novel bioactive peptides.
Collapse
Affiliation(s)
- Woojin Ki
- Department of Dairy Science, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (W.K.); (H.B.)
| | - Gereltuya Renchinkhand
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Hyoungchurl Bae
- Department of Dairy Science, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (W.K.); (H.B.)
| | - Myoung Soo Nam
- Department of Dairy Science, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (W.K.); (H.B.)
| |
Collapse
|
5
|
Hu M, Du Y, Li W, Zong X, Du W, Sun H, Liu H, Zhao K, Li J, Farooq MZ, Wu J, Xu Q. Interplay of Food-Derived Bioactive Peptides with Gut Microbiota: Implications for Health and Disease Management. Mol Nutr Food Res 2024; 68:e2400251. [PMID: 39097954 DOI: 10.1002/mnfr.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Indexed: 08/06/2024]
Abstract
Bioactive peptides (BPs) are protein fragments with beneficial effects on metabolism, physiology, and diseases. This review focuses on proteolytic BPs, which are produced by the action of gut microbiota on proteins in food and have demonstrated to influence the composition of gut microbes. And gut microbiota are candidate targets of BPs to alleviate oxidative stress, enhance immunity, and control diseases, including diabetes, hypertension, obesity, cancer, and immune and neurodegenerative diseases. Despite promising results, further research is needed to understand the mechanisms underlying the interactions between BPs and gut microbes, and to identify and screen more BPs for industrial applications. Overall, BPs offer potential as therapeutic agents for various diseases through their interactions with gut microbes, highlighting the importance of continued research in this area.
Collapse
Affiliation(s)
- Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyue Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomei Zong
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Jianxiong Li
- Wuhan Jason Biotech Co., Ltd., Wuhan, 430070, China
| | - Muhammad Zahid Farooq
- Department of Animal Science, University of Veterinary and Animal Science, Lahore, 54000, Pakistan
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
7
|
Xia M, Xu Y, Li H, Huang J, Zhou H, Gao C, Han J. Structural and functional alteration of the gut microbiota in elderly patients with hyperlipidemia. Front Cell Infect Microbiol 2024; 14:1333145. [PMID: 38812752 PMCID: PMC11133514 DOI: 10.3389/fcimb.2024.1333145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Objective To investigate the structure, composition, and functions of the gut microbiota in elderly patients with hyperlipidemia. Methods Sixteen older patients diagnosed with hyperlipidemia (M group) and 10 healthy, age-matched normal volunteers (N group) were included. These groups were further subdivided by sex into the male normal (NM, n = 5), female normal (NF, n = 5), male hyperlipidemia (MM, n = 8), and female hyperlipidemia (MF, n = 8) subgroups. Stool samples were collected for high-throughput sequencing of 16S rRNA genes. Blood samples were collected for clinical biochemical index testing. Results Alpha- and beta-diversity analyses revealed that the structure and composition of the gut microbiota were significantly different between the M and N groups. The relative abundances of Bacteroides, Parabacteroides, Blautia, Peptococcus, and Bifidobacterium were significantly decreased, while those of Lactobacillus, Helicobacter, and Desulfovibrio were significantly higher in the M group. There were also significant sex-related differences in microbial structure between the NM and NF groups, and between the MM and MF groups. Through functional prediction with PICRUSt 2, we observed distinct between-group variations in metabolic pathways associated with the gut microbiota and their impact on the functionality of the nervous system. Pearson's correlation coefficient was used as a distance metric to build co-abundance networks. A hypergeometric test was used to detect taxonomies with significant enrichment in specific clusters. We speculated that modules with Muribaculaceae and Lachnospiraceae as the core microbes play an important ecological role in the intestinal microbiota of the M group. The relative intestinal abundances of Agathobacter and Faecalibacterium in the M group were positively correlated with serum triglyceride and low-density lipoprotein levels, while the relative abundance of Bifidobacterium was negatively correlated with the serum lipoprotein a level.
