1
|
Pradhan SP, Chakraborty HJ, Gadnayak A, Raut SS, Sarkar DJ, Sharma A, Mishra DC, Farooqi MS, Behera BK, Das BK. Comparative transcriptome analysis of Labeo calbasu (Hamilton, 1822) from polluted and non-polluted rivers in India. PLoS One 2025; 20:e0320358. [PMID: 40209169 PMCID: PMC11984975 DOI: 10.1371/journal.pone.0320358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/18/2025] [Indexed: 04/12/2025] Open
Abstract
Labeo calbasu (L. calbasu) is an important detrivore fish in an ecosystem. So, the present transcriptome study was undertaken in relation to polluted and non-polluted water sources from a natural perennial river system. The Illumina NovaSeq 6000 platform was used to perform transcriptome analysis on liver samples of L. calbasu that were collected from the Ganga and Yamuna rivers. From 8744 differentially expressed genes (DEGs), 2538 were upregulated, and 6206 were downregulated in response to pollution stress. Biologic process (BP), cellular component (CC), molecular function (MF), and Gene Ontology (GO) demonstrated that relevant genes were associated with peptide metabolic process, cytosol, RNA binding, etc. In the Kyoto Encyclopedia of Genes and Genome (KEGG) analysis, ribosomal and metabolic pathways were more important due to the high False discovery rate (FDR) and the involvement of many genes. Transcripts of uncertain coding potential (TUCP) and various RNAs like mRNAs and long noncoding RNAs (lncRNAs) orchestrate fish cellular responses to environmental stressors in polluted waters, where aquatic ecosystems are threatened. FGG mRNA is co-expressed in both up and down-regulation in the liver of L. calbasu. In conclusion, L. calbasu collected from the Yamuna River have highly pollution-induced ribosomal pathways involving genes like Rpl19, rpl23Ae, rps2e, rps10e, rps15e, and rps7e, etc, which is important for pollution biomarker study. RANBP2 and egr1 lncRNA are the most significantly interlinked with ndc1 and fosab lncRNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Anu Sharma
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | | | | | | |
Collapse
|
2
|
Agrawal P, Kaur J, Singh J, Rasane P, Sharma K, Bhadariya V, Kaur S, Kumar V. Genetics, Nutrition, and Health: A New Frontier in Disease Prevention. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:326-338. [PMID: 38015713 DOI: 10.1080/27697061.2023.2284997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The field of nutrition research has traditionally focused on the effects of macronutrients and micronutrients on the body. However, it has become evident that individuals have unique genetic makeups that influence their response to food. Nutritional genomics, which includes nutrigenetics and nutrigenomics, explores the interaction between an individual's genetic makeup, diet, and health outcomes. Nutrigenetics studies the impact of genetic variation on an individual's response to dietary nutrients, while nutrigenomics investigates how dietary components affect gene regulation and expression. These disciplines seek to understand the impact of diet on the genome, transcriptome, proteome, and metabolome. It provides insights into the mechanisms underlying the effect of diet on gene expression. Nutrients can cause the modification of genetic expression through epigenetic changes, such as DNA methylation and histone modifications. The aim of nutrigenomics is to create personalized diets based on the unique metabolic profile of an individual, gut microbiome, and genetic makeup to prevent diseases and promote health. Nutrigenomics has the potential to revolutionize the field of nutrition by combining the practicality of personalized nutrition with knowledge of genetic factors underlying health and disease. Thus, nutrigenomics offers a promising approach to improving health outcomes (in terms of disease prevention) through personalized nutrition strategies based on an individual's genetic and metabolic characteristics.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Kartik Sharma
- Faculty of Agro-Industry, Prince of Songkla University, Songkla, Thailand
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
3
|
Tecchio Borsoi F, Ferreira Alves L, Neri-Numa IA, Geraldo MV, Pastore GM. A multi-omics approach to understand the influence of polyphenols in ovarian cancer for precision nutrition: a mini-review. Crit Rev Food Sci Nutr 2023; 65:1037-1054. [PMID: 38091344 DOI: 10.1080/10408398.2023.2287701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
The impact of polyphenols in ovarian cancer is widely studied observing gene expression, epigenetic alterations, and molecular mechanisms based on new 'omics' technologies. Therefore, the combination of omics technologies with the use of phenolic compounds may represent a promising approach to precision nutrition in cancer. This article provides an updated review involving the current applications of high-throughput technologies in ovarian cancer, the role of dietary polyphenols and their mechanistic effects in ovarian cancer, and the current status and challenges of precision nutrition and their relationship with big data. High-throughput technologies in different omics science can provide relevant information from different facets for identifying biomarkers for diagnosis, prognosis, and selection of specific therapies for personalized treatment. Furthermore, the field of omics sciences can provide a better understanding of the role of polyphenols and their function as signaling molecules in the prevention and treatment of ovarian cancer. Although we observed an increase in the number of investigations, there are several approaches to data acquisition, analysis, and integration that still need to be improved, and the standardization of these practices still needs to be implemented in clinical trials.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Letícia Ferreira Alves
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Iramaia Angélica Neri-Numa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Murilo Vieira Geraldo
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
4
|
Chen W, Su H. Special issue: molecular nutrition and chronic diseases. J Zhejiang Univ Sci B 2023; 24:549-553. [PMID: 37455133 PMCID: PMC10350371 DOI: 10.1631/jzus.b2310001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
"Let food be thy medicine and medicine be thy food"-the ancient adage proposed by Greek philosopher Hippocrates of Kos thousands of years ago already acknowledged the importance of the beneficial and health-promoting effects of food nutrients on the body (Mafra et al., 2021). Recent epidemiological and large-scale community studies have also reported that unhealthy diets or eating habits may contribute heavily to the burden of chronic, non-communicable diseases, such as obesity, type 2 diabetes mellitus (T2DM), hypertension, cardiovascular disease (CVD), cancer, neurodegenerative diseases, arthritis, chronic kidney disease (CKD), and chronic obstructive pulmonary disease (COPD) (Jayedi et al., 2020; Gao et al., 2022). Emerging evidence highlights that a diet rich in fruits and vegetables can prevent various chronic diseases (Chen et al., 2022). Food bioactive compounds including vitamins, phytochemicals, and dietary fibers are responsible for these nutraceutical benefits (Boeing et al., 2012). Recently, phytochemicals such as polyphenols, phytosterols, and carotenoids have gained increasing attention due to their potential health benefits to alleviate chronic diseases (van Breda and de Kok, 2018). Understanding the role of phytochemicals in health promotion and preventing chronic diseases can inform dietary recommendations and the development of functional foods. Therefore, it is crucial to investigate the health benefits of phytochemicals derived from commonly consumed foods for the prevention and management of chronic diseases.
