1
|
Davidović P, Blagojević D, Nedeljković SF, Tanurdžić M, Bekvalac K, Matić I, Đan M, Andrić N, Simeunović J. Effects of cyanobacterium Phormidium nigroviride K3 on zebrafish embryos and genomic insights into its toxic potential. HARMFUL ALGAE 2025; 145:102861. [PMID: 40324862 DOI: 10.1016/j.hal.2025.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
Cyanobacterial blooms in freshwater systems pose significant environmental and public health risks, largely due to their production of toxic secondary metabolites. This study investigated the effects of Phormidium nigroviride K3 extracts on early zebrafish development, focusing on organismal toxicity and gene expression changes. Acute toxicity was assessed by monitoring developmental deformities and evaluating relative changes in the expression of six genes associated with xenobiotic metabolism, apoptosis, endoplasmic reticulum stress, and endocrine processes. Whole-genome sequencing, in silico genome annotation and mining were conducted to identify biosynthetic gene clusters involved in toxin production. Zebrafish embryos exposed to P. nigroviride K3 extracts developed spinal deformities, pericardial edema, yolk sac edema and reduced eye size, with spinal deformities being the most prevalent malformation (EC50 of 215.6 µg d.w. mL⁻¹). Significant alterations in the expression of genes involved in xenobiotic metabolism were detected, including a dose-dependent 4.6-fold induction of cyp1a1 and a 4.47-fold increase in abcb4 expression at the highest extract concentration. Genome analysis of P. nigroviride K3 revealed 15 biosynthetic gene clusters for secondary metabolites, including a match with the Cylindrospermopsis raciborskii AWT205 cluster, responsible for the cyanotoxin cylindrospermopsin biosynthesis. The LC-MS/MS analysis confirmed the production of cylindrospermopsin in P. nigroviride K3, providing new insights into cyanotoxin biosynthesis in Phormidium species, a genus that has been underexplored in the context of toxin production. These findings expand cyanobacterial genomic databases, enhancing our understanding of cyanobacterial toxic potential. Such knowledge is crucial for predicting and mitigating the risks associated with cyanotoxins in aquatic ecosystems.
Collapse
Affiliation(s)
- Petar Davidović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Dajana Blagojević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Svetlana Fa Nedeljković
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Kristina Bekvalac
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Ivana Matić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Mihajla Đan
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Nebojša Andrić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Jelica Simeunović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia.
| |
Collapse
|
2
|
Xia F, Santacruz A, Wu D, Bertho S, Fritz E, Morales-Sosa P, McKinney S, Nowotarski SH, Rohner N. Reproductive adaptation of Astyanax mexicanus under nutrient limitation. Dev Biol 2025; 523:82-98. [PMID: 40222642 DOI: 10.1016/j.ydbio.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Reproduction is a fundamental biological process for the survival and continuity of species. Examining changes in reproductive strategies offers valuable insights into how animals have adapted their life histories to different environments. Since reproduction is one of the most energy-intensive processes in female animals, nutrient scarcity is expected to interfere with the ability to invest in gametes. Lately, a new model to study adaptation to nutrient limitation has emerged; the Mexican tetra Astyanax mexicanus. This fish species exists as two different morphs, a surface river morph and a cave-dwelling morph. The cave-dwelling morph has adapted to the dark, lower biodiversity, and nutrient-limited cave environment and consequently evolved an impressive starvation resistance. However, how reproductive strategies have adapted to nutrient limitations in this species remains poorly understood. Here, we compared breeding activities and maternal contributions between laboratory-raised surface fish and cavefish. We found that cavefish produce different clutch sizes of eggs with larger yolk compared to surface fish, indicating a greater maternal nutrient deposition in cavefish embryos. To systematically characterize yolk compositions, we used untargeted proteomics and lipidomics approaches to analyze protein and lipid profiles in 2-cell stage embryos and found an increased proportion of sphingolipids in cavefish compared to surface fish. Additionally, we generated transcriptomic profiles of surface fish and cavefish ovaries using a combination of single cell and bulk RNA sequencing to examine differences in maternal contribution. We found that genes essential for hormone regulation were upregulated in cavefish follicular somatic cells compared to surface fish. To evaluate whether these differences contribute to their reproductive abilities under natural-occurring stress, we induced breeding in starved female fish. Remarkably, cavefish maintained their ability to breed under starvation, whereas surface fish largely lost this ability. We identified insulin-like growth factor 1a receptor (igf1ra) as a potential candidate gene mediating the downregulation of ovarian development genes, potentially contributing to the starvation-resistant fertility of cavefish. Taken together, we investigated the female reproductive strategies in Astyanax mexicanus, which will provide fundamental insights into the adaptations of animals to environments with extreme nutrient deficit.
Collapse
Affiliation(s)
- Fanning Xia
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ana Santacruz
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Di Wu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sylvain Bertho
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Elizabeth Fritz
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| |
Collapse
|
3
|
Xia F, Santacruz A, Wu D, Bertho S, Fritz E, Morales-Sosa P, McKinney S, Nowotarski SH, Rohner N. Reproductive Adaptation of Astyanax mexicanus Under Nutrient Limitation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638191. [PMID: 40027826 PMCID: PMC11870393 DOI: 10.1101/2025.02.13.638191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Reproduction is a fundamental biological process for the survival and continuity of species. Examining changes in reproductive strategies offers valuable insights into how animals have adapted their life histories to different environments. Since reproduction is one of the most energy-intensive processes in female animals, nutrient scarcity is expected to interfere with the ability to invest in gametes. Lately, a new model to study adaptation to nutrient limitation has emerged; the Mexican tetra Astyanax mexicanus . This fish species exists as two different morphs, a surface river morph and a cave-dwelling morph. The cave-dwelling morph has adapted to the dark, biodiversity, and nutrient-limited cave environment and consequently evolved an impressive starvation resistance. However, how reproductive strategies have adapted to nutrient limitations in this species remains poorly understood. Here, we compared breeding activities and maternal contributions between laboratory-raised surface fish and cavefish. We found that cavefish produce different clutch sizes of eggs with larger yolk compared to surface fish, indicating a greater maternal nutrient deposition in cavefish embryos. To systematically characterize yolk compositions, we used untargeted proteomics and lipidomics approaches to analyze protein and lipid profiles in 2-cell stage embryos and found an increased proportion of sphingolipids in cavefish compared to surface fish. Additionally, we generated transcriptomic profiles of surface fish and cavefish ovaries using a combination of single cell and bulk RNA sequencing to examine differences in maternal contribution. We found that genes essential for hormone regulation were upregulated in cavefish follicular somatic cells compared to surface fish. To evaluate whether these differences contribute to their reproductive abilities under natural-occurring stress, we induced breeding in starved female fish. Remarkably, cavefish maintained their ability to breed under starvation, whereas surface fish largely lost this ability. We identified insulin-like growth factor 1a receptor ( igf1ra ) as a potential candidate gene mediating the downregulation of ovarian development genes, potentially contributing to the starvation-resistant fertility of cavefish. Taken together, we investigated the female reproductive strategies in Astyanax mexicanus , which will provide fundamental insights into the adaptations of animals to environments with extreme nutrient deficit.
Collapse
|
4
|
Shi X, Wei Y, Cui J, Liu X, Zhao F, Zheng L, Wang P, Liu D. Toxic effects of chlorantraniliprole on zebrafish (Danio rerio) at different developmental stages under antibiotic pressure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125590. [PMID: 39725194 DOI: 10.1016/j.envpol.2024.125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Pesticides and antibiotics have been frequently reported in the environment, but it remains unclear whether antibiotics affect the toxicity of pesticides to aquatic organisms. In this study, the acute, developmental and reproductive toxicity effects of the pesticide chlorantraniliprole on zebrafish at different developmental stages under pressure of ciprofloxacin and erythromycin at environmental concentration were explored. Chlorantraniliprole, ciprofloxacin, and erythromycin are all low toxic to zebrafish (LC50 > 100 mg/L), and environmental concentrations of antibiotics have no effect on the acute toxicity of chlorantraniliprole to zebrafish. However, ciprofloxacin and erythromycin at environmental concentrations exacerbate the early zebrafish embryo development toxicity of chlorantraniliprole, including abnormal heart and yolk sac development and oxidative stress damage. Additionally, co-exposure of chlorantraniliprole and ciprofloxacin or erythromycin can cause reproductive toxicity in adult zebrafish, resulting in a decrease in offspring quantity and hatching rate, as well as an increase in malformation rate. Greater disruption in the levels of reproductive hormones was observed, suggesting that co-exposure may lead to reproductive risks via endocrine disruptions. Therefore, the increased risks of pesticides to aquatic ecosystems due to the co-existed compounds should be taken into accounts.
