1
|
Agnihotri TG, Dahifale A, Gomte SS, Rout B, Peddinti V, Jain A. Nanosystems at Nexus: Navigating Nose-to-Brain Delivery for Glioblastoma Treatment. Mol Pharm 2025; 22:599-619. [PMID: 39746097 DOI: 10.1021/acs.molpharmaceut.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Glioblastoma multiforme (GBM) is considered to be one of the most devastating brain tumors with a shorter life expectancy. Several factors contribute to the dismal prognosis of GBM patients including the complicated nature of GBM, the ability of tumor cells to resist treatment, and the difficulty of delivering drugs to the brain because of barriers like the blood-brain barrier (BBB) and blood-tumor barrier (BTB). The unique challenges posed by the BBB in delivering therapeutic agents to the brain have led to the development of innovative nanotechnology-based approaches. By exploiting the olfactory/trigeminal pathway, nanosystems offer a promising strategy for targeted drug delivery to the brain, glioblastoma tumors in particular. This review contemplates varied nanocarriers, including polymeric nanoparticles, lipid-based nanosystems, in situ gel formulations, peptide, and stem cell-based nanoformulations, signifying their utility in brain targeting with minimal systemic side effects. Emerging trends in gene therapy and immunotherapy in the context of GBM treatment have also been discussed. Since safety is a paramount aspect for any drug product to get approved, this review also delves into toxicological considerations associated with intranasal delivery of nanosystems. Regulatory aspects and critical factors for the successful development of intranasal products are also explored in this review. Overall, this review underscores the significant advancements in nanotechnology for nose-to-brain delivery and its potential impact on GBM management.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Akanksha Dahifale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
2
|
Chen Z, Wang J, He T, Rao D, Wang Z, Zhu J. Vincristine exerts antiglioma effects by inhibiting the PI3K/AKT signaling pathway: A mechanistic study based on network pharmacology, bioinformatics analysis, and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03693-5. [PMID: 39718608 DOI: 10.1007/s00210-024-03693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024]
Abstract
In clinical settings, glioma patients often develop secondary resistance to first-line chemotherapy drugs. Vincristine has been reported for its application in cancer chemotherapy, but its molecular mechanism of action remains unclear. This study aimed to identify potential targets of vincristine in glioma using network pharmacology and to experimentally validate the possible molecular mechanisms against glioma. First, the potential targets of vincristine were predicted using CTD, SwissTargetPrediction, and TargetNet databases. Differential expression analysis and WGCNA algorithm were employed on glioma data from the GEO database to obtain important glioma-related target genes, which were then used to identify the anti-glioma targets of vincristine. The intersecting targets were input into the String database to construct a PPI network, and core targets were identified using the cytohubba plugin in Cytoscape. GO and KEGG analyses were conducted to investigate the functional and pathway enrichment of the intersecting targets. The expression and prognostic significance of the core targets were validated using data from the TCGA and HPA databases. Finally, the anti-glioma proliferation effect of vincristine was validated through CCK-8 assay, flow cytometry for cell cycle analysis, RT-qPCR, and Western blotting. A total of 175 vincristine targets and 1673 glioma targets were identified, with 11 shared targets between vincristine and glioma tissues. Network pharmacology studies suggested that CDC25B, CDK4, CDK6, TOP2A, and the PI3K/AKT signaling pathway might be important core targets and pathways through which vincristine exerts its anti-glioma effects. In vitro experiments confirmed that vincristine successfully inhibited U87 cell proliferation and induced G1 phase arrest via the PI3K/AKT signaling pathway, thereby reducing cell growth. The study results indicate that the PI3K/AKT signaling pathway may be involved in the mechanism by which vincristine inhibits the proliferation of glioma cells.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Jiahong Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Ting He
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Donggen Rao
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Ziyang Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Jianming Zhu
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China.