Collapse
Affiliation(s)
- Wei Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Hongming Su
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul 55108, USA
| |
Collapse
|
5
|
Dietary fatty acids applied to pig production and their relation to the biological processes: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
A Background Search on the Potential Role of Scutellaria and Its Essential Oils. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7265445. [PMID: 35968239 PMCID: PMC9365597 DOI: 10.1155/2022/7265445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Scutellaria (Lamiaceae), which contains over 350 species, usually known as skullcaps, is found throughout Europe, the United States, and East Asia. In traditional Chinese medicine, several species are used to wipe out heat-evil and remove surface ills (TCM). The current study examines the ethnopharmacology, biological activity, and chemical substances associated with Scutellaria species. More than 295 chemicals, including flavonoids and diterpenes, have been identified. Scutellaria and its active principles have been shown in studies to have a wide range of pharmacological activities, including antioxidant, antimicrobial, antifeedant, phytotoxic, acaricidal toxicity, antibacterial, anti-inflammatory, and antianalgesic activities. Currently, effective monomeric compounds or active components from Scutellaria have been evaluated for pharmacological action in vivo and in vitro. More data facilitates applications and exploitation of novel medication development.
Collapse
|
7
|
KIANI AYSHAKARIM, BONETTI GABRIELE, DONATO KEVIN, KAFTALLI JURGEN, HERBST KARENL, STUPPIA LIBORIO, FIORETTI FRANCESCO, NODARI SAVINA, PERRONE MARCO, CHIURAZZI PIETRO, BELLINATO FRANCESCO, GISONDI PAOLO, BERTELLI MATTEO. Polymorphisms, diet and nutrigenomics. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E125-E141. [PMID: 36479483 PMCID: PMC9710387 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Every human being possesses an exclusive nutritional blueprint inside their genes. Bioactive food components and nutrients affect the expression of such genes. Nutrigenomics is the science that analyzes gene-nutrient interactions (nutrigenetics), which can lead to the development of personalized nutritional recommendations to maintain optimal health and prevent disease. Genomic diversity among various ethnic groups might affect nutrients bioavailability as well as their metabolism. Nutrigenomics combines different branches of science including nutrition, bioinformatics, genomics, molecular biology, molecular medicine, and epidemiology. Genes regulate intake and metabolism of different nutrients, while nutrients positively or negatively influence the expression of a number of genes; testing of specific genetic polymorphisms may therefore become a useful tool to manage weight loss and to fully understand gene-nutrient interactions. Indeed, several approaches are used to study gene-nutrient interactions: epigenetics, the study of genome modification not related to changes in nucleotide sequence; transcriptomics, the study of tissue-specific and time-specific RNA transcripts; proteomics, the study of proteins involved in biological processes; and metabolomics, the study of changes of primary and secondary metabolites in body fluids and tissues. Hence, the use of nutrigenomics to improve and optimize a healthy, balanced diet in clinical settings could be an effective approach for long-term lifestyle changes that might lead to consistent weight loss and improve quality of life.
Collapse
Affiliation(s)
| | | | | | | | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
| | - LIBORIO STUPPIA
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - FRANCESCO FIORETTI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | - SAVINA NODARI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | - MARCO PERRONE
- Department of Cardiology and CardioLab, University of Rome Tor Vergata, Rome, Italy
| | - PIETRO CHIURAZZI
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - FRANCESCO BELLINATO
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - PAOLO GISONDI
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
8
|
Orhan C, Gencoglu H, Tuzcu M, Sahin N, Ojalvo S, Sylla S, Komorowski JR, Sahin K. Maca could improve endurance capacity possibly by increasing mitochondrial biogenesis pathways and antioxidant response in exercised rats. J Food Biochem 2022; 46:e14159. [DOI: 10.1111/jfbc.14159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine Firat University Elazig Turkey
| | - Hasan Gencoglu
- Biology Department, Science Faculty Firat University Elazig Turkey
| | - Mehmet Tuzcu
- Biology Department, Science Faculty Firat University Elazig Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine Firat University Elazig Turkey
| | | | - Sarah Sylla
- Research and Development, Nutrition21 LLC Harrison New York USA
| | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine Firat University Elazig Turkey
| |
Collapse
|
9
|
Dietary-Derived Essential Nutrients and Amyotrophic Lateral Sclerosis: A Two-Sample Mendelian Randomization Study. Nutrients 2022; 14:nu14050920. [PMID: 35267896 PMCID: PMC8912818 DOI: 10.3390/nu14050920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies have suggested a close but inconsistent relationship between essential nutrients and the risk of amyotrophic lateral sclerosis (ALS), and whether this association is causal remains unknown. We aimed to investigate the potential causal relation between essential nutrients (essential amino acids, essential fatty acids, essential minerals, and essential vitamins) and the risk of ALS using Mendelian randomization (MR) analysis. Large-scale European-based genome-wide association studies' (GWASs) summary data related to ALS (assembling 27,205 ALS patients and 110,881 controls) and essential nutrient concentrations were separately obtained. MR analysis was performed using the inverse variance-weighted (IVW) method, and sensitivity analysis was conducted by the weighted median method, simple median method, MR-Egger method and MR-PRESSO method. We found a causal association between genetically predicted linoleic acid (LA) and the risk of ALS (OR: 1.066; 95% CI: 1.011-1.125; p = 0.019). An inverse association with ALS risk was noted for vitamin D (OR: 0.899; 95% CI: 0.819-0.987; p = 0.025) and for vitamin E (OR: 0.461; 95% CI: 0.340-0.626; p = 6.25 × 10-7). The sensitivity analyses illustrated similar trends. No causal effect was observed between essential amino acids and minerals on ALS. Our study profiled the effects of diet-derived circulating nutrients on the risk of ALS and demonstrated that vitamin D and vitamin E are protective against the risk of ALS, and LA is a suggested risk factor for ALS.