Collapse
Affiliation(s)
- Xinlei Shi
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Yimu Wei
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Jingna Cui
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Xueke Liu
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Fanrong Zhao
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Li Zheng
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Peng Wang
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Donghui Liu
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Spinsante C, Carducci F, Carotti E, Canapa A, Bizzaro D, Biscotti MA, Barucca M. A bioinformatic approach to characterize the vitellogenin receptor and the low density lipoprotein receptor superfamily in the newt Cynops orientalis. Sci Rep 2025; 15:3403. [PMID: 39870874 PMCID: PMC11772764 DOI: 10.1038/s41598-025-88011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary. In tetrapods, information concerning genes encoding these proteins is limited to a few taxa. Here, we report the characterization of VTGR in the amphibian Cynops orientalis. The secondary structure analyses and the expression profiles obtained from hepatic and gonadal tissues of C. orientalis supported the role of VTGR as vitellogenin oocyte membrane receptor in this species. Moreover, to get a holistic view of the evolutionary history of this gene superfamily, we extended our investigation to all 15 genes belonging to the LDLR superfamily analyzing through a phylogenetic analysis a total of 161 sequences belonging to 11 genera of vertebrates. The position of LRP8 in the tree and its expression findings in C. orientalis ovary allowed us to suggest that other proteins of the LDLR superfamily could act as receptors during vitellogenesis.
Collapse
Affiliation(s)
- Chiara Spinsante
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Federica Carducci
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisa Carotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Davide Bizzaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Marco Barucca
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
6
|
Wang S, Zheng N, An Q, Li X, Ji Y, Li Y, Chen C, Xiu Z. The effect of tris (1,3-dichloro-2-propyl) phosphate on the early embryonic heart development of Oryzias melastigma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177313. [PMID: 39486542 DOI: 10.1016/j.scitotenv.2024.177313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The flame retardant tri (1, 3-dichloro-2-propyl) phosphate (TDCIPP) is widely present in environmental media and organisms. People have paid much attention to the growth and developmental toxicity of TDCIPP, but there is little information about its cardiotoxicity and potential mechanisms. In this study, marine medaka (Oryzias melastigma) embryos were exposed to TDCIPP solutions (0, 0.05, 0.5, 5, and 50 μg/L) for 21 days to investigate the adverse effects of TDCIPP on cardiac development. The results showed that TDCIPP exposure altered the heart rate at different stages of embryonic development. In addition, 50 μg/L TDCIPP resulted in increased sinus venosus (SV)-bulbus arteriosus (BA) distance, pericardial cysts, and cardiac linearization in newly hatched fish. During embryonic development, the expression level of key genes regulating cardiac development is disturbed. The early stage of cardiac development is the sensitive window period for the toxic effects of TDCIPP. Oxidative stress was observed in newly hatched juveniles, but no significant lipid peroxidation damage was observed. In addition, vitellogenin (VTG) levels in juvenile fish were significantly reduced. Our results show that TDCIPP exposure induces cardiotoxicity in marine medaka embryos, which is induced in the early stages and promotes heart defects by amplifying inflammatory responses at a later stage.
Collapse
Affiliation(s)
- Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China.
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Zhifei Xiu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
7
|
Lu C, Zhang Y, Xu Y, Wei T, Chen Q. Salivary-secreted vitellogenin suppresses H 2O 2 burst of plants facilitating Recilia dorsalis leafhopper feeding. PEST MANAGEMENT SCIENCE 2024; 80:6222-6235. [PMID: 39101333 DOI: 10.1002/ps.8351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Vitellogenin (Vg), known as the yolk protein precursor for oocyte development in female insects, can be secreted to plant host from salivary glands of hemipterans, including rice leafhopper Recilia dorsalis. The aim of this study was to investigate the function of salivary-secreted Vg of R. dorsalis (RdVg) in rice host. We propose that RdVg possibly regulates the rice defense against insects, benefiting R. dorsalis feeding. RESULTS RdVg was released into rice phloem along with saliva during R. dorsalis feeding. Knocking down RdVg increased the level of H2O2 and improved H2O2 metabolism in rice plants, making it difficult for R. dorsalis to feed. The transient expression or overexpression of the lipoprotein N-terminal domain of RdVg (RdVg2) significantly reduced hydrogen peroxide (H2O2) metabolism in plants. This suggests that salivary-secreted RdVg acts as an effector suppressing the H2O2 burst in rice plants, and RdVg2 is the key domain. RdVg2 could interact with rice sulfite oxidase (OsSO), which catalyzes the oxidation of SO3 2- and produces H2O2. Exposure of rice plants to R. dorsalis, overexpression of RdVg2 or knocking out OsSO reduced OsSO accumulation and SO3 2- oxidation, benefiting R. dorsalis feeding. However overexpression of OsSO increased SO3 2- oxidation and H2O2 metabolism, inhibiting R. dorsalis feeding. CONCLUSION RdVg inhibits H2O2 generation via suppressing OsSO accumulation, ultimately benefiting R. dorsalis feeding. These findings identify RdVg as an effector that suppresses plant defense to insects, and provide insights into the function of salivary-secreted Vg in other Hemiptera insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yating Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
da Silva J, Andrade L, Rodrigues P, Cordeiro L, Lima G, Lopes J, Castillo E, Martins R, Assunção A, Vieira J, Busalaf M, Adamec J, Sartori J, Padilha P. Plasma Proteome Alterations of Laying Hens Subjected to Heat Stress and Fed a Diet Supplemented with Pequi Oil ( Caryocar brasiliense Camb.): New Insights in the Identification of Heat Stress Biomarkers. Biomolecules 2024; 14:1424. [PMID: 39595600 PMCID: PMC11591700 DOI: 10.3390/biom14111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Heat stress can disrupt the balance between the heat poultry release into the environment and the heat they generate. Pequi oil has antioxidant properties, which may mitigate the heat stress effects. This study aimed to investigate the response of laying hens to pequi oil supplementation under heat stress using a proteomic approach. A total of 96 Lohmann White laying hens with 26 weeks old were housed in a completely randomized design with a 2 × 2 factorial arrangement. They were housed in two climate chambers, thermal comfort temperature ± 24.04 °C with the relative humidity ± 66.35 and heat stress (HS) ± 31.26 °C with the relative humidity ± 60.62. They were fed two diets: a control diet (CON), basal diet (BD) without additives, and with Pequi oil (PO), BD + 0.6% PO. After 84 days, plasma samples were analyzed using Shotgun and LC-MS/MS. Proteins related to anti-inflammation, transport, and the immune system were differentially expressed in hens fed PO and CON under heat stress compared to those in thermoneutral environments. This helps protect against oxidative stress and may support the body's ability to manage heat-induced damage, stabilizing protein expression under stress conditions. The ovotransferrin proteins, fibrinogen isoforms, apolipoprotein A-I, Proteasome activator subunit 4, Transthyretin, and the enzyme serine Peptidase Inhibitor_Kazal Type 5, which presented Upregulated (Up) equal to 1, present characteristics that may be crucial for enhancing the adaptive responses of hens to thermal stress, thereby increasing their tolerance and minimizing the negative effects of heat on egg production. The data presented in this manuscript provides new insights into the plasma proteome alterations of laying hens fed a diet supplemented with pequi oil during heat stress challenges.