| |
Collapse
|
3
|
Yin B, Cai Y, Chen L, Li Z, Li X. Immunosuppressive MDSC and Treg signatures predict prognosis and therapeutic response in glioma. Int Immunopharmacol 2024; 141:112922. [PMID: 39137632 DOI: 10.1016/j.intimp.2024.112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Glioma, a complex and aggressive brain tumor, is characterized by dysregulated immune responses within the tumor microenvironment (TME). We conducted a comprehensive analysis to elucidate the roles of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in glioma progression and their impact on the immune landscape. Using transcriptome data, we stratified glioma samples based on MDSC and Treg levels, revealing significant differences in patient survival probabilities. LASSO regression identified a gene panel associated with glioma prognosis, yielding a patient-specific risk score. Multivariate Cox regression confirmed the risk score's correlation with overall survival. An ISS (immune suppressive score) system assessed the immune landscape's impact on glioma progression and therapeutic response. Functional validation showed MDSC and Treg infiltration's relevance in glioma progression and immune modulation. Hub genes in the black module, including CCL2, LINC01503, CXCL8, CLEC2B, TIMP1, and RGS2, were identified through MCODE analysis. RGS2 expression correlated with immune cell populations and varied in glioma cells. This study sheds light on MDSCs' and Tregs' roles in glioma pathogenesis, suggesting their potential as prognostic biomarkers and therapeutic targets for personalized immunotherapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiheng Cai
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China; Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingxia Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | | | - Xiaofei Li
- Department of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
4
|
Tan Q, Li F, Wang J, Liu Y, Cai Y, Zou Y, Jiang X. Dendritic Cells Loaded With Heat Shock Inactivated Glioma Stem Cells Enhance Antitumor Response of Mouse Glioma When Combining With CD47 Blockade. Clin Med Insights Oncol 2024; 18:11795549241285239. [PMID: 39429684 PMCID: PMC11487516 DOI: 10.1177/11795549241285239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background For glioma patients, the long-term advantages of dendritic cells (DCs) immunization remain unknown. It is extremely important to develop new treatment strategies that enhance the immunotherapy effect of DC-based vaccines. DCs exposed to glioma stem cells (GSCs) are considered promising vaccines against glioma. Methods Glioma stem cells were isolated from mouse glioma GL261 cells (GCs). Both were subjected to severe (47°C) and mild (42°C) heat shock to induce immunogenic cell death (ICD). Membrane mobilization of calreticulin (CRT) and release of heat shock proteins (HSPs) were detected by flow cytometry. Dendritic cells were then exposed to heat-inactivated cells and co-culturing of T cells tested for immunotherapeutic efficacy in vitro. In vivo, we investigated the GSC targeting effect of the GSC-DC vaccine combined with CD47 blockade. Results Heat shock induced ICD in GCs and GSCs, as indicated by significant release of calreticulin, HSP70, and HSP90. Heat shock condition ICD lysates induce maturation and activation-associated marker expression on monocyte-derived DCs. Accordingly, DCs pulsed with GCs and GSCs inactivated reduced colony formation, sphere formation, migration, and invasion of glioma and GSCs in vitro. Glioma stem cell-DC vaccine in combination with anti-CD47 antibody significantly enhanced survival in mice with glioma, induced production of interferon (IFN)-γ, and enhanced T-cell expansion in vivo. Of note, DCs pulsed with inactivated GSCs were more effective to control tumor growth than DCs pulsed with inactive GCs. Conclusions Severe heat shock induces ICD in vitro. These data showed that administration of anti-CD47 antibody combined with GSC-DC vaccine may represent an effective immunotherapeutic strategy for cancer patients in clinical.