Collapse
|
10
|
Bibyk MJ, Campbell MJ, Hummon AB. Mass spectrometric investigations of caloric restriction mimetics. Proteomics 2021; 21:e2000121. [PMID: 33460282 PMCID: PMC8262777 DOI: 10.1002/pmic.202000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/11/2022]
Abstract
Caloric restriction (CR) is an innovative therapy used in tumor tissue and tumor model studies to promote cell death and decrease cell viability. Caloric restriction mimetics (CRMs) are a class of drugs that induce CR and starvation conditions within a cell. When used simultaneously with other chemotherapy agents, the effects are synergistic and effective at promoting tumor cell death. In this review, we discuss CRMs and their potential as cancer therapeutics. Firstly, we establish an overview of CR and its impacts on healthy and tumor cells. CR and CRM drugs have shown to decrease age-related diseases and can act as an anti-cancer agent. As it can be challenging for an individual to diligently stick to a diet that would induce CR, CRMs are even more desirable. Then, we discuss the drug class by highlighting three CRMs: resveratrol, (-)-hydroxycitric acid, and rapamycin. These CRMs are commonly known for their dietary effects, but the underlying mechanisms that drive cellular metabolic and proteomic changes show promise as a cancer therapeutic. Lastly, we highlight the use of mass spectrometry and proteomic techniques on experiments utilizing CRM drugs to understand the cellular pathways impacted by this drug class, leading to a better understanding of the anti-cancer properties and potentials of CRM.
Collapse
Affiliation(s)
- Michael J. Bibyk
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Melanie J. Campbell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Molina-López J, Ricalde MAQ, Hernández BV, Planells A, Otero R, Planells E. Effect of 8-week of dietary micronutrient supplementation on gene expression in elite handball athletes. PLoS One 2020; 15:e0232237. [PMID: 32357196 PMCID: PMC7194438 DOI: 10.1371/journal.pone.0232237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose A study was made of the changes in gene expression in elite handball athletes, comparing gene modulation before, after and in the absence of an 8-week nutritional intervention with multivitamin/mineral supplements. Methods Thirteen elite handball athletes (aged 22.9 ± 2.7 years) and 13 sedentary controls (aged 20.9 ± 2.8 years) were included. Three timepoints were established: T0 (baseline conditions); T8 (after 8 weeks of supplementation with a multivitamin/mineral complex); and T16 (after 8 weeks in the absence of supplementation). The expressions of a total 112 of genes were evaluated by RT-qPCR analysis with the QuantStudioTM 12K Flex Real-Time PCR System. Results The analysis revealed different gene regulation profiles of genes implicated in cell communication, cell energy metabolism, inflammation and the immune system, oxidative stress and muscle function in athletes compared to sedentary controls under resting conditions (upregulated genes: effect size = large, ƞ2 = 1.011 to 1.398, p < 0.05; downregulated genes: effect size = large, ƞ2 = 0.846 and 1.070, p < 0.05, respectively). The nutritional intervention encouraged gene upregulation in elite athletes (p < 0.05). In a follow-up investigation, the IRAK1, CD81, ITGB1, ACADS PDHA2 and GPX1 genes were downregulated in athletes, with a moderate main effect for time-by-group interaction (ηP2 = 0.099 to 0.133; p < 0.05). Additionally, nutritional genes such as MTHFR and THTPA revealed a moderate effect over all the timepoints and group interaction in the study (ηP2 = 0.070 to 0.092; p < 0.05). Conclusions Elite handball athletes showed a different expression profile in reference to key genes implicated in several sports performance-related functions compared to the sedentary controls, in addition to modulation of gene expression after multivitamin/mineral supplementation.
Collapse
Affiliation(s)
- Jorge Molina-López
- Department of Physiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Health Sciences Technological Park, University of Granada, Granada, Spain
- * E-mail:
| | - María Antonieta Quispe Ricalde
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Basilio Valladares Hernández
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Antonio Planells
- Unit of Social Studies of the Defense, General Technical Secretary, Ministry of Defence, Madrid, Spain
| | - Roberto Otero
- Department of Statistics. Faculty of Social and Legal Sciences, University of Carlos III, Getafe, Madrid, Spain
| | - Elena Planells
- Department of Physiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Health Sciences Technological Park, University of Granada, Granada, Spain
| |
Collapse
|
12
|
Hasan MS, Feugang JM, Liao SF. A Nutrigenomics Approach Using RNA Sequencing Technology to Study Nutrient-Gene Interactions in Agricultural Animals. Curr Dev Nutr 2019; 3:nzz082. [PMID: 31414073 PMCID: PMC6686084 DOI: 10.1093/cdn/nzz082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/08/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022] Open
Abstract
Thorough understanding of animal gene expression driven by dietary nutrients can be regarded as a bottom line of advanced animal nutrition research. Nutrigenomics (including transcriptomics) studies the effects of dietary nutrients on cellular gene expression and, ultimately, phenotypic changes in living organisms. Transcriptomics can be applied to investigate animal tissue transcriptomes at a defined nutritional state, which can provide a holistic view of intracellular RNA expression. As a novel transcriptomics approach, RNA sequencing (RNA-Seq) technology can monitor all gene expressions simultaneously in response to dietary intervention. The principle and history of RNA-Seq are briefly reviewed, and its 3 principal steps are described in this article. Application of RNA-Seq in different areas of animal nutrition research is summarized. Lastly, the application of RNA-Seq in swine science and nutrition is also reviewed. In short, RNA-Seq holds significant potential to be employed for better understanding the nutrient-gene interactions in agricultural animals.
Collapse
Affiliation(s)
- M Shamimul Hasan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shengfa F Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
13
|
Paul C, Leser S, Oesser S. Significant Amounts of Functional Collagen Peptides Can Be Incorporated in the Diet While Maintaining Indispensable Amino Acid Balance. Nutrients 2019; 11:E1079. [PMID: 31096622 PMCID: PMC6566836 DOI: 10.3390/nu11051079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
The results of twenty years of research indicate that the inclusion of collagen peptides in the diet can lead to various improvements in health. According to the current protein quality evaluation method PDCAAS (Protein Digestibility-corrected Amino Acid Score), collagen protein lacks one indispensable amino acid (tryptophan) and is therefore categorized as an incomplete protein source. Collagen protein displays a low indispensable amino acid profile, yet as a functional food, collagen is a source of physiologically active peptides and conditionally indispensable amino acids that have the potential to optimize health and address physiological needs posed by aging and exercise. The objective of this study was to determine the maximum level of dietary collagen peptides that can be incorporated in the Western pattern diet while maintaining its indispensable amino acid balance. Iterative PDCAAS calculations showed that a level as high as 36% of collagen peptides can be used as protein substitution in the daily diet while ensuring indispensable amino acid requirements are met. This study suggests that the effective amounts of functional collagen peptides (2.5 to 15 g per day) observed in the literature are below the maximum level of collagen that may be incorporated in the standard American diet.