Collapse
Affiliation(s)
- Joyce da Silva
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Luane Andrade
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Paola Rodrigues
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Laís Cordeiro
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Gabrieli Lima
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Júlia Lopes
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Elis Castillo
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Renata Martins
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Andrey Assunção
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - José Vieira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil;
| | - Marília Busalaf
- Faculty of Dentistry of Bauru (FOB), University of São Paulo (USP), Bauru 17012-901, SP, Brazil;
| | - Jiri Adamec
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| | - José Sartori
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Pedro Padilha
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil;
| |
Collapse
|
9
|
Ferreira AM, Silva-Álvarez V, Kraev I, Uysal-Onganer P, Lange S. Extracellular vesicles and citrullination signatures are novel biomarkers in sturgeon (Acipenser gueldenstaedtii) during chronic stress due to seasonal temperature challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109974. [PMID: 39426640 DOI: 10.1016/j.fsi.2024.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Acipenser gueldenstaedtii is one of the most cultured sturgeon species worldwide and of considerable economic value for caviar production. There are though considerable challenges around chronic stress responses due to increased summer temperatures, impacting sturgeons' immune responses and their susceptibility to opportunistic infections. The identification of molecular and cellular pathways involved in stress responses may contribute to identifying novel biomarkers reflective of fish health status, crucial for successful sturgeon aquaculture. Protein citrullination is a calcium-catalysed post-translational modification caused by peptidylarginine deiminases (PADs), altering target protein function and affecting protein interactions in physiological and pathobiological processes. PADs can also modulate extracellular vesicle (EVs) profiles, which play critical roles in cellular communication, via transport of their cargoes (proteins, including post-translationally modified proteins, genetic material and micro-RNAs). This study identified differences in EV signatures, and citrullinated proteins in sera from winter and summer farmed sturegeons. EVs were significantly elevated in sera of the summer chronically stressed group. The citrullinated proteins and associated gene ontology (GO) pathways in sera and serum-EVs of chronically heat stressed A. gueldenstaedtii, showed some changes, with specific citrullinated serum protein targets including alpa-2-macroglobulin, alpha globin, calcium-dependent secretion activator, ceruloplasmin, chemokine XC receptor, complement C3 isoforms, complement C9, plectin, selenoprotein and vitellogenin. In serum-EVs, citrullinated protein cargoes identified only in the chronically stressed summer group included alpha-1-antiproteinase, apolipoprotein B-100, microtubule actin crosslinking factor and histone H3. Biological gene ontology (GO) pathways related to citrullinated serum proteins in the chronically stressed group were associated with innate and adaptive immune responses, stress responses and metabolic processes. In serum-EVs of the heat-stressed group the citrullinome associated with various metabolic GO pathways. In addition to modified citrullinated protein content, Serum-EVs from the stressed summer group showed significantly increased levels of the inflammatory associated miR-155 and the hypoxia-associated miR-210, but significantly reduced levels of the growth-associated miR-206. Our findings highlight roles for protein citrullination and EV signatures in response to chronic heat stress in A. gueldenstaedtii, indicating a trade-off in immunity versus growth and may be of value for sturgeon aquaculture.
Collapse
Affiliation(s)
- Ana María Ferreira
- Laboratorio de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, UdelaR, Uruguay; Área de Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, UdelaR, Uruguay.
| | - Valeria Silva-Álvarez
- Laboratorio de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, UdelaR, Uruguay; Área de Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, UdelaR, Uruguay.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
10
|
Qiao H, Jiang S, Fu H. Special Issue: Molecular Advance on Reproduction and Fertility of Aquatic Animals. Int J Mol Sci 2024; 25:11610. [PMID: 39519161 PMCID: PMC11546693 DOI: 10.3390/ijms252111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Many commercial aquatic animals are cultured in a variety of countries and regions [...].
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
11
|
Chapman A, McAfee A, Tarpy DR, Fine J, Rempel Z, Peters K, Currie R, Foster LJ. Common viral infections inhibit egg laying in honey bee queens and are linked to premature supersedure. Sci Rep 2024; 14:17285. [PMID: 39068210 PMCID: PMC11283550 DOI: 10.1038/s41598-024-66286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
With their long lives and extreme reproductive output, social insect queens have escaped the classic trade-off between fecundity and lifespan, but evidence for a trade-off between fecundity and immunity has been inconclusive. This is in part because pathogenic effects are seldom decoupled from effects of immune induction. We conducted parallel, blind virus infection experiments in the laboratory and in the field to interrogate the idea of a reproductive immunity trade-off in honey bee (Apis mellifera) queens and to better understand how these ubiquitous stressors affect honey bee queen health. We found that queens injected with infectious virus had smaller ovaries and were less likely to recommence egg-laying than controls, while queens injected with UV-inactivated virus displayed an intermediate phenotype. In the field, heavily infected queens had smaller ovaries and infection was a meaningful predictor of whether supersedure cells were observed in the colony. Immune responses in queens receiving live virus were similar to queens receiving inactivated virus, and several of the same immune proteins were negatively associated with ovary mass in the field. This work supports the hypothesized relationship between virus infection and symptoms associated with queen failure and suggests that a reproductive-immunity trade-off is partially, but not wholly responsible for these effects.
Collapse
Affiliation(s)
- Abigail Chapman
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Julia Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, USA
| | - Zoe Rempel
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Kira Peters
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Rob Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Míčková K, Jelínek V, Tomášek O, Stopková R, Stopka P, Albrecht T. Proteomic analysis reveals dynamic changes in cloacal fluid composition during the reproductive season in a sexually promiscuous passerine. Sci Rep 2024; 14:14259. [PMID: 38902251 PMCID: PMC11190206 DOI: 10.1038/s41598-024-62244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Cryptic female choice (CFC) is a component of postcopulatory sexual selection that allows females to influence the fertilization success of sperm from different males. While its precise mechanisms remain unclear, they may involve the influence of the protein composition of the female reproductive fluids on sperm functionality. This study maps the protein composition of the cloacal fluid across different phases of female reproductive cycle in a sexually promiscuous passerine, the barn swallow. Similar to mammals, the protein composition in the female reproductive tract differed between receptive (when females copulate) and nonreceptive phases. With the change in the protein background, the enriched gene ontology terms also shifted. Within the receptive phase, distinctions were observed between proteomes sampled just before and during egg laying. However, three proteins exhibited increased abundance during the entire receptive phase compared to nonreceptive phases. These proteins are candidates in cryptic female choice, as all of them can influence the functionality of sperm or sperm-egg interaction. Our study demonstrates dynamic changes in the cloacal environment throughout the avian breeding cycle, emphasizing the importance of considering these fluctuations in studies of cryptic female choice.
Collapse
Affiliation(s)
- Kristýna Míčková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Jelínek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
13
|
Zhao Z, Peng L, Zhao Q, Wang Z. Genome-Wide Identification, Expression and Response to Estrogen of Vitellogenin Gene Family in Sichuan Bream ( Sinibrama taeniatus). Int J Mol Sci 2024; 25:6739. [PMID: 38928442 PMCID: PMC11203743 DOI: 10.3390/ijms25126739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
To enhance our understanding of teleost reproductive physiology, we identified six Sichuan bream (Sinibrama taeniatus) vitellogenin genes (vtg1-6) and characterized their sequence structures. We categorized them into type Ⅰ (vtg1,4,5 and 6), type Ⅱ (vtg2) and type Ⅲ (vtg3) based on differences in their subdomain structure. The promoter sequence of vtgs has multiple estrogen response elements, and their abundance appears to correlate with the responsiveness of vtg gene expression to estrogen. Gene expression analyses revealed that the vitellogenesis of Sichuan bream involves both heterosynthesis and autosynthesis pathways, with the dominant pathway originating from the liver. The drug treatment experiments revealed that 17β-estradiol (E2) tightly regulated the level of vtg mRNA in the liver. Feeding fish with a diet containing 100 μg/g E2 for three weeks significantly induced vtg gene expression and ovarian development, leading to an earlier onset of vitellogenesis. Additionally, it was observed that the initiation of vtg transcription required E2 binding to its receptor, a process primarily mediated by estrogen receptor alpha in Sichuan bream. The findings of this study provide novel insights into the molecular information of the vitellogenin gene family in teleosts, thereby contributing to the regulation of gonadal development in farmed fish.
Collapse
Affiliation(s)
- Zhe Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (Z.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Peng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (Z.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qiang Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (Z.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhijian Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 401329, China; (Z.Z.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Vijay P, Panwar D, Narwal R, Sehgal N. Structural modeling and gene expression analysis of phosvitinless vitellogenin (vgc) in the Indian freshwater murrel, Channa punctatus (Bloch, 1793). Gen Comp Endocrinol 2024; 352:114491. [PMID: 38494038 DOI: 10.1016/j.ygcen.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Vitellogenin (Vg) is a female-specific egg-yolk precursor protein, synthesized in the liver of fish in response to estrogens. In the present study, complete gene of phosvitinless vitellogenin (vgc) was sequenced, its 3D structure was predicted and validated by web-based softwares. The complete nucleotide sequence of vgc was 4126 bp which encodes for 1272 amino acids and showed the presence of three conserved domains viz. LPD_N, DUF1943 and DUF1944. The retrieved amino acid sequence of VgC protein was subjected to in silico analysis for understanding the structural and functional properties of protein. mRNA levels of multiple vg genes have also been quantified during annual reproductive cycle employing qPCR. A correlation has been observed between seasonal changes in gonadosomatic index with estradiol levels and hepatic expression of three types of vg genes (vga, vgb, vgc) during ovarian cycle of murrel. During preparatory phase, when photoperiod and temperature are low; low titre of E2 in blood induces expression of vgc gene. A rapid increase in the levels of E2 favours induction of vgb and vga genes in liver of murrel during early pre-spawning phase when photoperiod is long and temperature is high in nature. These results suggest that among three vitellogenin proteins, VgC is synthesized earlier than VgA and VgB during oogenesis.