Collapse
Affiliation(s)
- Qijia Tan
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Li
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Jun Wang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yi Liu
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yuxi Zou
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
5
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
6
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Shao G, Cui X, Wang Y, Luo S, Li C, Jiang Y, Cai D, Li N, Li X. Targeting MS4A4A: A novel pathway to improve immunotherapy responses in glioblastoma. CNS Neurosci Ther 2024; 30:e14791. [PMID: 38997808 PMCID: PMC11245405 DOI: 10.1111/cns.14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 07/14/2024] Open
Abstract
INTRODUCTION Glioblastoma (GBM) remains a challenging brain tumor to treat, with limited response to PD-1 immunotherapy due to tumor-associated macrophages (TAMs), specifically the M2 phenotype. This study explores the potential of MS4A4A (membrane spanning four domains, subfamily A, member 4A) inhibition in driving M2 macrophage polarization toward the M1 phenotype via the ferroptosis pathway to enhance the effectiveness of immunotherapy in GBM. METHODS Single-cell RNA sequencing and spatial transcriptomic analyses were employed to characterize M2 macrophages and MS4A4A expression in GBM. In vitro studies utilizing TAM cultures, flow cytometry, and western blot validations were conducted to assess the impact of MS4A4A on the tumor immune microenvironment and M2 macrophage polarization. In vivo models, including subcutaneous and orthotopic transplantation in mice, were utilized to evaluate the effects of MS4A4A knockout and combined immune checkpoint blockade (ICB) therapy on tumor growth and response to PD-1 immunotherapy. RESULTS Distinct subsets of GBM-associated macrophages were identified, with spatial distribution in tumor tissue elucidated. In vivo experiments demonstrated that inhibiting MS4A4A and combining ICB therapy effectively inhibited tumor growth, reshaped the tumor immune microenvironment by reducing M2 TAM infiltration and enhancing CD8+ T-cell infiltration, ultimately leading to complete tumor eradication. CONCLUSION MS4A4A inhibition shows promise in converting M2 macrophages to M1 phenotype via ferroptosis, decreasing M2-TAM infiltration, and enhancing GBM response to PD-1 immunotherapy. These findings offer a novel approach to developing more effective immunotherapeutic strategies for GBM.
Collapse
Affiliation(s)
- Guangcai Shao
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangChina
- Department of NeurosurgeryAnshan Central HospitalAnshanChina
| | - Xiangguo Cui
- Department of Otolaryngology Head and Neck Surgery, Shengjing HospitalChina Medical UniversityShenyangChina
| | - Yiliang Wang
- Department of AnesthesiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Shuyan Luo
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Chuanyu Li
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Yu Jiang
- Department of NeurosurgeryAnshan Central HospitalAnshanChina
| | - Dasheng Cai
- Department of AnesthesiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Nu Li
- Department of Breast SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xiang Li
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
8
|
Liu J, Yang F, Hu J, Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther 2024; 30:e14715. [PMID: 38708806 PMCID: PMC11071172 DOI: 10.1111/cns.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.
Collapse
Affiliation(s)
- Jiyuan Liu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Fan Yang
- Department of Cardiologythe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jinqu Hu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Xiuchun Zhang
- Department of Neurologythe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
9
|
Li T, Xu D, Ruan Z, Zhou J, Sun W, Rao B, Xu H. Metabolism/Immunity Dual-Regulation Thermogels Potentiating Immunotherapy of Glioblastoma Through Lactate-Excretion Inhibition and PD-1/PD-L1 Blockade. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310163. [PMID: 38460167 PMCID: PMC11095231 DOI: 10.1002/advs.202310163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/23/2024] [Indexed: 03/11/2024]
Abstract
Intrinsic immunosuppressive tumor microenvironment (ITM) and insufficient tumor infiltration of T cells severely impede the progress of glioblastoma (GBM) immunotherapy. In this study, it is identify that inhibiting the expression of glucose transporter 1 (GLUT1) can facilitate the prevention of lactate excretion from tumor glycolysis, which significantly alleviates the lactate-driven ITM by reducing immunosuppressive tumor-associated macrophages (TAMs) and regulatory T cells (Tregs). Simultaneously, the findings show that the generated inflammatory cytokine IFN-γ during immune activation aggravates the immune escape by upregulating immune checkpoint programmed death-ligand 1 (PD-L1) in tumor cells and TAMs. Therefore, an injectable thermogel loaded with a GLUT1 inhibitor BAY-876 and a PD-1/PD-L1 blocker BMS-1 (Gel@B-B) for dual-regulation of metabolism and immunity of GBM is developed. Consequently, in situ injection of Gel@B-B significantly delays tumor growth and prolongs the survival of the orthotopic GBM mouse model. By actively exposing tumor antigens to antigen-presenting cells, the GBM vaccine combined with Gel@B-B is found to significantly increase the fraction of effector T cells (Th1/CTLs) in the tumor microenvironment, thereby remarkably mitigating tumor recurrence long-term. This study may provide a promising strategy for GBM immunotherapy.