Collapse
Affiliation(s)
- Cristiana Paul
- Independent Nutrition Researcher, Los Angeles, CA 91344, USA.
| | - Suzane Leser
- GELITA AG, Uferstrasse 7, 69412 Eberbach, Germany.
| | - Steffen Oesser
- CRI, Collagen Research Institute GmbH, Schauenburgerstrasse 116, 24118 Kiel, Germany.
| |
Collapse
|
14
|
Employing proteomics to understand the effects of nutritional intervention in cancer treatment. Anal Bioanal Chem 2018; 410:6371-6386. [PMID: 29974151 DOI: 10.1007/s00216-018-1219-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/22/2022]
Abstract
Lifestyle optimizations are implementable changes that can have an impact on health and disease. Nutrition is a lifestyle optimization that has been shown to be of great importance in cancer initiation, progression, and metastasis. Dozens of clinical trials are currently in progress that focus on the nutritional modifications that cancer patients can make prior to and during medical care that increase the efficacy of treatment. In this review, we discuss various nutritional inventions for cancer patients and the analytical approaches to characterize the downstream molecular effects. We first begin by briefly explaining the many different forms of nutritional intervention currently being used in cancer treatment as well as their motivating biology. The forms of nutrient modulation described in this review include calorie restriction, the different practices of fasting, and carbohydrate restriction. The review then shifts to explain how proteomics is used to determine biomarkers of cancer and how it can be utilized in the future to determine the metabolic phenotype of a tumor, and inform physicians if nutritional intervention should be recommended for a cancer patient. Nutrigenomics aims to understand the relationship of nutrients and gene expression and can be used to understand the downstream molecular effects of nutrition restriction, partially through proteomic analysis. Proteomics is just beginning to be used as cancer diagnostic and predictive tools. However, these approaches have not been used to their full potential to understand nutritional intervention in cancer. Graphical abstract ᅟ.
Collapse
|
15
|
Brouwer-Brolsma EM, Brennan L, Drevon CA, van Kranen H, Manach C, Dragsted LO, Roche HM, Andres-Lacueva C, Bakker SJL, Bouwman J, Capozzi F, De Saeger S, Gundersen TE, Kolehmainen M, Kulling SE, Landberg R, Linseisen J, Mattivi F, Mensink RP, Scaccini C, Skurk T, Tetens I, Vergeres G, Wishart DS, Scalbert A, Feskens EJM. Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance. Proc Nutr Soc 2017; 76:619-627. [PMID: 29137687 DOI: 10.1017/s0029665117003949] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FFQ, food diaries and 24 h recall methods represent the most commonly used dietary assessment tools in human studies on nutrition and health, but food intake biomarkers are assumed to provide a more objective reflection of intake. Unfortunately, very few of these biomarkers are sufficiently validated. This review provides an overview of food intake biomarker research and highlights present research efforts of the Joint Programming Initiative 'A Healthy Diet for a Healthy Life' (JPI-HDHL) Food Biomarkers Alliance (FoodBAll). In order to identify novel food intake biomarkers, the focus is on new food metabolomics techniques that allow the quantification of up to thousands of metabolites simultaneously, which may be applied in intervention and observational studies. As biomarkers are often influenced by various other factors than the food under investigation, FoodBAll developed a food intake biomarker quality and validity score aiming to assist the systematic evaluation of novel biomarkers. Moreover, to evaluate the applicability of nutritional biomarkers, studies are presently also focusing on associations between food intake biomarkers and diet-related disease risk. In order to be successful in these metabolomics studies, knowledge about available electronic metabolomics resources is necessary and further developments of these resources are essential. Ultimately, present efforts in this research area aim to advance quality control of traditional dietary assessment methods, advance compliance evaluation in nutritional intervention studies, and increase the significance of observational studies by investigating associations between nutrition and health.
Collapse
Affiliation(s)
- Elske M Brouwer-Brolsma
- Division of Human Nutrition,Wageningen University,PO Box 17,6700 AA Wageningen,The Netherlands
| | | | - Christian A Drevon
- Department of Nutrition,Institute of Basic Medical Sciences,Faculty of Medicine,University of Oslo,Oslo,Norway
| | - Henk van Kranen
- National Institute for Public Health and the Environment,Bilthoven,The Netherlands
| | - Claudine Manach
- INRA,UMR 1019, Human Nutrition Unit,Université Clermont Auvergne,Clermont-Ferrand,France
| | - Lars Ove Dragsted
- Department of Nutrition,Exercise and Sports,University of Copenhagen,Copenhagen,Denmark
| | - Helen M Roche
- Nutrigenomics Research Group,UCD Institute of Food and Health,School of Public Health,Physiotherapy and Sports Science,Belfield,Dublin 4,Ireland
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomic Laboratory,Department of Nutrition,Food Sciences and Gastronomy, XaRTA, INSA,Faculty of Pharmacy and Food Sciences,University of Barcelona,Barcelona,Spain
| | - Stephan J L Bakker
- Department of Internal Medicine,University Medical Center Groningen, University of Groningen,Groningen,The Netherlands
| | - Jildau Bouwman
- TNO,Netherlands Organisation for Applied Scientific Research,Zeist,The Netherlands
| | - Francesco Capozzi
- Department of Agricultural and Food Science,University of Bologna,Italy
| | - Sarah De Saeger
- Faculty of Pharmaceutical Sciences, Department of Bioanalysis,Ghent University,Ghent,Belgium
| | | | - Marjukka Kolehmainen
- University of Eastern Finland,Institute of Public Health and Clinical Nutrition,Clinical Nutrition,Kuopio,Finland
| | - Sabine E Kulling
- Max Rubner-Institut, Bundesforschungsinstitut für Ernährung und Lebensmittel,Karlsruhe,Germany
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science,Chalmers University of Technology,Gothenburg,Sweden
| | - Jakob Linseisen
- Institute of Epidemiology II,Helmholtz Centre Munich,Neuherberg,Germany
| | - Fulvio Mattivi
- Fondazione Edmund Mach,Department of Food Quality and Nutrition,Research and Innovation Centre,San Michele all'Adige,Italy
| | - Ronald P Mensink
- Department of Human Biology,NUTRIM School of Nutrition and Translational Research in Metabolism,Maastricht University Medical Center,Maastricht,The Netherlands
| | - Cristina Scaccini
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia agraria - Food and Nutrition Research Center,Roma,Italy
| | - Thomas Skurk
- ZIEL Institute for Food and Health,Core Facility Human Studies,Nutritional Medicine,Technical University of Munich,Freising,Germany
| | - Inge Tetens
- Division of Food,Disease Prevention and Toxicology,National Food Institute,Technical University of Denmark,Kongens Lyngby,Denmark
| | - Guy Vergeres
- Agroscope,Institute for Food Sciences IFS,Bern,Switzerland
| | - David S Wishart
- Departments of Biological Sciences and Computing Science,University of Alberta,Edmonton,Canada
| | - Augustin Scalbert
- International Agency for Research on Cancer,Nutrition and Metabolism Section,Lyon,France
| | - Edith J M Feskens
- Division of Human Nutrition,Wageningen University,PO Box 17,6700 AA Wageningen,The Netherlands
| |
Collapse
|
16
|
Perez-Gregorio R, Simal-Gandara J. A Critical Review of Bioactive Food Components, and of their Functional Mechanisms, Biological Effects and Health Outcomes. Curr Pharm Des 2017; 23:2731-2741. [DOI: 10.2174/1381612823666170317122913] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Rosa Perez-Gregorio
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo – Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
17
|