Collapse
Affiliation(s)
- Meng Xia
- Department of Clinical Laboratory, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yafang Xu
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Juan Huang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haolin Zhou
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuanzhou Gao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jingyi Han
- Department of Clinical Laboratory, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Wang D, Zhao H, Xing C, Lv B, Wang X, He B. Androgens exacerbate hepatic triglyceride accumulation in rats with polycystic ovary syndrome by downregulating MTTP expression. Endocrine 2024; 84:735-744. [PMID: 37950821 DOI: 10.1007/s12020-023-03590-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/28/2023] [Indexed: 11/13/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder, which is closely associated with insulin resistance, glucose and lipid metabolism disorders. Patients with PCOS have a significantly higher risk of non-alcoholic fatty liver disease and are associated with hyperandrogenemia (HA). However, the exact mechanism by which HA exacerbates hepatic steatosis in PCOS has not yet been fully elucidated. This work aims to investigate the effects and underlying mechanisms of androgens on hepatic triglyceride (TG) metabolism in rats with PCOS. METHODS Twenty-four female Sprague-Dawley rats were randomly divided into four groups (6 rats/group): control, high-fat diet (HFD), PCOS, and PCOS + flutamide (Flu). Changes in the estrous cycle, liver and ovarian tissue sections, serum total testosterone, serum and liver biochemical indicators, and key enzymes involved in TG metabolism were studied. RESULTS Hepatocyte steatosis and TG accumulation were more evident in the PCOS group than in the control and HFD groups. The PCOS group showed apparent increases in the levels of serum alanine aminotransferase, aspartate aminotransferase, TG, free fatty acid, fasting insulin, and homeostasis model assessment of insulin resistance. Hepatic VLDL and apoB-100 levels decreased in the PCOS group. After Flu was administered to block the actions of androgens, the above abnormalities had been improved. The expression of MTTP was greatly decreased in the PCOS group and significantly increased after Flu administration. CONCLUSION Hepatic steatosis in PCOS rats was correlated with HA. Androgens may exacerbate hepatic TG accumulation by downregulating MTTP expression in PCOS.
Collapse
Affiliation(s)
- Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Han Zhao
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Chuan Xing
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Bo Lv
- Department of Endocrinology, Dalian Third People's Hospital, Dalian, 116033, PR China
| | - Xiaochen Wang
- Department of Endocrinology, The People's Hospital of Liaoning Province, Shenyang, 110067, PR China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
9
|
Zhou S, Quan C, Zhang Z, Gong S, Nawaz S, Zhang Y, Kulyar MFEA, Mo Q, Li J. Leucine improves thiram-induced tibial dyschondroplasia and gut microbiota dysbiosis in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116260. [PMID: 38564867 DOI: 10.1016/j.ecoenv.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.
Collapse
Affiliation(s)
- Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
10
|
Zhou X, Zhang H, Li S, Jiang Y, Deng J, Yang C, Chen X, Jiang L. Effects of different levels of Citri Sarcodactylis Fructus by-products fermented feed on growth performance, serum biochemical, and intestinal health of cyan-shank partridge birds. Sci Rep 2023; 13:20130. [PMID: 37978234 PMCID: PMC10656579 DOI: 10.1038/s41598-023-47303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
This research aimed to investigate the effects of supplements containing fermented feed made from Citri Sarcodactylis Fructus by-products (CSFBP-Fermented feed) on the growth performance, immunological function, and gut health of broilers. 1080 cyan-shank partridge birds aged 47 days were chosen and casually distributed to four groups, each with 6 replicates and 45 birds per replicate. The experimental groups were provided with 1% (group T2), 3% (group T3) and 5% (group T4) of CSFBP-fermented feed in the basic diet, while the control group (group T1) received the basic diet. The findings revealed that supplementation with CSFBP-Fermented feed reduced ADFI and FCR and improved ADG in birds (P < 0.05). MDA levels in the serum of birds fed CSFBP-fermented feed were lower than in the control group (P < 0.05). The CAT activity in the serum of broilers increased after supplementation with 3% CSFBP-Fermented feed (P < 0.05). Supplementing broilers with CSFBP-fermented feed enhanced VH in the ileum, jejunum, and duodenum (P < 0.05). The addition of 3% CSFBP-Fermented feed decreased CD in the jejunum (P < 0.05). The addition of 3% and 5% CSFBP-Fermented feed increased the mRNA expression of ZO-1 and Occludin in the jejunum of broiler chickens and reduced the mRNA expression of IL-6 (P < 0.05). The addition of 3% CSFBP-Fermented feed increased the mRNA expression of Claudin in the jejunum of broiler chickens and reduced IL-1β mRNA expression (P < 0.05). Compared to the control group, all experimental groups exhibited decreased mRNA expression of TNF-α and INF-γ in the jejunal mucosa of the birds (P < 0.05). According to research using high-throughput sequencing of microorganisms' 16S rDNA, and an analysis of α-diversity found that supplementing broilers with 3% CSFBP-Fermented feed decreased the number of bacteria in their cecum (P < 0.05). Bacteroidota was higher in all groups after supplementation with CSFBP-Fermented feed. At the genus level, after addition with 3% CSFBP-Fermented feed, the abundance of Bacteroide and Prevotellaceae_Ga6A1_group were higher than the control group (33.36% vs 29.95%, 4.35% vs 2.94%). The abundance of Rikenellaceae_RC9_gut_group and Fusobacterium were lower than the control group (5.52% vs. 7.17%,0.38% vs. 1.33%). In summary, supplementing the diet with CSFBP-Fermented feed can promote the growth of performance by enhancing intestinal morphology, and barrier function, as well as modulating intestinal inflammatory factors and microbial composition in broilers.
