1
|
Lin Q, Huang K, Ge X, Ma M, Wang W, Yang L, Chen C, Han B, Liu D. LC-HRMS profiling of Dendrobium huoshanense aqueous extract and its therapeutic effects on nonalcoholic fatty liver disease in mice through the TLR2-NF-κB and AMPK-SREBP1-SIRT1 signaling pathways. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124563. [PMID: 40107184 DOI: 10.1016/j.jchromb.2025.124563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Dendrobium huoshanense (DH) belongs to the Dendrobium genus of the Orchidaceae family and is a herbaceous plant that protects the liver and nourishes the Yin according to traditional Chinese Medicine (TCM) theory. This research aimed to determine the therapeutic effect and mechanisms of DH on a nonalcoholic fatty liver disease (NAFLD) mouse model and its chemical composition. For pharmacological research, the pathological damage and lipid accumulation in liver tissues were evaluated using HE and oil red staining, respectively. The differential proteins between the model and DHH groups were screened using 4D label-free quantitative proteomics, and the proteomic results were verified using Western blot. The potential mechanism was validated by metabolomic analysis. The main active ingredients in a DH aqueous extract were identified using UHPLC-Q Exactive HF HRMS. Pathological staining results showed that DH can reverse liver pathological damage and lipid accumulation in the NAFLD model. Quantitative proteomics revealed that the differential proteins were mainly associated with liver lipid deposition (LAL, AMPK, TM7SF2, SBCAD, and SIRT1), insulin resistance (GYS1, GYS2, PYGL, FoxO1, and PPAR-γ), and inflammation (TLR2 and MAPKAPK). Western blot verified the above-mentioned results. Metabolomic analysis also indicated that the DH aqueous extract ameliorated NAFLD in mice by affecting cholesterol metabolism and AMPK signaling pathway, proving its significant therapeutic effects on the NAFLD model. Sixty-five compounds were identified from DH aqueous extract by analyzing the precise molecular weight and MS/MS fragmentation pathway. The pharmacological mechanism of DH in treating NAFLD mainly involved the TLR2-NF-κB and AMPK-SREBP1-SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Qiyan Lin
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Ke Huang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Xiyu Ge
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Menghua Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Wei Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China.
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Key Laboratory of Protection and Utilization of Characteristic Biological Resources in Dabie Mountains, Lu'an, 237012, Anhui, PR China.
| |
Collapse
|
2
|
Zhu MJ, Song YJ, Rao PL, Gu WY, Xu Y, Xu HX. Therapeutic role of Prunella vulgaris L. polysaccharides in non-alcoholic steatohepatitis and gut dysbiosis. JOURNAL OF INTEGRATIVE MEDICINE 2025:S2095-4964(25)00039-1. [PMID: 40204563 DOI: 10.1016/j.joim.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/08/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Prunella vulgaris L. has long been used for liver protection according to traditional Chinese medicine theory and has been proven by modern pharmacological research to have multiple potential liver-protective effects. However, its effects on non-alcoholic steatohepatitis (NASH) are currently uncertain. Our study explores the effects of P. vulgaris polysaccharides on NASH and intestinal homeostasis. METHODS An aqueous extract of the dried fruit spikes of P. vulgaris was precipitated in an 85% ethanol solution (PVE85) to extract crude polysaccharides from the herb. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) was administrated to male C57BL/6 mice to establish a NASH animal model. After 4 weeks, the PVE85 group was orally administered PVE85 (200 mg/[kg·d]), while the control group and CDAHFD group were orally administered vehicle for 6 weeks. Quantitative real-time polymerase chain reaction analysis, Western blotting, immunohistochemistry and other methods were used to assess the impact of PVE85 on the liver in mice with NASH. 16S rRNA gene amplicon analysis was employed to evaluate the gut microbiota abundance and diversity in each group to examine alterations at various taxonomic levels. RESULTS PVE85 significantly reversed the course of NASH in mice. mRNA levels of inflammatory mediators associated with NASH and protein expression of hepatic nucleotide-binding leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) were significantly reduced after PVE85 treatment. Moreover, PVE85 attenuated the thickening and cross-linking of collagen fibres and inhibited the expression of fibrosis-related mRNAs in the livers of NASH mice. Intriguingly, PVE85 restored changes in the gut microbiota and improved intestinal barrier dysfunction induced by NASH by increasing the abundance of Actinobacteria and reducing the abundance of Proteobacteria at the phylum level. PVE85 had significant activity in reducing the relative abundance of Clostridiaceae at the family levels. PVE85 markedly enhanced the abundance of some beneficial micro-organisms at various taxonomic levels as well. Additionally, the physicochemical environment of the intestine was effectively improved, involving an increase in the density of intestinal villi, normalization of the intestinal pH, and improvement of intestinal permeability. CONCLUSION PVE85 can reduce hepatic lipid overaccumulation, inflammation, and fibrosis in an animal model of CDAHFD-induced NASH and improve the intestinal microbial composition and intestinal structure. Please cite this article as: Zhu MJ, Song YJ, Rao PL, Gu WY, Xu Y, Xu HX. Therapeutic role of Prunella vulgaris L. polysaccharides in non-alcoholic steatohepatitis and gut dysbiosis. J Integr Med. 2025; Epub ahead of print.