Schroll MM, LaBonia GJ, Ludwig KR, Hummon AB. Glucose Restriction Combined with Autophagy Inhibition and Chemotherapy in HCT 116 Spheroids Decreases Cell Clonogenicity and Viability Regulated by Tumor Suppressor Genes. J Proteome Res 2017. [PMID: 28650662 DOI: 10.1021/acs.jproteome.7b00293] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drug resistance is a prevalent phenomenon that decreases the efficacy of cancer treatments and contributes to cancer progression and metastasis. Weakening drug-resistant cancer cells prior to chemotherapy is a potential strategy to combat chemoresistance. One approach to damage resistant cancer cells is modulation of nutritional intake. The combination of nutrient restriction with targeted compound treatment results in pronounced molecular changes. This study provides valuable information about augmenting existing chemotherapeutic regimes with simultaneous glucose restriction and autophagy inhibition in colorectal cancer cells. In this study, we explore the chemical pathways that drive the cellular response to nutrient restriction, autophagy inhibition, and the chemotherapy irinotecan using global quantitative proteomics and imaging mass spectrometry. We determined that significant pathways were altered including autophagy and metabolism via glycolysis, gluconeogenesis, and sucrose degradation. We also found that period circadian clock 2 (PER2), a tumor suppressor protein, was significantly up-regulated only when glucose was restricted with autophagy inhibition and chemotherapy. The upstream regulators of these differentially regulated pathways were determined to have implications in cancer, showing an increase in tumor suppressor proteins and a decrease in nuclear protein 1 (NUPR1) an important protein in chemoresistance. We also evaluated the phenotypic response of these cells and discovered autophagy inhibition and chemotherapy treatment increased apoptosis and decreased cell clonogenicity and viability. When glucose restriction was combined with autophagy inhibition and chemotherapy, all of the phenotypic results were intensified. In sum, our results indicate that glucose metabolism is of great importance in the ability of cancer cells to survive chemotherapy. By weakening cancer cells with glucose restriction and autophagy inhibition prior to chemotherapy, cancer cells become more sensitive to therapy.
Collapse
Affiliation(s)
- Monica M Schroll
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Gabriel J LaBonia
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Katelyn R Ludwig
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States.,Harper Cancer Research Institute, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
18
|
Veljkovic V, Perovic V, Anderluh M, Paessler S, Veljkovic M, Glisic S, Nicolson G. A simple method for calculation of basic molecular properties of nutrients and their use as a criterion for a healthy diet. F1000Res 2017; 6:13. [PMID: 28529693 PMCID: PMC5428496 DOI: 10.12688/f1000research.10537.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2016] [Indexed: 01/21/2023] Open
Abstract
Background: Healthy nutrition is vital for good health and well-being. Despite the important role of a healthy nutritional diet, recommendations for healthy eating remain elusive and are mainly based on general properties of nutrients. The present study proposes an improved characterization of the molecular characteristics of nutrients, which are important for biological functions and can be useful in describing a healthy diet.
Methods: We investigated the electronic properties of some known nutrient ingredients. In this analysis, we used the average quasi valence number (AQVN) and the electron-ion interaction potential (EIIP), which are molecular descriptors that represent the basic electronic properties of organic molecules.
Results: Our results show that most nutrients can be represented by specific groups of organic compounds according to their basic electronic properties, and these differ from the vast majority of known chemicals. Based on this finding, we have proposed a simple criterion for the selection of food components for healthy nutrition.
Discussion: Further studies on the electronic properties of nutrients could serve as a basis for better understanding of their biological functions.
Collapse
Affiliation(s)
| | | | - Marko Anderluh
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Slobodan Paessler
- Department of Pathology, Galveston National Laboratory,, University of Texas Medical Branch, Galveston, USA
| | | | | | - Garth Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, USA
| |
Collapse
|
19
|
Tain YL, Chan JYH, Hsu CN. Maternal Fructose Intake Affects Transcriptome Changes and Programmed Hypertension in Offspring in Later Life. Nutrients 2016; 8:nu8120757. [PMID: 27897982 PMCID: PMC5188412 DOI: 10.3390/nu8120757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022] Open
Abstract
Hypertension originates from early-life insults by so-called “developmental origins of health and disease” (DOHaD). Studies performed in the previous few decades indicate that fructose consumption is associated with an increase in hypertension rate. It is emerging field that tends to unfold the nutrient–gene interactions of maternal high-fructose (HF) intake on the offspring which links renal programming to programmed hypertension. Reprogramming interventions counteract disturbed nutrient–gene interactions induced by maternal HF intake and exert protective effects against developmentally programmed hypertension. Here, we review the key themes on the effect of maternal HF consumption on renal transcriptome changes and programmed hypertension. We have particularly focused on the following areas: metabolic effects of fructose on hypertension and kidney disease; effects of maternal HF consumption on hypertension development in adult offspring; effects of maternal HF consumption on renal transcriptome changes; and application of reprogramming interventions to prevent maternal HF consumption-induced programmed hypertension in animal models. Provision of personalized nutrition is still a faraway goal. Therefore, there is an urgent need to understand early-life nutrient–gene interactions and to develop effective reprogramming strategies for treating hypertension and other HF consumption-related diseases.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
20
|
Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr 2016; 13:43. [PMID: 27924137 PMCID: PMC5121944 DOI: 10.1186/s12970-016-0155-6] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/19/2016] [Indexed: 12/14/2022] Open
Abstract
Fatigue, mood disturbances, under performance and gastrointestinal distress are common among athletes during training and competition. The psychosocial and physical demands during intense exercise can initiate a stress response activating the sympathetic-adrenomedullary and hypothalamus-pituitary-adrenal (HPA) axes, resulting in the release of stress and catabolic hormones, inflammatory cytokines and microbial molecules. The gut is home to trillions of microorganisms that have fundamental roles in many aspects of human biology, including metabolism, endocrine, neuronal and immune function. The gut microbiome and its influence on host behavior, intestinal barrier and immune function are believed to be a critical aspect of the brain-gut axis. Recent evidence in murine models shows that there is a high correlation between physical and emotional stress during exercise and changes in gastrointestinal microbiota composition. For instance, induced exercise-stress decreased cecal levels of Turicibacter spp and increased Ruminococcus gnavus, which have well defined roles in intestinal mucus degradation and immune function. Diet is known to dramatically modulate the composition of the gut microbiota. Due to the considerable complexity of stress responses in elite athletes (from leaky gut to increased catabolism and depression), defining standard diet regimes is difficult. However, some preliminary experimental data obtained from studies using probiotics and prebiotics studies show some interesting results, indicating that the microbiota acts like an endocrine organ (e.g. secreting serotonin, dopamine or other neurotransmitters) and may control the HPA axis in athletes. What is troubling is that dietary recommendations for elite athletes are primarily based on a low consumption of plant polysaccharides, which is associated with reduced microbiota diversity and functionality (e.g. less synthesis of byproducts such as short chain fatty acids and neurotransmitters). As more elite athletes suffer from psychological and gastrointestinal conditions that can be linked to the gut, targeting the microbiota therapeutically may need to be incorporated in athletes’ diets that take into consideration dietary fiber as well as microbial taxa not currently present in athlete’s gut.