Collapse
Affiliation(s)
- Pooja Vijay
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Deepak Panwar
- Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ritu Narwal
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
15
|
Jia Y, Zhang L, Xu J, Xiang L. Recent advances in cell membrane camouflaged nanotherapeutics for the treatment of bacterial infection. Biomed Mater 2024; 19:042006. [PMID: 38697197 DOI: 10.1088/1748-605x/ad46d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Infectious diseases caused by bacterial infections are common in clinical practice. Cell membrane coating nanotechnology represents a pioneering approach for the delivery of therapeutic agents without being cleared by the immune system in the meantime. And the mechanism of infection treatment should be divided into two parts: suppression of pathogenic bacteria and suppression of excessive immune response. The membrane-coated nanoparticles exert anti-bacterial function by neutralizing exotoxins and endotoxins, and some other bacterial proteins. Inflammation, the second procedure of bacterial infection, can also be suppressed through targeting the inflamed site, neutralization of toxins, and the suppression of pro-inflammatory cytokines. And platelet membrane can affect the complement process to suppress inflammation. Membrane-coated nanoparticles treat bacterial infections through the combined action of membranes and nanoparticles, and diagnose by imaging, forming a theranostic system. Several strategies have been discovered to enhance the anti-bacterial/anti-inflammatory capability, such as synthesizing the material through electroporation, pretreating with the corresponding pathogen, membrane hybridization, or incorporating with genetic modification, lipid insertion, and click chemistry. Here we aim to provide a comprehensive overview of the current knowledge regarding the application of membrane-coated nanoparticles in preventing bacterial infections as well as addressing existing uncertainties and misconceptions.
Collapse
Affiliation(s)
- Yinan Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Zhang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
16
|
Kodzik N, Ciereszko A, Szczepkowska B, Malinowska A, Dietrich MA. Comparative proteomic analysis of the ovarian fluid and eggs of Siberian sturgeon. BMC Genomics 2024; 25:451. [PMID: 38714919 PMCID: PMC11077782 DOI: 10.1186/s12864-024-10309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Sturgeon species are living fossils that exhibit unique reproductive characteristics, and elucidation of the molecular processes governing the formation and quality of sturgeon eggs is crucial. However, comprehensive data on the protein composition of sturgeon ovarian fluid (OF) and eggs and their functional significance are lacking. To address this knowledge gap, the aim of the present study was to conduct a comprehensive comparative proteomic analysis of Siberian sturgeon OF and eggs using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS A total of 617 proteins were identified in OF, and 565 proteins were identified in eggs. A total of 772 proteins showed differential abundance. Among the differentially abundant proteins, 365 were more abundant in OFs, while 407 were more abundant in eggs. We identified 339 proteins unique to OFs and 287 proteins specific to eggs, and further investigated the top 10 most abundant proteins in each. The functional annotation of the OF proteins highlighted their predominant association with immune system processes, including the complement and coagulation cascade, neutrophil and leukocyte-mediated immunity, cholesterol metabolism, and regulation of the actin cytoskeleton. Analysis of egg proteins revealed enrichment in metabolic pathways, such as oxidative phosphorylation and fatty acid metabolism, and protein ubiquitination and translation. OF-specific proteins included extracellular matrix and secretory vesicles, and eggs were enriched in proteins localized to mitochondria and ribosome components. CONCLUSIONS This study presents the first comprehensive characterization of the protein composition of sturgeon OF and eggs and elucidates their distinct functional roles. These findings advance our understanding of sturgeon reproduction, OF-egg signaling and the origin of OF proteins. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier PXD044168 to ensure accessibility for further research.
Collapse
Affiliation(s)
- Natalia Kodzik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland
| | - Bożena Szczepkowska
- Department of Sturgeon Fish Breeding, Inland Fisheries Institute in Olsztyn, Pozezdrze, Pieczarki, 11-610, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Warszawa, 02-106, Poland
| | - Mariola Aleksandra Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland.
| |
Collapse
|
17
|
Deere JR, Jankowski MD, Primus A, Phelps NBD, Ferrey M, Borucinska J, Chenaux-Ibrahim Y, Isaac EJ, Singer RS, Travis DA, Moore S, Wolf TM. Health of wild fish exposed to contaminants of emerging concern in freshwater ecosystems utilized by a Minnesota Tribal community. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:846-863. [PMID: 37526115 DOI: 10.1002/ieam.4822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Fish serve as indicators of exposure to contaminants of emerging concern (CECs)-chemicals such as pharmaceuticals, hormones, and personal care products-which are often designed to impact vertebrates. To investigate fish health and CECs in situ, we evaluated the health of wild fish exposed to CECs in waterbodies across northeastern Minnesota with varying anthropogenic pressures and CEC exposures: waterbodies with no human development along their shorelines, those with development, and those directly receiving treated wastewater effluent. Then, we compared three approaches to evaluate the health of fish exposed to CECs in their natural environment: a refined fish health assessment index, a histopathological index, and high-throughput (ToxCast) in vitro assays. Lastly, we mapped adverse outcome pathways (AOPs) associated with identified ToxCast assays to determine potential impacts across levels of biological organization within the aquatic system. These approaches were applied to subsistence fish collected from the Grand Portage Indian Reservation and 1854 Ceded Territory in 2017 and 2019. Overall, 24 CECs were detected in fish tissues, with all but one of the sites having at least one detection. The combined implementation of these tools revealed that subsistence fish exposed to CECs had histological and macroscopic tissue and organ abnormalities, although a direct causal link could not be established. The health of fish in undeveloped sites was as poor, or sometimes poorer, than fish in developed and wastewater effluent-impacted sites based on gross and histologic tissue lesions. Adverse outcome pathways revealed potential hazardous pathways of individual CECs to fish. A better understanding of how the health of wild fish harvested for consumption is affected by CECs may help prioritize risk management research efforts and can ultimately be used to guide fishery management and public health decisions. Integr Environ Assess Manag 2024;20:846-863. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Jessica R Deere
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Mark D Jankowski
- United States Environmental Protection Agency, Seattle, Washington, USA
| | | | - Nicholas B D Phelps
- Department of Fisheries, Wildlife and Conservation Biology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Mark Ferrey
- Minnesota Pollution Control Agency, St. Paul, Minnesota, USA
| | - Joanna Borucinska
- Department of Biology, University of Hartford, West Hartford, Connecticut, USA
| | - Yvette Chenaux-Ibrahim
- Grand Portage Band of Lake Superior Chippewa, Biology and Environment, Grand Portage, Minnesota, USA
| | - Edmund J Isaac
- Grand Portage Band of Lake Superior Chippewa, Biology and Environment, Grand Portage, Minnesota, USA
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Seth Moore
- Grand Portage Band of Lake Superior Chippewa, Biology and Environment, Grand Portage, Minnesota, USA
| | - Tiffany M Wolf
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
18
|
Wang J, Tang S, Ge Q, Wang Q, He Y, Ren X, Li J, Li J. Genome-Wide Identification of Vitellogenin Gene Family and Comparative Analysis of Their Involvement in Ovarian Maturation in Exopalaemon carinicauda. Int J Mol Sci 2024; 25:1089. [PMID: 38256163 PMCID: PMC10815947 DOI: 10.3390/ijms25021089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Vitellogenin (Vtg) is a precursor of yolk proteins in egg-laying vertebrates and invertebrates and plays an important role in vitellogenesis and embryonic development. However, the Vtg family remains poorly characterized in Exopalaemon carinicauda, a major commercial mariculture species found along the coasts of the Yellow and Bohai Seas. In this study, 10 Vtg genes from the genomes of E. carinicauda were identified and characterized. Phylogenetic analyses showed that the Vtg genes in crustaceans could be classified into four groups: Astacidea, Brachyra, Penaeidae, and Palaemonidae. EcVtg genes were unevenly distributed on the chromosomes of E. carinicauda, and a molecular evolutionary analysis showed that the EcVtg genes were primarily constrained by purifying selection during evolution. All putative EcVtg proteins were characterized by the presence of three conserved functional domains: a lipoprotein N-terminal domain (LPD_N), a domain of unknown function (DUF1943), and a von Willebrand factor type D domain (vWD). All EcVtg genes exhibited higher expression in the female hepatopancreas than in other tissues, and EcVtg gene expression during ovarian development suggested that the hepatopancreas is the main synthesis site in E. carinicauda. EcVtg1a, EcVtg2, and EcVtg3 play major roles in exogenous vitellogenesis, and EcVtg3 also plays a major role in endogenous vitellogenesis. Bilateral ablation of the eyestalk significantly upregulates EcVtg mRNA expression in the female hepatopancreas, indicating that the X-organ/sinus gland complex plays an important role in ovarian development, mostly by inducing Vtg synthesis. These results could improve our understanding of the function of multiple Vtg genes in crustaceans and aid future studies on the function of EcVtg genes during ovarian development in E. carinicauda.