Collapse
Affiliation(s)
- Meng-Jie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Jie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pei-Li Rao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wen-Yi Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Tanaka M, Szabó Á, Vécsei L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int J Mol Sci 2024; 25:12767. [PMID: 39684480 DOI: 10.3390/ijms252312767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The tryptophan-kynurenine (KYN) pathway has long been recognized for its essential role in generating metabolites that influence various physiological processes. Traditionally, these metabolites have been categorized into distinct, often opposing groups, such as pro-oxidant versus antioxidant, excitotoxic/neurotoxic versus neuroprotective. This dichotomous framework has shaped much of the research on conditions like neurodegenerative and neuropsychiatric disorders, as well as cancer, where metabolic imbalances are a key feature. The effects are significantly influenced by various factors, including the concentration of metabolites and the particular cellular milieu in which they are generated. A molecule that acts as neuroprotective at low concentrations may exhibit neurotoxic effects at elevated levels. The oxidative equilibrium of the surrounding environment can alter the function of KYN from an antioxidant to a pro-oxidant. This narrative review offers a comprehensive examination and analysis of the contemporary understanding of KYN metabolites, emphasizing their multifaceted biological functions and their relevance in numerous physiological and pathological processes. This underscores the pressing necessity for a paradigm shift in the comprehension of KYN metabolism. Understanding the context-dependent roles of KYN metabolites is vital for novel therapies in conditions like Alzheimer's disease, multiple sclerosis, and cancer. Comprehensive pathway modulation, including balancing inflammatory signals and enzyme regulation, offers promising avenues for targeted, effective treatments.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Chen J, Yang S, Luo H, Fu X, Li W, Li B, Fu C, Chen F, Xu D, Cao N. Polysaccharide of Atractylodes macrocephala Koidz alleviates NAFLD-induced hepatic inflammation in mice by modulating the TLR4/MyD88/NF-κB pathway. Int Immunopharmacol 2024; 141:113014. [PMID: 39191120 DOI: 10.1016/j.intimp.2024.113014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) not only could cause abnormal lipid metabolism in the liver, but also could cause liver inflammation. Previous studies have shown that Polysaccharide of Atractylodes macrocephala Koidz (PAMK) could alleviate animal liver inflammatory damage and alleviate NAFLD in mice caused by high-fat diet(HFD), but regulation of liver inflammation caused by NAFLD has rarely been reported. In this study, an animal model of non-alcoholic fatty liver inflammation in the liver of mice was established to explore the protective effect of PAMK on the liver of mice. The results showed that PAMK could alleviate the abnormal increase of body weight and liver weight of mice caused by HFD, alleviate the abnormal liver structure of mice, reduce the level of oxidative stress and cytokine secretion in the liver of mice, and downregulate the mRNA expression of TLR4, MyD88, NF-κB and protein expression of P-IκB, P-NF-κB-P65, TLR4, MyD88, NF-κB in the liver. These results indicate that PAMK could alleviate hepatocyte fatty degeneration and damage, oxidative stress and inflammatory response of the liver caused by NAFLD in mice.