Collapse
Affiliation(s)
- Allison Clark
- Health Science Department, Open University of Catalonia (UOC), 08035 Barcelona, Spain
| | - Núria Mach
- Health Science Department, Open University of Catalonia (UOC), 08035 Barcelona, Spain ; Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| |
Collapse
|
21
|
Lubogo D, Orach CG. Stakeholder perceptions of research options to improve nutritional status in Uganda. BMC Nutr 2016. [DOI: 10.1186/s40795-016-0067-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Abstract
Dietary restriction (DR), a moderate reduction in food intake, improves health during aging and extends life span across multiple species. Specific nutrients, rather than overall calories, mediate the effects of DR, with protein and specific amino acids (AAs) playing a key role. Modulations of single dietary AAs affect traits including growth, reproduction, physiology, health, and longevity in animals. Epidemiological data in humans also link the quality and quantity of dietary proteins to long-term health. Intricate nutrient-sensing pathways fine tune the metabolic responses to dietary AAs in a highly conserved manner. In turn, these metabolic responses can affect the onset of insulin resistance, obesity, neurodegenerative disease, and other age-related diseases. In this review we discuss how AA requirements are shaped and how ingested AAs regulate a spectrum of homeostatic processes. Finally, we highlight the resulting opportunity to develop nutritional strategies to improve human health during aging.
Collapse
Affiliation(s)
- George A Soultoukis
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; ,
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; , .,Institute of Healthy Ageing and Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
23
|
Biomarkers for nutrient intake with focus on alternative sampling techniques. GENES AND NUTRITION 2016; 11:12. [PMID: 27551313 PMCID: PMC4968438 DOI: 10.1186/s12263-016-0527-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
Abstract
Biomarkers of nutrient intake or nutrient status are important objective measures of foods/nutrients as one of the most important environmental factors people are exposed to. It is very difficult to obtain accurate data on individual food intake, and there is a large variation of nutrient composition of foods consumed in a population. Thus, it is difficult to obtain precise measures of exposure to different nutrients and thereby be able to understand the relationship between diet, health, and disease. This is the background for investing considerable resources in studying biomarkers of nutrients believed to be important in our foods. Modern technology with high sensitivity and specificity concerning many nutrient biomarkers has allowed an interesting development with analyses of very small amounts of blood or tissue material. In combination with non-professional collection of blood by finger-pricking and collection on filters or sticks, this may make collection of samples and analyses of biomarkers much more available for scientists as well as health professionals and even lay people in particular in relation to the marked trend of self-monitoring of body functions linked to mobile phone technology. Assuming standard operating procedures are used for collection, drying, transport, extraction, and analysis of samples, it turns out that many analytes of nutritional interest can be measured like metabolites, drugs, lipids, vitamins, minerals, and many types of peptides and proteins. The advantage of this alternative sampling technology is that non-professionals can collect, dry, and mail the samples; the samples can often be stored under room temperature in a dry atmosphere, requiring small amounts of blood. Another promising area is the potential relation between the microbiome and biomarkers that may be measured in feces as well as in blood.
Collapse
|
24
|
Sánchez-Camargo ADP, Montero L, Stiger-Pouvreau V, Tanniou A, Cifuentes A, Herrero M, Ibáñez E. Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chem 2016; 192:67-74. [PMID: 26304321 DOI: 10.1016/j.foodchem.2015.06.098] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 12/22/2022]
Abstract
Pressurized liquids, PLE, and enzyme-assisted extraction, EAE, have been tested to improve the extraction of phlorotannins from the seaweed Sargassum muticum. Enzymatic treatment with proteases and carbohydrases, alkaline hydrolysis and PLE with ethanol:water as extracting solvent have been studied in terms of extraction yield, total phenolic content and antioxidant activity (TEAC assay). Results demonstrated that the application of PLE alone provided the highest yields and relevant antioxidant activity. An experimental design was employed to further optimize the PLE extraction conditions; optimum parameters included the use of 160 °C and 95% ethanol. Under these conditions, values of 21.9%, 94.0mg gallic acid equivalents g(-1), 5.018 mg phloroglucinol equivalents g(-1) and 1.275 mmol trolox equivalents g(-1) were obtained for extraction yield, total phenols, total phlorotannins and TEAC, respectively. A preliminary chemical characterization by liquid chromatography coupled to mass spectrometry provided insight in terms of the mechanisms involved in the different processes.