Collapse
Affiliation(s)
- Jiajia Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Shuai Tang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
| | - Qianqian Ge
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Qiong Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Yuying He
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Jitao Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| |
Collapse
|
19
|
Basak C, Chakraborty R. Gut-immunity modulation in Lepidocephalichthys guntea during Aeromonas hydrophila-infection and recovery assessed with transcriptome data. Heliyon 2023; 9:e22936. [PMID: 38130423 PMCID: PMC10735050 DOI: 10.1016/j.heliyon.2023.e22936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The fish immune system, which consists of innate and adaptive immunologic processes, defends against viruses, bacteria, fungi, and parasites. The gut immunity is an integral part of the host immune system that controls immunological homeostasis, hosts' interactions with their microbiomes, and provides defence against a number of intestinal infections. Lepidocephalichthys guntea, a facultative air-breathing fish, was experimentally infected with Aeromonas hydrophila using intraperitoneal injection followed by bath challenge, and transcriptome data were used to examine the gut immune responses during disease progression and recovery from the diseased state without the use of medication. For the control or uninfected fish (FGC) and the infected fish that were kept for seven days (FGE1) and fifteen days (FGE2), separate water tanks were set up. Coding DNA sequences (CDS) for FGC and FGE1, FGC and FGE2, and FGE1 and FGE2 were analyzed for differential gene expression (DGE). The presence and expression of genes involved in the T cell receptor (TCR) signalling pathway, natural killer (NK) cell-mediated cytotoxicity pathway, and complement-mediated pathway, along with a large number of other immune-related proteins, and heat shock protein (HSPs) under various experimental conditions and its relationship to immune modulation of the fish gut was the primary focus of this study. Significant up-and-down regulation of these pathways shows that, in FGE1, the fish's innate immune system was engaged, whereas in FGE2, the majority of innate immune mechanisms were repressed, and adaptive immunity was activated. Expression of genes related to the immune system and heat-shock proteins was induced during this host's immunological response, and this information was then used to build a thorough network relating to immunity and the heat-shock response. This is the first study to examine the relationship between pathogenic bacterial infection, disease reversal, and modification of innate and adaptive immunity as well as heat shock response.
Collapse
Affiliation(s)
- Chandana Basak
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri-734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri-734013, West Bengal, India
| |
Collapse
|
20
|
Gupta P, Mahapatra A, Suman A, Ray SS, Malafaia G, Singh RK. Polystyrene microplastics disrupt female reproductive health and fertility via sirt1 modulation in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132359. [PMID: 37639793 DOI: 10.1016/j.jhazmat.2023.132359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) pollution poses an emerging threat to aquatic biota, which could hinder their physiological processes. Recently various evidence has demonstrated the toxic impacts of MPs on cellular and organismal levels, but still, the underlying molecular mechanism behind their toxicity remains ambiguous. The hypothalamic-pituitary-gonadal (HPG) axis regulates the synthesis and release of sex steroid hormones, and SIRT1 plays a vital role in this process. The current study aimed to elucidate the harmful effects of MPs on female reproduction via SIRT1 modulation. Healthy female zebrafish were exposed to different concentrations (50 and 500 µg/L) of polystyrene microplastics (PS-MPs). The results revealed a significant change in the gonadosomatic index (GSI) after exposure to PS-MPs. In addition, the decreased fecundity rate displayed an evident dosage effect, indicating that exposure to PS-MPs causes deleterious effects on fertilization. Furthermore, significantly enhanced levels of reactive oxygen species (ROS) and apoptotic signals through the TUNEL assay were evaluated in different treated groups. Moreover, morphological alterations in the gonads of zebrafish exposed to MPs were also observed through H&E staining. The subsequent change in plasma steroid hormone levels (E2/T ratio) showed an imbalance in hormonal homeostasis. Meanwhile, to follow PS-MPs' effects on the HPG axis via SIRT1 modulation and gene expression related to steroidogenesis, SIRT1/p53 pathway was evaluated through qPCR. The altered transcription levels of genes indicated the plausible interference of PS-MPs on the HPG axis function. Our in-silico molecular docking study proves that PS-MPs efficiently bind and inhibit endocrine receptors and SIRT1. Thus, these findings add to our understanding of the probable molecular mechanisms of reproductive impairment caused by PS-MPs in zebrafish.
Collapse
Affiliation(s)
- Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Shubhendu Shekhar Ray
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO 75790-000, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil; Post-Graduation Programa in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO 74605-050, Brazil.
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
21
|
Gilljam KM, Stenlund P, Standoft S, Andersen SB, Kaaber K, Lund H, Bryn KRK. Alginate and Nanocellulose Dressings With Extract From Salmon Roe Reduce Inflammation and Accelerate Healing of Porcine Burn Wounds. J Burn Care Res 2023; 44:1140-1149. [PMID: 36639942 PMCID: PMC10483457 DOI: 10.1093/jbcr/irad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 01/15/2023]
Abstract
Partial-thickness thermal burn wounds are characterized by a prolonged inflammatory response, oxidative stress, tissue damage, and secondary necrosis. An optimal dressing for burn wounds would reduce inflammation and oxidative stress while providing a moist, absorbent, and protective cover. We have developed an extract from unfertilized salmon roe containing components with potential anti-inflammatory and antioxidative properties, called HTX. HTX has been combined with alginate from brown algae and nanocellulose from tunicates, and 3D printed into a solid hydrogel wound dressing called Collex. Here, Collex was tested on partial thickness burn wounds in Göttingen minipigs compared to Jelonet, and a variant of Collex without HTX. We found that dermal treatment of burn wounds with Collex resulted in accelerated healing at a majority of measured points over 23 days, compared to treatment with Jelonet. In comparison to Collex without HTX, Collex enhanced healing in the first week after trauma where wound progression was pronounced. Notably, Collex reduced the inflammatory response in the early post-injury phase. The anti-inflammatory response of Collex was investigated in more detail on activated M1 macrophages. We found that Collex, as well as HTX alone, significantly reduced the secretion of pro-inflammatory interleukin-1β as well as intracellular levels of oxidative stress. The results from this study indicate that Collex is a potent dressing for the treatment of burn wounds, with the anti-inflammatory effect of HTX beneficial in the initial phase, and the moist qualities of the hydrogel favorable both in the initial and the proceeding proliferative phase of wound healing.
Collapse
Affiliation(s)
| | - Patrik Stenlund
- RISE Research Institutes of Sweden AB, Department of Methodology, Textile and Medical Technology, Arvid Wallgrens backe 20, SE-413 46 Göteborg, Sweden
| | - Simon Standoft
- RISE Research Institutes of Sweden AB, Department of Methodology, Textile and Medical Technology, Arvid Wallgrens backe 20, SE-413 46 Göteborg, Sweden
| | - Sisse Bindslev Andersen
- Scantox A/S, Department of Toxicology Science, Hestehavevej, 36A, 4623, Lille Skensved, Denmark
| | - Kari Kaaber
- Scantox A/S, Department of Toxicology Science, Hestehavevej, 36A, 4623, Lille Skensved, Denmark
| | - Henrik Lund
- Regenics AS, Gaustadalléen 21, N-0349 Oslo, Norway
| | | |
Collapse
|
22
|
Hillberg AK, Smith MK, Lausen BS, Suwansa-ard S, Johnston R, Mitu SA, MacDonald LE, Zhao M, Motti CA, Wang T, Elizur A, Nakashima K, Satoh N, Cummins SF. Crown-of-thorns starfish spines secrete defence proteins. PeerJ 2023; 11:e15689. [PMID: 37637177 PMCID: PMC10448888 DOI: 10.7717/peerj.15689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/14/2023] [Indexed: 08/29/2023] Open
Abstract
Background The crown-of-thorns starfish (COTS; Acanthaster species) is a slow-moving corallivore protected by an extensive array of long, sharp toxic spines. Envenomation can result in nausea, numbness, vomiting, joint aches and sometimes paralysis. Small molecule saponins and the plancitoxin proteins have been implicated in COTS toxicity. Methods Brine shrimp lethality assays were used to confirm the secretion of spine toxin biomolecules. Histological analysis, followed by spine-derived proteomics helped to explain the source and identity of proteins, while quantitative RNA-sequencing and phylogeny confirmed target gene expression and relative conservation, respectively. Results We demonstrate the lethality of COTS spine secreted biomolecules on brine shrimp, including significant toxicity using aboral spine semi-purifications of >10 kDa (p > 0.05, 9.82 µg/ml), supporting the presence of secreted proteins as toxins. Ultrastructure observations of the COTS aboral spine showed the presence of pores that could facilitate the distribution of secreted proteins. Subsequent purification and mass spectrometry analysis of spine-derived proteins identified numerous secretory proteins, including plancitoxins, as well as those with relatively high gene expression in spines, including phospholipase A2, protease inhibitor 16-like protein, ependymin-related proteins and those uncharacterized. Some secretory proteins (e.g., vitellogenin and deleted in malignant brain tumor protein 1) were not highly expressed in spine tissue, yet the spine may serve as a storage or release site. This study contributes to our understanding of the COTS through functional, ultrastructural and proteomic analysis of aboral spines.