Collapse
Affiliation(s)
- Junyi Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Shuzhan Yang
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Hanxia Luo
- Technology Center, Guangzhou Customs, Guangzhou, Guangdong 510623, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wanyan Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Cheng Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Feiyue Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
5
|
Gan G, Luo Y, Zeng Y, Lin S, Lu B, Zhang R, Chen S, Lei H, Cai Z, Huang X. Gut microbiota dysbiosis links chronic apical periodontitis to liver fibrosis in nonalcoholic fatty liver disease: Insights from a mouse model. Int Endod J 2024; 57:1608-1622. [PMID: 38958220 DOI: 10.1111/iej.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
AIM In this study, we investigated the systemic implications of chronic apical periodontitis (CAP). CAP may contribute to the nonalcoholic fatty liver disease (NAFLD) progression through the gut microbiota and its metabolites, which are related to the degree of fibrosis. METHODOLOGY Sixteen 7-week-old male apolipoprotein E knockout (apoE-/-) mice were randomly divided into two groups: the CAP and Con groups. A CAP model was established by sealing the first- and second-maxillary molars with bacterium-containing cotton balls. Apical lesions were evaluated by micro-CT. Histological evaluations of NAFLD were performed using second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) assays. Additionally, we comprehensively analyzed the gut microbiota using 16S rRNA gene sequencing and explored metabolic profiles by liquid chromatography-mass spectrometry (LC-MS). Immunofluorescence analysis was used to examine the impact of CAP on tight junction proteins and mucin expression. Transcriptome assays have elucidated gene expression alterations in liver tissues. RESULTS Micro-CT scans revealed an evident periapical bone loss in the CAP group, and the total collagen percentage was increased (Con, 0.0361 ± 0.00510%, CAP, 0.0589 ± 0.00731%, p < .05). 16S rRNA sequencing revealed reduced diversity and distinct taxonomic enrichment in the CAP group. Metabolomic assessments revealed that differentially enriched metabolites, including D-galactosamine, were enriched and that 16-hydroxyhexadecanoic acid and 3-methylindole were depleted in the CAP group. Immunofluorescence analyses revealed disruptions in tight junction proteins and mucin production, indicating intestinal barrier integrity disruption. Liver transcriptome analysis revealed upregulation of Lpin-1 expression in the CAP group. CONCLUSION This study provides comprehensive evidence of the systemic effects of CAP on liver fibrosis in NAFLD patients by elucidating alterations in the gut microbiota composition and metabolism.
Collapse
Affiliation(s)
- Guowu Gan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yufang Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yu Zeng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shihan Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Beibei Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ren Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Viejo-Boyano I, Roca-Marugán MI, Peris-Fernández M, Amengual JL, Balaguer-Timor Á, Moreno-Espinosa M, Felipe-Barrera M, González-Calero P, Espí-Reig J, Ventura-Galiano A, Rodríguez-Ortega D, Ramos-Cebrián M, Beneyto-Castelló I, Hernández-Jaras J. Early Metabolomic Profiling as a Predictor of Renal Function Six Months After Kidney Transplantation. Biomedicines 2024; 12:2424. [PMID: 39594991 PMCID: PMC11592072 DOI: 10.3390/biomedicines12112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Kidney transplantation is the therapy of choice for patients with advanced chronic kidney disease; however, predicting graft outcomes remains a significant challenge. Early identification of reliable biomarkers could enhance post-transplant management and improve long-term outcomes. This study aimed to identify metabolomic biomarkers within the first week after kidney transplantation that predict renal function at six months. METHODS We conducted a prospective study involving 50 adult patients who received deceased donor kidney transplants. Plasma samples collected one week after transplant were analyzed using liquid chromatography-mass spectrometry in a semi-targeted metabolomic approach. A Partial Least Squares-Discriminant Analysis (PLS-DA) model identified metabolites associated with serum creatinine > 1.5 mg/dL at six months. Metabolites were selected based on a Variable Importance in Projection (VIP) score > 1.5, which was used to optimize model performance. RESULTS The PLS-DA model demonstrated strong predictive performance with an area under the curve (AUC) of 0.958. The metabolites negatively associated with serum creatinine > 1.5 mg/dL were 3-methylindole, guaiacol, histidine, 3-indolepropionic acid, and α-lipoic acid. Conversely, the metabolites positively associated with worse kidney graft outcomes included homocarnosine, 5-methylcytosine, xanthosine, choline, phenylalanine, kynurenic acid, and L-kynurenine. CONCLUSIONS Early metabolomic profiling after transplantation shows promise in predicting renal function. Identifying metabolites with antioxidant and anti-inflammatory properties, as well as those that are harmful and could be targeted therapeutically, underscores their potential clinical significance. The link between several metabolites and the tryptophan pathway suggests that further specific evaluation of this pathway is warranted. These biomarkers can enhance patient management and graft survival.