Collapse
Affiliation(s)
| | - Lidia Montero
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Valérie Stiger-Pouvreau
- LEMAR UMR CNRS UBO IRD IFREMER 6539, Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM), Technopôle Brest-Iroise, Rue Dumont d'Urville, Plouzané 29280, France
| | - Anaëlle Tanniou
- LEMAR UMR CNRS UBO IRD IFREMER 6539, Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM), Technopôle Brest-Iroise, Rue Dumont d'Urville, Plouzané 29280, France
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
25
|
Nongonierma AB, FitzGerald RJ. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.021] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
26
|
Banerjee S, Debnath P, Debnath PK. Ayurnutrigenomics: Ayurveda-inspired personalized nutrition from inception to evidence. J Tradit Complement Med 2015; 5:228-33. [PMID: 26587393 PMCID: PMC4624353 DOI: 10.1016/j.jtcme.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/20/2014] [Accepted: 12/18/2014] [Indexed: 12/04/2022] Open
Abstract
Ayurveda proclaims food and drugs are intersecting concepts that are vital for human survival and for the prevention and mitigation of diseases. Food interferes with the molecular mechanisms of an organism's “physiome”. It is consumed in large amounts compared to any drug. Hence, research on its effect and interaction with genome is highly relevant toward understanding diseases and their therapies. Ayurgenomics presents a personalized approach in the predictive, preventive, and curative aspects of stratified medicine with molecular variability, which embodies the study of interindividual variability due to genetic variability in humans for assessing susceptibility, and establishing diagnosis and prognosis, mainly on the basis of the constitution type of a person's Prakriti. Ayurnutrigenomics is an emerging field of interest pervading Ayurveda systems biology, where the selection of a suitable dietary, therapeutic, and lifestyle regime is made on the basis of clinical assessment of an individual maintaining one's Prakriti. This Ayurveda-inspired concept of personalized nutrition is a novel concept of nutrigenomic research for developing personalized functional foods and nutraceuticals suitable for one's genetic makeup with the help of Ayurveda. Here, we propose and present this novel concept of Ayurnutrigenomics and its emerging areas of research, which may unfold future possibilities toward smart yet safe therapeutics.
Collapse
Affiliation(s)
- Subhadip Banerjee
- Bengal Institute of Pharmaceutical Sciences, Kalyani, West Bengal, India
| | | | | |
Collapse
|
27
|
Soldati L, Kerkadi A, Amuna P, Terranegra A. State of art and science advances on nutrition and nutrigenetics in nutrition-related non-communicable diseases in Middle East. J Transl Med 2015; 13:40. [PMID: 25638147 PMCID: PMC4316796 DOI: 10.1186/s12967-015-0390-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 11/22/2022] Open
Affiliation(s)
- Laura Soldati
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| | | | - Paul Amuna
- Research Section of the Primary Health Care Corporation, Doha, Qatar.
| | - Annalisa Terranegra
- Translational Medicine Department, Sidra Medical and Research Center, Doha, Qatar.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Coffee is one of the most widely consumed beverages in the world and has been associated with many health conditions. This review examines the limitations of the classic epidemiological approach to studies of coffee and health, and describes the progress in systems epidemiology of coffee and its correlated constituent, caffeine. Implications and applications of this growing body of knowledge are also discussed. RECENT FINDINGS Population-based metabolomic studies of coffee replicate coffee-metabolite correlations observed in clinical settings but have also identified novel metabolites of coffee response, such as specific sphingomyelin derivatives and acylcarnitines. Genome-wide analyses of self-reported coffee and caffeine intake and serum levels of caffeine support an overwhelming role for caffeine in modulating the coffee consumption behavior. Interindividual variation in the physiological exposure or response to any of the many chemicals present in coffee may alter the persistence and magnitude of their effects. It is thus imperative that future studies of coffee and health account for this variation. SUMMARY Systems epidemiological approaches promise to inform causality, parse the constituents of coffee responsible for health effects, and identify the subgroups most likely to benefit from increasing or decreasing coffee consumption.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- aDepartment of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois bDepartment of Nutrition, Harvard School of Public Health cChanning Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Twin studies advance the understanding of gene–environment interplay in human nutrigenomics. Nutr Res Rev 2014; 27:242-51. [DOI: 10.1017/s095442241400016x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Investigations into the genetic architecture of diet–disease relationships are particularly relevant today with the global epidemic of obesity and chronic disease. Twin studies have demonstrated that genetic makeup plays a significant role in a multitude of dietary phenotypes such as energy and macronutrient intakes, dietary patterns, and specific food group intakes. Besides estimating heritability of dietary assessment, twins provide a naturally unique, case–control experiment. Due to their shared upbringing, matched genes and sex (in the case of monozygotic (MZ) twin pairs), and age, twins provide many advantages over classic epidemiological approaches. Future genetic epidemiological studies could benefit from the twin approach particularly where defining what is ‘normal’ is problematic due to the high inter-individual variability underlying metabolism. Here, we discuss the use of twins to generate heritability estimates of food intake phenotypes. We then highlight the value of discordant MZ pairs to further nutrition research through discovery and validation of biomarkers of intake and health status in collaboration with cutting-edge omics technologies.
Collapse
|
30
|
Keijer J, Hoevenaars FPM, Nieuwenhuizen A, van Schothorst EM. Nutrigenomics of body weight regulation: a rationale for careful dissection of individual contributors. Nutrients 2014; 6:4531-51. [PMID: 25338273 PMCID: PMC4210933 DOI: 10.3390/nu6104531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 01/09/2023] Open
Abstract
Body weight stability may imply active regulation towards a certain physiological condition, a body weight setpoint. This interpretation is ill at odds with the world-wide increase in overweight and obesity. Until now, a body weight setpoint has remained elusive and the setpoint theory did not provide practical clues for body weight reduction interventions. For this an alternative theoretical model is necessary, which is available as the settling point model. The settling point model postulates that there is little active regulation towards a predefined body weight, but that body weight settles based on the resultant of a number of contributors, represented by the individual's genetic predisposition, in interaction with environmental and socioeconomic factors, such as diet and lifestyle. This review refines the settling point model and argues that by taking body weight regulation from a settling point perspective, the road will be opened to careful dissection of the various contributors to establishment of body weight and its regulation. This is both necessary and useful. Nutrigenomic technologies may help to delineate contributors to body weight settling. Understanding how and to which extent the different contributors influence body weight will allow the design of weight loss and weight maintenance interventions, which hopefully are more successful than those that are currently available.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands.
| | - Femke P M Hoevenaars
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands.
| | - Arie Nieuwenhuizen
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands.