Collapse
Affiliation(s)
- Tianliang Li
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Dan Xu
- Department of Nuclear MedicineZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Zhao Ruan
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Jie Zhou
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Wenbo Sun
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Bo Rao
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Haibo Xu
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| |
Collapse
|
10
|
Majchrzak-Celińska A, Studzińska-Sroka E. New Avenues and Major Achievements in Phytocompounds Research for Glioblastoma Therapy. Molecules 2024; 29:1682. [PMID: 38611962 PMCID: PMC11013944 DOI: 10.3390/molecules29071682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Phytocompounds have been evaluated for their anti-glioblastoma actions for decades, with promising results from preclinical studies but only limited translation into clinics. Indeed, by targeting multiple signaling pathways deregulated in cancer, they often show high efficacy in the in vitro studies, but their poor bioavailability, low tumor accumulation, and rapid clearance compromise their efficacy in vivo. Here, we present the new avenues in phytocompound research for the improvement of glioblastoma therapy, including the ways to enhance the response to temozolomide using phytochemicals, the current focus on phytocompound-based immunotherapy, or the use of phytocompounds as photosensitizers in photodynamic therapy. Moreover, we present new, intensively evaluated approaches, such as chemical modifications of phytochemicals or encapsulation into numerous types of nanoformulations, to improve their bioavailability and delivery to the brain. Finally, we present the clinical trials evaluating the role of phytocompounds or phytocompound-derived drugs in glioblastoma therapy and the less studied phytocompounds or plant extracts that have only recently been found to possess promising anti-glioblastoma properties. Overall, recent advancements in phytocompound research are encouraging; however, only with more 3D glioblastoma models, in vivo studies, and clinical trials it is possible to upgrade the role of phytocompounds in glioblastoma treatment to a satisfactory level.
Collapse
Affiliation(s)
- Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznan, Poland
| | - Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznan, Poland;
| |
Collapse
|
11
|
Dos Santos BL, Dos Santos CC, da Silva KC, Nonaka CKV, Souza BSDF, David JM, de Oliveira JVR, Costa MDFD, Butt AM, da Silva VDA, Costa SL. The Phytochemical Agathisflavone Modulates miR146a and miR155 in Activated Microglia Involving STAT3 Signaling. Int J Mol Sci 2024; 25:2547. [PMID: 38473794 DOI: 10.3390/ijms25052547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNAs (miRs) act as important post-transcriptional regulators of gene expression in glial cells and have been shown to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigated the effects of agathisflavone, a biflavonoid purified from the leaves of Cenostigma pyramidale (Tul.), on modulating the expression of miRs and inflammatory mediators in activated microglia. C20 human microglia were exposed to oligomers of the β-amyloid peptide (Aβ, 500 nM) for 4 h or to lipopolysaccharide (LPS, 1 µg/mL) for 24 h and then treated or not with agathisflavone (1 µM) for 24 h. We observed that β-amyloid and LPS activated microglia to an inflammatory state, with increased expression of miR-146a, miR-155, IL1-β, IL-6, and NOS2. Treatment with agathisflavone resulted in a significant reduction in miR146a and miR-155 induced by LPS or Aβ, as well as inflammatory cytokines IL1-β, IL-6, and NOS2. In cells stimulated with Aβ, there was an increase in p-STAT3 expression that was reduced by agathisflavone treatment. These data identify a role for miRs in the anti-inflammatory effect of agathisflavone on microglia in models of neuroinflammation and AD.