Collapse
Affiliation(s)
- Iris Viejo-Boyano
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
- Nephrology Unit, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
| | | | - María Peris-Fernández
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
- Nephrology Unit, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Julián Luis Amengual
- Big Data AI and Biostatistics Platform, Health Research Institute Hospital La Fe, 46026 Valencia, Spain; (J.L.A.); (Á.B.-T.)
| | - Ángel Balaguer-Timor
- Big Data AI and Biostatistics Platform, Health Research Institute Hospital La Fe, 46026 Valencia, Spain; (J.L.A.); (Á.B.-T.)
| | - Marta Moreno-Espinosa
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
| | - María Felipe-Barrera
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
| | - Pablo González-Calero
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
| | - Jordi Espí-Reig
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
| | - Ana Ventura-Galiano
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
| | - Diego Rodríguez-Ortega
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
| | - María Ramos-Cebrián
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
| | - Isabel Beneyto-Castelló
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
| | - Julio Hernández-Jaras
- Nephrology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (M.P.-F.); (M.M.-E.); (M.F.-B.); (P.G.-C.); (J.E.-R.); (A.V.-G.); (D.R.-O.); (M.R.-C.); (I.B.-C.); (J.H.-J.)
- Nephrology Unit, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
| |
Collapse
|
7
|
Khatoon S, Das N, Chattopadhyay S, Joharapurkar A, Singh A, Patel V, Nirwan A, Kumar A, Mugale MN, Mishra DP, Kumaravelu J, Guha R, Jain MR, Chattopadhyay N, Sanyal S. Apigenin-6-C-glucoside ameliorates MASLD in rodent models via selective agonism of adiponectin receptor 2. Eur J Pharmacol 2024; 978:176800. [PMID: 38950835 DOI: 10.1016/j.ejphar.2024.176800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Adiponectin plays key roles in energy metabolism and ameliorates inflammation, oxidative stress, and mitochondrial dysfunction via its primary receptors, adiponectin receptors -1 and 2 (AdipoR1 and AdipoR2). Systemic depletion of adiponectin causes various metabolic disorders, including MASLD; however adiponectin supplementation is not yet achievable owing to its large size and oligomerization-associated complexities. Small-molecule AdipoR agonists, thus, may provide viable therapeutic options against metabolic disorders. Using a novel luciferase reporter-based assay here, we have identified Apigenin-6-C-glucoside (ACG), but not apigenin, as a specific agonist for the liver-rich AdipoR isoform, AdipoR2 (EC50: 384 pM) with >10000X preference over AdipoR1. Immunoblot analysis in HEK-293 overexpressing AdipoR2 or HepG2 and PLC/PRF/5 liver cell lines revealed rapid AMPK, p38 activation and induction of typical AdipoR targets PGC-1α and PPARα by ACG at a pharmacologically relevant concentration of 100 nM (reported cMax in mouse; 297 nM). ACG-mediated AdipoR2 activation culminated in a favorable modulation of key metabolic events, including decreased inflammation, oxidative stress, mitochondrial dysfunction, de novo lipogenesis, and increased fatty acid β-oxidation as determined by immunoblotting, QRT-PCR and extracellular flux analysis. AdipoR2 depletion or AMPK/p38 inhibition dampened these effects. The in vitro results were recapitulated in two different murine models of MASLD, where ACG at 10 mg/kg body weight robustly reduced hepatic steatosis, fibrosis, proinflammatory macrophage numbers, and increased hepatic glycogen content. Together, using in vitro experiments and rodent models, we demonstrate a proof-of-concept for AdipoR2 as a therapeutic target for MASLD and provide novel chemicobiological insights for the generation of translation-worthy pharmacological agents.