Collapse
Affiliation(s)
- Adam K. Hillberg
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Meaghan K. Smith
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Blake S. Lausen
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Saowaros Suwansa-ard
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Ryan Johnston
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Shahida A. Mitu
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Leah E. MacDonald
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Min Zhao
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Cherie A. Motti
- Australian Institute of Marine Science, Townsville, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
23
|
Rowlands E, Galloway T, Cole M, Lewis C, Hacker C, Peck VL, Thorpe S, Blackbird S, Wolff GA, Manno C. Scoping intergenerational effects of nanoplastic on the lipid reserves of Antarctic krill embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106591. [PMID: 37329636 DOI: 10.1016/j.aquatox.2023.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Antarctic krill (Euphausia superba) plays a central role in the Antarctic marine food web and biogeochemical cycles and has been identified as a species that is potentially vulnerable to plastic pollution. While plastic pollution has been acknowledged as a potential threat to Southern Ocean marine ecosystems, the effect of nanoplastics (<1000 nm) is poorly understood. Deleterious impacts of nanoplastic are predicted to be higher than that of larger plastics, due to their small size which enables their permeation of cell membranes and potentially provokes toxicity. Here, we investigated the intergenerational impact of exposing Antarctic krill to nanoplastics. We focused on whether embryonic energy resources were affected when gravid female krill were exposed to nanoplastic by determining lipid and fatty acid compositions of embryos produced in incubation. Embryos were collected from females who had spawned under three different exposure treatments (control, nanoplastic, nanoplastic + algae). Embryos collected from each maternal treatment were incubated for a further 6 days under three nanoplastic exposure treatments (control, low concentration nanoplastic, and high concentration nanoplastic). Nanoplastic additions to seawater did not impact lipid metabolism (total lipid or fatty acid composition) across the maternal or direct embryo treatments, and no interactive effects were observed. The provision of a food source during maternal exposure to nanoplastic had a positive effect on key fatty acids identified as important during embryogenesis, including higher total polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) when compared to the control and nanoplastic treatments. Whilst the short exposure time was ample for lipids from maternally digested algae to be incorporated into embryos, we discuss why the nanoplastic-fatty acid relationship may be more complex. Our study is the first to scope intergeneration effects of nanoplastic on Antarctic krill lipid and fatty acid reserves. From this, we suggest directions for future research including long term exposures, multi-stressor scenarios and exploring other critical energy reserves such as proteins.
Collapse
Affiliation(s)
- Emily Rowlands
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom.
| | - Tamara Galloway
- Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Matthew Cole
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Ceri Lewis
- Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Christian Hacker
- Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Victoria L Peck
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
| | - Sally Thorpe
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
| | - Sabena Blackbird
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Jane Herdman Building, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom
| | - George A Wolff
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Jane Herdman Building, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom
| | - Clara Manno
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom.
| |
Collapse
|
24
|
Stenlund P, Enstedt L, Gilljam KM, Standoft S, Ahlinder A, Lundin Johnson M, Lund H, Millqvist Fureby A, Berglin M. Development of an All-Marine 3D Printed Bioactive Hydrogel Dressing for Treatment of Hard-to-Heal Wounds. Polymers (Basel) 2023; 15:2627. [PMID: 37376274 DOI: 10.3390/polym15122627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Current standard wound care involves dressings that provide moisture and protection; however, dressings providing active healing are still scarce and expensive. We aimed to develop an ecologically sustainable 3D printed bioactive hydrogel-based topical wound dressing targeting healing of hard-to-heal wounds, such as chronic or burn wounds, which are low on exudate. To this end, we developed a formulation composed of renewable marine components; purified extract from unfertilized salmon roe (heat-treated X, HTX), alginate from brown seaweed, and nanocellulose from tunicates. HTX is believed to facilitate the wound healing process. The components were successfully formulated into a 3D printable ink that was used to create a hydrogel lattice structure. The 3D printed hydrogel showed a HTX release profile enhancing pro-collagen I alpha 1 production in cell culture with potential of promoting wound closure rates. The dressing has recently been tested on burn wounds in Göttingen minipigs and shows accelerated wound closure and reduced inflammation. This paper describes the dressings development, mechanical properties, bioactivity, and safety.
Collapse
Affiliation(s)
- Patrik Stenlund
- Department of Methodology, Textile and Medical Technology, RISE Research Institutes of Sweden AB, Arvid Wallgrens backe 20, SE-413 46 Gothenburg, Sweden
| | - Linnea Enstedt
- Department of Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden AB, Drottning Kristinas väg 61B, SE-114 28 Stockholm, Sweden
| | | | - Simon Standoft
- Department of Methodology, Textile and Medical Technology, RISE Research Institutes of Sweden AB, Arvid Wallgrens backe 20, SE-413 46 Gothenburg, Sweden
| | - Astrid Ahlinder
- Department of Agriculture and Food, RISE Research Institutes of Sweden AB, Frans Perssons väg 6, SE-412 76 Gothenburg, Sweden
| | - Maria Lundin Johnson
- Department of Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden AB, Drottning Kristinas väg 61B, SE-114 28 Stockholm, Sweden
| | - Henrik Lund
- Regenics AS, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Anna Millqvist Fureby
- Department of Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden AB, Drottning Kristinas väg 61B, SE-114 28 Stockholm, Sweden
| | - Mattias Berglin
- Department of Methodology, Textile and Medical Technology, RISE Research Institutes of Sweden AB, Arvid Wallgrens backe 20, SE-413 46 Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
25
|
Davidović P, Blagojević D, Meriluoto J, Simeunović J, Svirčev Z. Biotests in Cyanobacterial Toxicity Assessment-Efficient Enough or Not? BIOLOGY 2023; 12:biology12050711. [PMID: 37237524 DOI: 10.3390/biology12050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Cyanobacteria are a diverse group of organisms known for producing highly potent cyanotoxins that pose a threat to human, animal, and environmental health. These toxins have varying chemical structures and toxicity mechanisms and several toxin classes can be present simultaneously, making it difficult to assess their toxic effects using physico-chemical methods, even when the producing organism and its abundance are identified. To address these challenges, alternative organisms among aquatic vertebrates and invertebrates are being explored as more assays evolve and diverge from the initially established and routinely used mouse bioassay. However, detecting cyanotoxins in complex environmental samples and characterizing their toxic modes of action remain major challenges. This review provides a systematic overview of the use of some of these alternative models and their responses to harmful cyanobacterial metabolites. It also assesses the general usefulness, sensitivity, and efficiency of these models in investigating the mechanisms of cyanotoxicity expressed at different levels of biological organization. From the reported findings, it is clear that cyanotoxin testing requires a multi-level approach. While studying changes at the whole-organism level is essential, as the complexities of whole organisms are still beyond the reach of in vitro methodologies, understanding cyanotoxicity at the molecular and biochemical levels is necessary for meaningful toxicity evaluations. Further research is needed to refine and optimize bioassays for cyanotoxicity testing, which includes developing standardized protocols and identifying novel model organisms for improved understanding of the mechanisms with fewer ethical concerns. In vitro models and computational modeling can complement vertebrate bioassays and reduce animal use, leading to better risk assessment and characterization of cyanotoxins.