Collapse
Affiliation(s)
- Balbino Lino Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- College of Nursing, Federal University of Vale do São Francisco, Av. José de Sá Maniçoba, S/N, Petrolina 56304-917, PE, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Karina Costa da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center of Biotechnology and Cell Therapy, São Rafael Hospital, D'Or Institute for Research and Teaching (IDOR), Salvador 41253-190, BA, Brazil
| | - Bruno Solano de Freitas Souza
- Center of Biotechnology and Cell Therapy, São Rafael Hospital, D'Or Institute for Research and Teaching (IDOR), Salvador 41253-190, BA, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador 40296-710, BA, Brazil
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40231-300, BA, Brazil
| | - Juciele Valéria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-971, RJ, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-971, RJ, Brazil
- Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon S/N Vale do Canela, Salvador 40110-902, BA, Brazil
| |
Collapse
|
12
|
Glavatskyi O, Khranovska N, Skachkova O, Gorbach O, Khmelnytskyi H, Shuba I, Pedachenko Y, Zemskova O, Zemskova O. DENDRITIC CELLS IN GLIOBLASTOMA TREATMENT: A MODERN VIEW OF THE PROBLEM AND OWN EXPERIENCE. Exp Oncol 2023; 45:282-296. [PMID: 38186026 DOI: 10.15407/exp-oncology.2023.03.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary malignant brain tumor in adults. The improvement of the efficacy of GBM treatment is an urgent problem encouraging the development of novel therapeutic strategies, in particular, immunotherapeutic modalities. With more understanding of the intimate interrelationships between the immune system and the mechanisms involved in cancer origin and progression, the skepticism related to the relevance of the immunotherapeutic approaches in the treatment of brain tumors is gradually decreasing. The review discloses the modern concepts on the association between CNS and the immune system. For a long time, CNS was considered as the immunoprivileged site that prevents the effects of immunotherapy in the treatment of brain tumors. Nowadays, these views are reconsidered, which opens the way to the use of immunotherapeutic approaches in GBM treatment. The results of the recent clinical trials on immunotherapy as a supplement to the conventional GBM treatment are considered. Vaccines based on the dendritic cell (DC) technology are regarded as the most promising for this purpose. The preliminary results of the Ukrainian clinical study are also presented and discussed. The results of the international clinical trials as well as our own experience give evidence of the relevance for using DC vaccines in the complex treatment of GBM, which is supported by the increased survival of patients and the safety of vaccine application. It is of high importance that GBM patients with the most unfavorable prognosis can benefit from DC vaccines as a component of the complex treatment. The prospects for immunotherapy in neurooncology are discussed.
Collapse
Affiliation(s)
- O Glavatskyi
- State Institution "Academician Romodanov Institute of Neurosurgery, the National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - N Khranovska
- State Non-commercial Enterprise "National Cancer Institute", Kyiv, Ukraine
| | - O Skachkova
- State Non-commercial Enterprise "National Cancer Institute", Kyiv, Ukraine
| | - O Gorbach
- State Non-commercial Enterprise "National Cancer Institute", Kyiv, Ukraine
| | - H Khmelnytskyi
- State Institution "Academician Romodanov Institute of Neurosurgery, the National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - I Shuba
- State Institution "Academician Romodanov Institute of Neurosurgery, the National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - Ye Pedachenko
- State Institution "Academician Romodanov Institute of Neurosurgery, the National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - O Zemskova
- State Institution "Academician Romodanov Institute of Neurosurgery, the National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine.
| | - O Zemskova
- State Institution "Academician Romodanov Institute of Neurosurgery, the National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine.
| |
Collapse
|
13
|
Li F, Song W, Wu L, Liu B, Du X. EIF4A3 induced circGRIK2 promotes the malignancy of glioma by regulating the miR-1303/HOXA10 axis. Am J Cancer Res 2023; 13:5868-5886. [PMID: 38187044 PMCID: PMC10767333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
In recent years, the role of circular RNAs (circRNAs) in glioma has become increasingly important. However, there are still many newly discovered circRNAs with unknown functions that require further study. In this study, circRNA sequencing, qPCR, MTS, EdU, Transwell, and other assays were conducted to detect the expression and malignant effects of a novel circRNA molecule, circGRIK2, in glioma. qPCR, western blotting, RIP, and luciferase reporter gene experiments were used to investigate the downstream molecular mechanisms of circGRIK2. Our study found that circGRIK2 was highly expressed in glioma and promoted glioma cell viability, proliferation, invasion, and migration. Mechanistically, circGRIK2 acted as a competitive sponge for miR-1303, upregulating the expression of HOXA10 to exert its oncogenic effects. Additionally, the RNA-binding protein EIF4A3 could bind to and stabilize circGRIK2, leading to its high expression in glioblastoma. The discovery of circGRIK2 in this study not only contributes to a better understanding of the biological mechanisms of circGRIK2 in glioma but also provides a new target for molecular targeted therapy.