Collapse
Affiliation(s)
- Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nabanita Das
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Abhinav Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vishal Patel
- Zydus Research Center, Moraiya, Ahmedabad, 382213, Gujarat, India
| | - Abhishek Nirwan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Madhav Nilakanth Mugale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durga Prasad Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jagavelu Kumaravelu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Zhou S, Cheng K, Peng Y, Liu Y, Hu Q, Zeng S, Qi X, Yu L. Regulation mechanism of endoplasmic reticulum stress on metabolic enzymes in liver diseases. Pharmacol Res 2024; 207:107332. [PMID: 39089398 DOI: 10.1016/j.phrs.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in protein folding and secretion, Ca2+ storage, and lipid synthesis in eukaryotic cells. When the burden of protein synthesis and folding required to be handled exceeds the processing capacity of the ER, the accumulation of misfolded/unfolded proteins triggers ER stress. In response to short-term ER stress, the unfolded protein response (UPR) is activated to allow cells to survive. When ER stress is severe and sustained, it typically provokes cell death through multiple approaches. It is well documented that ER stress and metabolic deregulation are functionally intertwined, both are considered contributing factors to the pathogenesis of liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), ischemia/reperfusion (I/R) injury, viral hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Hepatocytes are rich in smooth and rough ER, which harbor metabolic enzymes that are capable of sensing alterations in various nutritional status and external stimuli. Extensive research has focused on the molecular mechanism linking ER stress with metabolic enzymes. The purpose of this review is to summarize the current knowledge regarding the effects of ER stress on metabolic enzymes in various liver diseases and to provide potential therapeutic strategies for chronic liver diseases via targeting UPR.
Collapse
Affiliation(s)
- Shaojun Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Kaiwen Cheng
- Medical Research Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Yi Peng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua 322023, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xuchen Qi
- Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China; Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou 310024, China; Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
9
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
10
|
Deng A, Wang Y, Huang K, Xie P, Mo P, Liu F, Chen J, Chen K, Wang Y, Xiao B. Artichoke (Cynara scolymus L.) water extract alleviates palmitate-induced insulin resistance in HepG2 hepatocytes via the activation of IRS1/PI3K/AKT/FoxO1 and GSK-3β signaling pathway. BMC Complement Med Ther 2023; 23:460. [PMID: 38102588 PMCID: PMC10722847 DOI: 10.1186/s12906-023-04275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Artichoke (Cynara scolymus L.) is a typical element of a traditional Mediterranean diet and has potential health advantages for insulin resistance (IR) and type 2 diabetes mellitus (T2DM). This study aims to evaluate the effect and underlying mechanism of artichoke water extract (AWE) on palmitate (PA)-induced IR in human hepatocellular carcinoma (HepG2) cells. METHODS The effect of AWE on cell viability was determined using CCK8 assay. Cellular glucose uptake, glucose consumption, glucose production, and glycogen content were assessed after AWE treatment. The gene expression and protein levels were examined by real-time polymerase chain reaction (qRT-PCR) and western blotting. RESULTS The results showed that AWE dose-dependently increased cell viability in IR HepG2 cells (P < 0.01). AWE treatment significantly promoted glucose uptake and consumption, decreased glucose production, and increased the cellular glycogen content in IR HepG2 cells (P < 0.01). Mechanistically, AWE elevated the phosphorylation and total protein levels of major insulin signaling molecules in IR HepG2 cells, which resulted in a decrease in the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and the inhibition of glycogen synthase (GS) phosphorylation in IR HepG2 cells. Furthermore, the protective effect of AWE on IR HepG2 cells might be ascribed to the inhibition of the endoplasmic reticulum (ER) stress. CONCLUSION We conclude that AWE may improve glucose metabolism by regulating IRS1/PI3K/AKT/FoxO1 and GSK-3β signaling associated with the inhibition of ER stress in IR HepG2 cells induced by PA.