Collapse
Affiliation(s)
- Petar Davidović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dajana Blagojević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Jussi Meriluoto
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| |
Collapse
|
26
|
Sun SX, Liu YC, Limbu SM, Li DL, Chen LQ, Zhang ML, Yin Z, Du ZY. Vitellogenin 1 is essential for fish reproduction by transporting DHA-containing phosphatidylcholine from liver to ovary. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159289. [PMID: 36708962 DOI: 10.1016/j.bbalip.2023.159289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
Vitellogenins (Vtgs) are essential for female reproduction in oviparous animals, yet the exact roles and mechanisms remain unknown. In the present study, we knocked out vtg1, which is the most abundant Vtg in zebrafish, Danio rerio via the CRISPR/Cas 9 technology. We aimed to identify the roles of Vtg1 and related mechanisms in reproduction and development. We found that, the Vtg1-deficient female zebrafish reduced gonadosomatic index, egg production, yolk granules and mature follicles in ovary compared to the wide type (WT). Moreover, the Vtg1-deficient zebrafish diminished hatching rates, cumulative survival rate, swimming capacity and food intake, but increased malformation rate, and delayed swim bladder development during embryo and early-larval phases. The Vtg1-deficiency in female broodstock inhibited docosahexaenoic acid-enriched phosphatidylcholine (DHA-PC) transportation from liver to ovary, which lowered DHA-PC content in ovary and offspring during larval stage. However, the Vtg1-deficient zebrafish increased gradually the total DHA-PC content via exogeneous food intake, and the differences in swimming capacity and food intake returned to normal as they matured. Furthermore, supplementing Vtg1-deficient zebrafish with dietary PC and DHA partly ameliorated the impaired female reproductive capacity and larval development during early phases. This study indicates that, DHA and PC carried by Vtg1 are crucial for female fecundity, and affect embryo and larval development through maternal-nutrition effects. This is the first study elucidating the nutrient and physiological functions of Vtg1 and the underlying biochemical mechanisms in fish reproduction and development.
Collapse
Affiliation(s)
- Sheng-Xiang Sun
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi-Chan Liu
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Samwel M Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology University of Dar as Salaam, Dar es Salaam, Tanzania
| | - Dong-Liang Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
27
|
Roosta Z, Falahatkar B, Sajjadi M, Paknejad H, Akbarzadeh A, Kestemont P. Sex and reproductive development impact skin mucosal epithelium immunity, antimicrobial capacity, and up-regulation of immune-related gene of goldfish (Carassius auratus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104494. [PMID: 35940383 DOI: 10.1016/j.dci.2022.104494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the epidermis mucosal capacity of goldfish (Carassius auratus) during different stages of reproductive development in both females and males. In this regard, the activity of mucolytic immune enzymes, i.e., lysozyme, complement and peroxidase, as well as the activity of alkaline phosphatase (ALP) were evaluated. There were five stages for females i.e., immature (f1), cortical alveoli (f2), early and late-vitellogenesis (vtg) (f3 and f4) and ripe (f5); as well as two stages for males spermatogenesis (m1) and spermiation (m2). Some stages were also examined for the mucosal antimicrobial activity against specific pathogens. The results showed that the mucosal lysozyme activity increased significantly during vitellogenesis (P < 0.05), but no lysozyme activity was detected in plasma. On the contrary, the complement activity was only observed in female plasma, and it was significantly higher at f3 compared to the other developmental stages. Both the plasma and mucosal ALP and peroxidase activities showed a significant increase by female reproductive development with the highest amounts at f4. Contrary to the female, no significant changes were observed in plasma and mucosal immune agents and biochemistry of the male. The f5-staged goldfish showed the highest antimicrobial activities against Gram-positive bacteria, i.e., Streptococcus faecium, Staphylococcus aureus and Micrococcus luteus (P < 0.05). Our results also represented the up-regulation of lysozyme (c-lys) gene expression by effects of female maturational development in ovary, liver and skin, while male goldfish showed no significant changes in c-lys expression. Moreover, there were positive correlations between c-lys expression, mucosal lysozyme activity and calcium levels in females (P < 0.01). Overall, our findings revealed that vtg process improves mucosal innate immunity that leads to activate antimicrobial components at spawning season.
Collapse
Affiliation(s)
- Zahra Roosta
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Guilan, Iran.
| | - Mirmasoud Sajjadi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Hamed Paknejad
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran; Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
| | - Patrick Kestemont
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| |
Collapse
|
28
|
Spadaccini R. Editorial: In celebration of women in science: Structural biology. Front Mol Biosci 2023; 10:1174561. [PMID: 37143825 PMCID: PMC10151783 DOI: 10.3389/fmolb.2023.1174561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
|
29
|
Petrzilek J, Pasulka J, Malik R, Horvat F, Kataruka S, Fulka H, Svoboda P. De novo emergence, existence, and demise of a protein-coding gene in murids. BMC Biol 2022; 20:272. [PMID: 36482406 PMCID: PMC9733328 DOI: 10.1186/s12915-022-01470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genes, principal units of genetic information, vary in complexity and evolutionary history. Less-complex genes (e.g., long non-coding RNA (lncRNA) expressing genes) readily emerge de novo from non-genic sequences and have high evolutionary turnover. Genesis of a gene may be facilitated by adoption of functional genic sequences from retrotransposon insertions. However, protein-coding sequences in extant genomes rarely lack any connection to an ancestral protein-coding sequence. RESULTS We describe remarkable evolution of the murine gene D6Ertd527e and its orthologs in the rodent Muroidea superfamily. The D6Ertd527e emerged in a common ancestor of mice and hamsters most likely as a lncRNA-expressing gene. A major contributing factor was a long terminal repeat (LTR) retrotransposon insertion carrying an oocyte-specific promoter and a 5' terminal exon of the gene. The gene survived as an oocyte-specific lncRNA in several extant rodents while in some others the gene or its expression were lost. In the ancestral lineage of Mus musculus, the gene acquired protein-coding capacity where the bulk of the coding sequence formed through CAG (AGC) trinucleotide repeat expansion and duplications. These events generated a cytoplasmic serine-rich maternal protein. Knock-out of D6Ertd527e in mice has a small but detectable effect on fertility and the maternal transcriptome. CONCLUSIONS While this evolving gene is not showing a clear function in laboratory mice, its documented evolutionary history in Muroidea during the last ~ 40 million years provides a textbook example of how a several common mutation events can support de novo gene formation, evolution of protein-coding capacity, as well as gene's demise.
Collapse
Affiliation(s)
- Jan Petrzilek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Present address: Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Josef Pasulka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Bioinformatics Group, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Shubhangini Kataruka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Present address: Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Helena Fulka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Current address: Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
30
|
Zhai C, Zhang N, Li X, Chen X, Sun F, Dong M. Fusion and expansion of vitellogenin vesicles during Caenorhabditis elegans intestinal senescence. Aging Cell 2022; 21:e13719. [PMID: 36199214 PMCID: PMC9649609 DOI: 10.1111/acel.13719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023] Open
Abstract
Some of the most conspicuous aging phenotypes of C. elegans are related to post-reproductive production of vitellogenins (Vtg), which form yolk protein (YP) complexes after processing and lipid loading. Vtg/YP levels show huge increases with age, and inhibition of this extends lifespan, but how subcellular and organism-wide distribution of these proteins changes with age has not been systematically explored. Here, this has been done to understand how vitellogenesis promotes aging. The age-associated changes of intestinal vitellogenin vesicles (VVs), pseudocoelomic yolk patches (PYPs), and gonadal yolk organelles (YOs) have been characterized by immuno-electron microscopy. We find that from reproductive adult day 2 (AD 2) to post-reproductive AD 6 and AD 9, intestinal VVs expand from 0.2 to 3-4 μm in diameter or by >3000 times in volume, PYPs increase by >3 times in YP concentration and volume, while YOs in oocytes shrink slightly from 0.5 to 0.4 μm in diameter or by 49% in volume. In AD 6 and AD 9 worms, mislocalized YOs found in the hypodermis, uterine cells, and the somatic gonadal sheath can reach a size of 10 μm across in the former two tissues. This remarkable size increase of VVs and that of mislocalized YOs in post-reproductive worms are accompanied by extensive fusion between these Vtg/YP-containing vesicular structures in somatic cells. In contrast, no fusion is seen between YOs in oocytes. We propose that in addition to the continued production of Vtg, excessive fusion between VVs and mislocalized YOs in the soma worsen the aging pathologies seen in C. elegans.