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands.
| |
Collapse
|
31
|
Affiliation(s)
- Cécile Gladine
- INRA; CRNH Auvergne; Clermont-Ferrand France
- Clermont Université; Université d'Auvergne, Unité de Nutrition Humaine; Clermont-Ferrand France
| | - André Mazur
- INRA; CRNH Auvergne; Clermont-Ferrand France
- Clermont Université; Université d'Auvergne, Unité de Nutrition Humaine; Clermont-Ferrand France
| |
Collapse
|
32
|
Nutrigenomics: definitions and advances of this new science. J Nutr Metab 2014; 2014:202759. [PMID: 24795820 PMCID: PMC3984860 DOI: 10.1155/2014/202759] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/20/2014] [Accepted: 02/27/2014] [Indexed: 11/17/2022] Open
Abstract
The search for knowledge regarding healthy/adequate food has increased in the last decades among the world population, researchers, nutritionists, and health professionals. Since ancient times, humans have known that environment and food can interfere with an individual's health condition, and have used food and plants as medicines. With the advance of science, especially after the conclusion of the Human Genome Project (HGP), scientists started questioning if the interaction between genes and food bioactive compounds could positively or negatively influence an individual's health. In order to assess this interaction between genes and nutrients, the term "Nutrigenomics" was created. Hence, Nutrigenomics corresponds to the use of biochemistry, physiology, nutrition, genomics, proteomics, metabolomics, transcriptomics, and epigenomics to seek and explain the existing reciprocal interactions between genes and nutrients at a molecular level. The discovery of these interactions (gene-nutrient) will aid the prescription of customized diets according to each individual's genotype. Thus, it will be possible to mitigate the symptoms of existing diseases or to prevent future illnesses, especially in the area of Nontransmissible Chronic Diseases (NTCDs), which are currently considered an important world public health problem.
Collapse
|
33
|
Nutri-informatics: a new kid on the block? GENES AND NUTRITION 2014; 9:394. [PMID: 24619904 DOI: 10.1007/s12263-014-0394-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
From an epistemological point of view, nutritional physiology has been developed, like other factual sciences such as physics, from a purely descriptive to a mechanismic-explanatory scientific discipline. Nowadays, nutritional physiology has entered the molecular stage. Based on this micro-reductionism, molecular targets (e.g., transcription factors) of energy intake, certain nutrients (e.g., zinc) and selected plant bioactives (e.g., flavonoids) have been identified. Although these results are impressive, molecular approaches in nutritional physiology are limited by nature since the molecular targets of nutrients seem to have no ontic priority to understand the nutritional phenotype of an organism. Here we define, to the best of our knowledge, for the first time Nutri-informatics as a new bioinformatics discipline integrating large-scale data sets from nutritional studies into a stringent nutritional systems biology context. We suggest that Nutri-informatics, as an emerging field, may bridge the gap between nutritional biochemistry, nutritional physiology and metabolism to understand the interactions between an organism and its environment.
Collapse
|
34
|
Langley-Evans SC. Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 2014; 28 Suppl 1:1-14. [PMID: 24479490 DOI: 10.1111/jhn.12212] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Foetal development and infancy are life stages that are characterised by rapid growth, development and maturation of organs and systems. Variation in the quality or quantity of nutrients consumed by mothers during pregnancy, or infants during the first year of life, can exert permanent and powerful effects upon developing tissues. These effects are termed 'programming' and represent an important risk factor for noncommunicable diseases of adulthood, including the metabolic syndrome and coronary heart disease. This narrative review provides an overview of the evidence-base showing that indicators of nutritional deficit in pregnancy are associated with a greater risk of type-2 diabetes and cardiovascular mortality. There is also a limited evidence-base that suggests some relationship between breastfeeding and the timing and type of foods used in weaning, and disease in later life. Many of the associations reported between indicators of early growth and adult disease appear to interact with specific genotypes. This supports the idea that programming is one of several cumulative influences upon health and disease acting across the lifespan. Experimental studies have provided important clues to the mechanisms that link nutritional challenges in early life to disease in adulthood. It is suggested that nutritional programming is a product of the altered expression of genes that regulate the cell cycle, resulting in effective remodelling of tissue structure and functionality. The observation that traits programmed by nutritional exposures in foetal life can be transmitted to further generations adds weight the argument that heritable epigenetic modifications play a critical role in nutritional programming.
Collapse
Affiliation(s)
- S C Langley-Evans
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| |
Collapse
|
35
|
Kaput J, van Ommen B, Kremer B, Priami C, Monteiro JP, Morine M, Pepping F, Diaz Z, Fenech M, He Y, Albers R, Drevon CA, Evelo CT, Hancock REW, Ijsselmuiden C, Lumey LH, Minihane AM, Muller M, Murgia C, Radonjic M, Sobral B, West KP. Consensus statement understanding health and malnutrition through a systems approach: the ENOUGH program for early life. GENES & NUTRITION 2014; 9:378. [PMID: 24363221 PMCID: PMC3896628 DOI: 10.1007/s12263-013-0378-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum's one gene-one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of health and disease processes requiring measurements of physiological processes, as well as environmental and social factors, which may alter the expression of genetic information. Analysis of physiological processes with omics technologies to assess systems' responses has only become available over the past decade and remains costly. Studies of environmental and social conditions known to alter health are often not connected to biomedical research. While these facts are widely accepted, developing and conducting comprehensive research programs for health are often beyond financial and human resources of single research groups. We propose a new research program on essential nutrients for optimal underpinning of growth and health (ENOUGH) that will use systems approaches with more comprehensive measurements and biostatistical analysis of the many biological and environmental factors that influence undernutrition. Creating a knowledge base for nutrition and health is a necessary first step toward developing solutions targeted to different populations in diverse social and physical environments for the two billion undernourished people in developed and developing economies.
Collapse
Affiliation(s)
- Jim Kaput
- Clinical Translation Unit, Nestle Institute of Health Sciences, Lausanne, Switzerland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cornelis MC, Hu FB. Systems Epidemiology: A New Direction in Nutrition and Metabolic Disease Research. Curr Nutr Rep 2013; 2. [PMID: 24278790 DOI: 10.1007/s13668-013-0052-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systems epidemiology applied to the field of nutrition has potential to provide new insight into underlying mechanisms and ways to study the health effects of specific foods more comprehensively. Human intervention and population-based studies have identified i) common genetic factors associated with several nutrition-related traits and ii) dietary factors altering the expression of genes and levels of proteins and metabolites related to inflammation, lipid metabolism and/or gut microbial metabolism, results of high relevance to metabolic disease. System-level tools applied type 2 diabetes and related conditions have revealed new pathways that are potentially modified by diet and thus offer additional opportunities for nutritional investigations. Moving forward, harnessing the resources of existing large prospective studies within which biological samples have been archived and diet and lifestyle have been measured repeatedly within individual will enable systems-level data to be integrated, the outcome of which will be improved personalized optimal nutrition for prevention and treatment of disease.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|