Collapse
Affiliation(s)
- Aihua Deng
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education; Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province; Human Provincial Engineering Research Center for Fresh Wet Rice Noodels; College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
| | - Yun Wang
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education; Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province; Human Provincial Engineering Research Center for Fresh Wet Rice Noodels; College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
| | - Kerui Huang
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education; Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province; Human Provincial Engineering Research Center for Fresh Wet Rice Noodels; College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
| | - Peng Xie
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education; Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province; Human Provincial Engineering Research Center for Fresh Wet Rice Noodels; College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
| | - Ping Mo
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education; Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province; Human Provincial Engineering Research Center for Fresh Wet Rice Noodels; College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
| | - Fengying Liu
- Key Laboratory of Agricultural Products Processing and Food Safety in Hunan Higher Education; Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province; Human Provincial Engineering Research Center for Fresh Wet Rice Noodels; College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
| | - Jun Chen
- Sanjin Group Hunan Sanjin Pharmaceutical Co., Ltd, Changde, 415000, China
| | - Kaiyi Chen
- Sanjin Group Hunan Sanjin Pharmaceutical Co., Ltd, Changde, 415000, China
| | - Yun Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.
| | - Bing Xiao
- Institute for Development and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
11
|
Gupta SK, Vyavahare S, Duchesne Blanes IL, Berger F, Isales C, Fulzele S. Microbiota-derived tryptophan metabolism: Impacts on health, aging, and disease. Exp Gerontol 2023; 183:112319. [PMID: 37898179 DOI: 10.1016/j.exger.2023.112319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The intricate interplay between gut microbiota and the host is pivotal in maintaining homeostasis and health. Dietary tryptophan (TRP) metabolism initiates a cascade of essential endogenous metabolites, including kynurenine, kynurenic acid, serotonin, and melatonin, as well as microbiota-derived Trp metabolites like tryptamine, indole propionic acid (IPA), and other indole derivatives. Notably, tryptamine and IPA, among the indole metabolites, exert crucial roles in modulating immune, metabolic, and neuronal responses at both local and distant sites. Additionally, these metabolites demonstrate potent antioxidant and anti-inflammatory activities. The levels of microbiota-derived TRP metabolites are intricately linked to the gut microbiota's health, which, in turn, can be influenced by age-related changes. This review aims to comprehensively summarize the cellular and molecular impacts of tryptamine and IPA on health and aging-related complications. Furthermore, we explore the levels of tryptamine and IPA and their corresponding bacteria in select diseased conditions, shedding light on their potential significance as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sonu Kumar Gupta
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ian L Duchesne Blanes
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ford Berger
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Carlos Isales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
12
|
Shaw C, Hess M, Weimer BC. Microbial-Derived Tryptophan Metabolites and Their Role in Neurological Disease: Anthranilic Acid and Anthranilic Acid Derivatives. Microorganisms 2023; 11:1825. [PMID: 37512997 PMCID: PMC10384668 DOI: 10.3390/microorganisms11071825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome provides the host access to otherwise indigestible nutrients, which are often further metabolized by the microbiome into bioactive components. The gut microbiome can also shift the balance of host-produced compounds, which may alter host health. One precursor to bioactive metabolites is the essential aromatic amino acid tryptophan. Tryptophan is mostly shunted into the kynurenine pathway but is also the primary metabolite for serotonin production and the bacterial indole pathway. Balance between tryptophan-derived bioactive metabolites is crucial for neurological homeostasis and metabolic imbalance can trigger or exacerbate neurological diseases. Alzheimer's, depression, and schizophrenia have been linked to diverging levels of tryptophan-derived anthranilic, kynurenic, and quinolinic acid. Anthranilic acid from collective microbiome metabolism plays a complex but important role in systemic host health. Although anthranilic acid and its metabolic products are of great importance for host-microbe interaction in neurological health, literature examining the mechanistic relationships between microbial production, host regulation, and neurological diseases is scarce and at times conflicting. This narrative review provides an overview of the current understanding of anthranilic acid's role in neurological health and disease, with particular focus on the contribution of the gut microbiome, the gut-brain axis, and the involvement of the three major tryptophan pathways.
Collapse
Affiliation(s)
- Claire Shaw
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|