Collapse
Affiliation(s)
- Xinhong Zhou
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Yilong Jiang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Jicheng Deng
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Chuanpeng Yang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China.
| | - Li Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
11
|
Sun Z, Wang W, Liu J, Zou S, Yin D, Lyu C, Yu J, Wei Y. Bioactive Peptides from Ruditapes philippinarum Attenuate Hypertension and Cardiorenal Damage in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Molecules 2023; 28:7610. [PMID: 38005332 PMCID: PMC10675683 DOI: 10.3390/molecules28227610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertension is a common disease that affects human health and can lead to damage to the heart, kidneys, and other important organs. In this study, we investigated the regulatory effects of bioactive peptides derived from Ruditapes philippinarum (RPP) on hypertension and organ protection in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We found that RPPs exhibited significant blood pressure-lowering properties. Furthermore, the results showed that RPPs positively influenced vascular remodeling and effectively maintained a balanced water-sodium equilibrium. Meanwhile, RPPs demonstrated anti-inflammatory potential by reducing the serum levels of inflammatory cytokines (TNF-α, IL-2, and IL-6). Moreover, we observed the strong antioxidant activity of RPPs, which played a critical role in reducing oxidative stress and alleviating hypertension-induced damage to the aorta, heart, and kidneys. Additionally, our study explored the regulatory effects of RPPs on the gut microbiota, suggesting a possible correlation between their antihypertensive effects and the modulation of gut microbiota. Our previous studies have demonstrated that RPPs can significantly reduce blood pressure in SHR rats. This suggests that RPPs can significantly improve both essential hypertension and DOAC-salt-induced secondary hypertension and can ameliorate cardiorenal damage caused by hypertension. These findings further support the possibility of RPPs as an active ingredient in functional anti-hypertensive foods.
Collapse
Affiliation(s)
- Zonghui Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Weixia Wang
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Jinli Liu
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Shengcan Zou
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Dongli Yin
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Chenghan Lyu
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
12
|
Zhang W, Cui N, Su F, Sun Y, Li B, Zhang Z, Zeng Y, Guan W, Yang B, Wang Q, Kuang H. Therapeutic impact of stachyose on hyperlipidaemia caused by a high-fat diet in mice as revealed by gut microbiota and metabolomics. Curr Res Food Sci 2023; 7:100638. [PMID: 38045511 PMCID: PMC10692757 DOI: 10.1016/j.crfs.2023.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Hyperlipidaemia, which is characterized by an excess of lipids or fats in the bloodstream, is a high-risk factor and critical indicator of many metabolic diseases. This study used 16 S rRNA gene sequencing and metabolomics to determine that stachyose (ST) has a therapeutic effect and is a mechanism of hyperlipidaemia. These results show that ST significantly attenuated high-fat diet-induced weight gain and fat deposition while also adjusting the gut microbial composition. Untargeted serum metabolomics identified 12 biomarkers, which suggests that ST may function by regulating metabolic pathways. These results highlight the potential of ST in treating hyperlipidaemia and provides directions for future research including an in-depth investigation of the bioactive components, dosage, and treatment strategies of ST.
Collapse
Affiliation(s)
- Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Na Cui
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Fazhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Zhihong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yuanning Zeng
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica (Guangdong Pharmaceutical University, School of Chinese Materia Medica), Guangdong, 510006, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica (Guangdong Pharmaceutical University, School of Chinese Materia Medica), Guangdong, 510006, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| |
Collapse
|
13
|
Wang J, Liu A, Li A, Song H, Luo P, Zhan M, Zhou X, Chen L, Zhang J, Wang R. Lactobacillus fermentum CKCC1858 alleviates hyperlipidemia in golden hamsters on a high-fat diet via modulating gut microbiota. Food Funct 2023; 14:9580-9590. [PMID: 37823897 DOI: 10.1039/d3fo02618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
To investigate the effect of probiotic Lactobacillus fermentum CKCC1858, LF on the prevention of hyperlipidemia and its correlation with gut microbiota, golden hamsters were fed a high-fat diet alone or in combination with the probiotic for 6 weeks. The results showed that the LF intervention alleviated HFD-induced hyperlipidemia and liver damage, as evidenced by the reduced serum lipid profile levels and liver function markers. More importantly, the LF intervention attenuated HFD-induced microbiota dysbiosis by enhancing the abundance of SCFA-producing bacteria and reshaping the metabolic functions of the gut microbiota, likely contributing to its pronounced preventive effects on hyperlipidemia. This study elucidated the mechanism of the preventive effect of probiotics on hyperlipidemia in terms of regulating gut microbiota, and provided suggestions for regulating gut microbiota through probiotic interventions to improve lipid metabolism.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Aijie Liu