Collapse
Affiliation(s)
- Fubin Li
- Department of Neurosurgery, Zibo Central HospitalZibo 255036, Shandong, China
| | - Wei Song
- Department of Breast and Thyroid Surgery, Zibo Central HospitalZibo 255036, Shandong, China
| | - Lin Wu
- Department of Pediatrics, Zhangdian Maternal and Child Health Care HospitalZibo 255036, Shandong, China
| | - Bin Liu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
| | - Xinrui Du
- Department of Neurosurgery, Zibo Central HospitalZibo 255036, Shandong, China
| |
Collapse
|
14
|
Feng Y, Zhu P, Wu D, Deng W. A Network Pharmacology Prediction and Molecular Docking-Based Strategy to Explore the Potential Pharmacological Mechanism of Astragalus membranaceus for Glioma. Int J Mol Sci 2023; 24:16306. [PMID: 38003496 PMCID: PMC10671347 DOI: 10.3390/ijms242216306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Glioma treatment in traditional Chinese medicine has a lengthy history. Astragalus membranaceus, a traditional Chinese herb that is frequently utilized in therapeutic practice, is a component of many Traditional Chinese Medicine formulas that have been documented to have anti-glioma properties. Uncertainty persists regarding the molecular mechanism behind the therapeutic effects. Based on results from network pharmacology and molecular docking, we thoroughly identified the molecular pathways of Astragalus membranaceus' anti-glioma activities in this study. According to the findings of the enrichment analysis, 14 active compounds and 343 targets were eliminated from the screening process. These targets were mainly found in the pathways in cancer, neuroactive ligand-receptor interaction, protein phosphorylation, inflammatory response, positive regulation of phosphorylation, and inflammatory mediator regulation of Transient Receptor Potential (TRP) channels. The results of molecular docking showed that the active substances isoflavanone and 1,7-Dihydroxy-3,9-dimethoxy pterocarpene have strong binding affinities for the respective targets ESR2 and PTGS2. In accordance with the findings of our investigation, Astragalus membranaceus active compounds exhibit a multicomponent and multitarget synergistic therapeutic impact on glioma by actively targeting several targets in various pathways. Additionally, we propose that 1,7-Dihydroxy-3,9-dimethoxy pterocarpene and isoflavanone may be the main active ingredients in the therapy of glioma.
Collapse
Affiliation(s)
- Yu Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China;
- Computer Aided Drug Discovery Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China;
| | - Peng Zhu
- Computer Aided Drug Discovery Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China;
| | - Dong Wu
- Computer Aided Drug Discovery Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China;
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen 518107, China;
| |
Collapse
|
15
|
Zhang A, Ji Q, Sheng X, Wu H. mRNA vaccine in gastrointestinal tumors: Immunomodulatory effects and immunotherapy. Biomed Pharmacother 2023; 166:115361. [PMID: 37660645 DOI: 10.1016/j.biopha.2023.115361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Gastrointestinal tumors remain a significant healthcare burden worldwide, necessitating the development of innovative therapeutic strategies. mRNA vaccines have emerged as a promising approach in cancer immunotherapy, harnessing the immune system's potential to recognize and eliminate tumor cells. mRNA vaccines offer several advantages, including their ability to elicit both innate and adaptive immune responses, ease of production, and adaptability to different tumor types. In the context of gastrointestinal tumors, mRNA vaccines hold great potential as a therapeutic strategy. In this review, we will delve into the immunomodulatory mechanisms and immunotherapy strategies of mRNA vaccines in gastrointestinal tumors. Additionally, we will discuss the challenges and ongoing research efforts in optimizing mRNA vaccine development, delivery, and stability. By understanding the potential of mRNA vaccines in addressing the unmet medical need of gastrointestinal tumors, we aim to pave the way for improved treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130012, China
| | - Qingming Ji
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun 130012, China
| | - Xia Sheng
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun 130012, China
| | - Hui Wu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun 130012, China.
| |
Collapse
|