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Ao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hainan Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | | | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | | | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Ruimin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
14
|
Liu X, Wang J, Li M, Qiu J, Li X, Qi L, Liu J, Liu P, Xie G, Wang X. Farnesoid X receptor is an important target for the treatment of disorders of bile acid and fatty acid metabolism in mice with nonalcoholic fatty liver disease combined with cholestasis. J Gastroenterol Hepatol 2023; 38:1438-1446. [PMID: 37415275 DOI: 10.1111/jgh.16279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND AIM The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rising globally. NAFLD patients combined with cholestasis have more obvious liver fibrosis, impaired bile acid (BA), and fatty acid (FA) metabolism and severer liver injury; however, its therapeutic options are limited, and the underlying metabolic mechanisms are understood. Here, we aimed to investigate the effects of farnesoid X receptor (FXR) on BA and FA metabolism in NAFLD combined with cholestasis and related signaling pathways. METHODS A mouse model of NAFLD combined with cholestasis was established by joint intervention with high-fat diet (HFD) and alpha-naphthylisothiocyanate. The effects of FXR on BA and FA metabolism were evaluated by serum biochemical analysis. Liver damage was identified by histopathology. The expression of nuclear hormone receptor, membrane receptor, FA transmembrane transporter, and BA transporter protein in mice were measured by western blot. RESULTS NAFLD mice combined with cholestasis developed more severe cholestasis and dysregulated BA and FA metabolism. Meanwhile, the expression of FXR protein was decreased in NAFLD mice combined with cholestasis compared to the controls. Fxr-/- mice showed liver injury. HFD aggravated the liver injury with decreased BSEP expression, increased expression of NTCP, LXRα, SREBP-1c, FAS, ACC1, and CD36, and significantly increased BA and FA accumulation. CONCLUSION All the results suggested that FXR plays a key role in both FA and BA metabolism in NAFLD combined with cholestasis and thus may be a potential target for the treatment of disorders of BA and FA metabolism in NAFLD combined with cholestasis.
Collapse
Affiliation(s)
- Xinzhu Liu
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaxuan Wang
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Maogang Li
- Human Metabolomics Institute, Inc., Shenzhen, 518109, Guangdong, China
| | - Jiannan Qiu
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xingying Li
- South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Li Qi
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Liu
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping Liu
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guoxiang Xie
- Human Metabolomics Institute, Inc., Shenzhen, 518109, Guangdong, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoning Wang
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
15
|
Sun C, Guo Y, Cong P, Tian Y, Gao X. Liver Lipidomics Analysis Revealed the Novel Ameliorative Mechanisms of L-Carnitine on High-Fat Diet-Induced NAFLD Mice. Nutrients 2023; 15:nu15061359. [PMID: 36986087 PMCID: PMC10053018 DOI: 10.3390/nu15061359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The beneficial effects of L-carnitine on non-alcoholic fatty liver disease (NAFLD) were revealed in previous reports. However, the underlying mechanisms remain unclear. In this study, we established a high fat diet (HFD)-induced NAFLD mice model and systematically explored the effects and mechanisms of dietary L-carnitine supplementation (0.2% to 4%) on NAFLD. A lipidomics approach was conducted to identify specific lipid species involved in the ameliorative roles of L-carnitine in NAFLD. Compared with a normal control group, the body weight, liver weight, concentrations of TG in the liver and serum AST and ALT levels were dramatically increased by HFD feeding (p < 0.05), accompanied with obvious liver damage and the activation of the hepatic TLR4/NF-κB/NLRP3 inflammatory pathway. L-carnitine treatment significantly improved these phenomena and exhibited a clear dose–response relationship. The results of a liver lipidomics analysis showed that a total of 12 classes and 145 lipid species were identified in the livers. Serious disorders in lipid profiles were noticed in the livers of the HFD-fed mice, such as an increased relative abundance of TG and a decreased relative abundance of PC, PE, PI, LPC, LPE, Cer and SM (p < 0.05). The relative contents of PC and PI were significantly increased and that of DG were decreased after the 4% L-carnitine intervention (p < 0.05). Moreover, we identified 47 important differential lipid species that notably separated the experimental groups based on VIP ≥ 1 and p < 0.05. The results of a pathway analysis showed that L-carnitine inhibited the glycerolipid metabolism pathway and activated the pathways of alpha-linolenic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and Glycosylphosphatidylinositol (GPI)-anchor biosynthesis. This study provides novel insights into the mechanisms of L-carnitine in attenuating NAFLD.
Collapse
Affiliation(s)
- Chengyuan Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yan Guo
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Tian
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
- Correspondence: (Y.T.); (X.G.); Tel.: +86-138-8620-6248 (Y.T.); +86-133-6120-6713 (X.G.)
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
- Correspondence: (Y.T.); (X.G.); Tel.: +86-138-8620-6248 (Y.T.); +86-133-6120-6713 (X.G.)
| |
Collapse
|