Collapse
Affiliation(s)
- Chao Zhai
- School of Life SciencesPeking UniversityBeijingChina,National Institute of Biological SciencesBeijingChina
| | - Nan Zhang
- National Institute of Biological SciencesBeijingChina
| | - Xi‐Xia Li
- Center for Biological Imaging, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Xi Chen
- Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Fei Sun
- Center for Biological Imaging, Institute of BiophysicsChinese Academy of SciencesBeijingChina,National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina,University of the Chinese Academy of SciencesBeijingChina
| | - Meng‐Qiu Dong
- National Institute of Biological SciencesBeijingChina
| |
Collapse
|
31
|
Salabi F, Jafari H. Differential venom gland gene expression analysis of juvenile and adult scorpions Androctonus crassicauda. BMC Genomics 2022; 23:636. [PMID: 36076177 PMCID: PMC9454214 DOI: 10.1186/s12864-022-08866-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Androctonus crassicauda, belonging to the genus Androctonus of the family Buthidae, is the most venomous scorpion in Middle East countries. However, the venom gland transcriptome profile of A. crassicauda scorpion has not yet been studied. In this study, we elucidated and compared the venom gland gene expression profiles of adult and juvenile male scorpion A. crassicauda using high-throughput transcriptome sequencing. This is the first report of transcriptional analysis of the venom glands of scorpions in different growth stages, with insights into the identification of the key genes during venom gland development. RESULTS A total of 209,951 mRNA transcripts were identified from total RNA-seq data, of which 963 transcripts were differentially expressed (DE) in adult and juvenile scorpions (p < 0.01). Overall, we identified 558 up-regulated and 405 down-regulated transcripts in the adult compared to the juvenile scorpions, of which 397 and 269 unique unigenes were annotated, respectively. GO and KEGG enrichment analyses indicated that the metabolic, thermogenesis, cytoskeleton, estrogen signaling, GnRH signaling, growth hormone signaling, and melanogenesis pathways were affected by two different growth conditions and the results suggested that the DE genes related to those pathways are important genes associated with scorpion venom gland development, in which they may be important in future studies, including Chs, Elovl, MYH, RDX, ACTN, VCL, PIP5K, PP1C, FGFR, GNAS, EGFR, CREB, CoA, PLCB, CALM, CACNA, PKA and CAMK genes. CONCLUSIONS These findings broadened our knowledge of the differences between adult and juvenile scorpion venom and opened new perspectives on the application of comparative transcriptome analysis to identify the special key genes.
Collapse
Affiliation(s)
- Fatemeh Salabi
- Department of Venomous Animals and Anti-Venom Production, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Ahvaz, Iran.
| | - Hedieh Jafari
- Department of Venomous Animals and Anti-Venom Production, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Ahvaz, Iran
| |
Collapse
|
32
|
Leipart V, Ludvigsen J, Kent M, Sandve S, To T, Árnyasi M, Kreibich CD, Dahle B, Amdam GV. Identification of 121 variants of honey bee Vitellogenin protein sequences with structural differences at functional sites. Protein Sci 2022; 31:e4369. [PMID: 35762708 PMCID: PMC9207902 DOI: 10.1002/pro.4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/21/2022] [Indexed: 12/04/2022]
Abstract
Proteins are under selection to maintain central functions and to accommodate needs that arise in ever-changing environments. The positive selection and neutral drift that preserve functions result in a diversity of protein variants. The amount of diversity differs between proteins: multifunctional or disease-related proteins tend to have fewer variants than proteins involved in some aspects of immunity. Our work focuses on the extensively studied protein Vitellogenin (Vg), which in honey bees (Apis mellifera) is multifunctional and highly expressed and plays roles in immunity. Yet, almost nothing is known about the natural variation in the coding sequences of this protein or how amino acid-altering variants might impact structure-function relationships. Here, we map out allelic variation in honey bee Vg using biological samples from 15 countries. The successful barcoded amplicon Nanopore sequencing of 543 bees revealed 121 protein variants, indicating a high level of diversity in Vg. We find that the distribution of non-synonymous single nucleotide polymorphisms (nsSNPs) differs between protein regions with different functions; domains involved in DNA and protein-protein interactions contain fewer nsSNPs than the protein's lipid binding cavities. We outline how the central functions of the protein can be maintained in different variants and how the variation pattern may inform about selection from pathogens and nutrition.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Jane Ludvigsen
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
- Fürst Medisinsk LaboratoriumOsloNorway
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Simen Sandve
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Thu‐Hien To
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Claus D. Kreibich
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Bjørn Dahle
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
- Norwegian Beekeepers AssociationKløftaNorway
| | - Gro V. Amdam
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| |
Collapse
|
33
|
Leipart V, Halskau Ø, Amdam GV. How Honey Bee Vitellogenin Holds Lipid Cargo: A Role for the C-Terminal. Front Mol Biosci 2022; 9:865194. [PMID: 35755821 PMCID: PMC9219001 DOI: 10.3389/fmolb.2022.865194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Vitellogenin (Vg) is a phylogenetically broad glycolipophosphoprotein. A major function of this protein is holding lipid cargo for storage and transportation. Vg has been extensively studied in honey bees (Apis mellifera) due to additional functions in social traits. Using AlphaFold and EM contour mapping, we recently described the protein structure of honey bee Vg. The full-length protein structure reveals a large hydrophobic lipid binding site and a well-defined fold at the C-terminal region. Now, we outline a shielding mechanism that allows the C-terminal region of Vg to cover a large hydrophobic area exposed in the all-atom model. We propose that this C-terminal movement influences lipid molecules' uptake, transport, and delivery. The mechanism requires elasticity in the Vg lipid core as described for homologous proteins in the large lipid transfer protein (LLTP) superfamily to which Vg belongs. Honey bee Vg has, additionally, several structural arrangements that we interpret as beneficial for the functional flexibility of the C-terminal region. The mechanism proposed here may be relevant for the Vg molecules of many species.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Gro V. Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
34
|
Davidović PG, Blagojević DJ, Lazić GG, Simeunović JB. Gene expression changes in Daphnia magna following waterborne exposure to cyanobacterial strains from the genus Nostoc. HARMFUL ALGAE 2022; 115:102232. [PMID: 35623688 DOI: 10.1016/j.hal.2022.102232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria can produce highly potent cyanotoxins, however, limited information is provided about their toxicity mechanisms in exposed aquatic invertebrates at the molecular level. In the present study, the effects of cyanobacterial strains from the genus Nostoc (Nostoc Z1 and Nostoc 2S3B) in Daphnia magna after waterborne exposure were investigated. Examined endpoints included immobilization (survival) in acute toxicity tests and selected gene expression changes (cyp314, cyp360A8, gst, p-gp, vtg) analyzed by the quantitative real-time polymerase chain reaction (RT-PCR). In addition, enzyme-linked immunosorbent assay (ELISA) was performed to determine whether the observed changes could be due to the presence of microcystins, the most widespread group of cyanotoxins. The results of acute toxicity tests have shown only minor changes in survival rates, which have not exceeded 20% after 48 h of exposure to either strain. On the other hand, significant changes were recorded in molecular responses of Daphnia to tested strains. Treatment with the aquatic strain Nostoc Z1 altered the expression levels of all analyzed genes. Both strains caused a significant p-glycoprotein (p-gp) induction at 75 µg ml-1 which suggests the involvement of p-gp mediated multixenobiotic resistance mechanism (MXR) in facilitating excretion of toxic cyanobacterial compounds in daphnids. Additionally, these strains caused an increase in the expression levels of cyp360A8, indicating that genes related to detoxification processes could be sensitive indicators of cyanobacterial toxicity. Statistically significant induction of cyp314, as well as increases in expression of gst and vtg, were observed only after exposure to Nostoc Z1. This study indicates the potential of certain cyanobacterial metabolites to modify the expression of toxicant responsive genes involved in phase I and phase III of the xenobiotic metabolism, as well as possible interference with growth and reproduction in D. magna. Low microcystin concentrations found in both samples suggest that these cyanotoxins were not responsible for the detected toxic effects.
Collapse
Affiliation(s)
- Petar G Davidović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Dajana J Blagojević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia
| | - Gospava G Lazić
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, Novi Sad 21000, Republic of Serbia
| | - Jelica B Simeunović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, Novi Sad 21000, Republic of Serbia.
| |
Collapse
|
35
|
Arshad R, Meng Y, Qiu N, Geng F, Mine Y, Keast R, Zhu C. Phosphoproteomic analysis of duck egg yolk provides novel insights into its characteristics and biofunctions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1165-1173. [PMID: 34329491 DOI: 10.1002/jsfa.11453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although the importance of phosphorylation in the function of proteins is known, investigation of the protein phosphorylation of duck egg yolk (DEY) is still very limited. This study aimed to conduct a detailed phosphoproteomic study of DEY using immobilized metal affinity chromatography and ultra-high liquid chromatography tandem mass spectrometry. RESULTS A total of 253 phosphorylation sites assigned to 66 phosphoproteins were identified in DEY, of which VTG-1, VTG-2, and fibrinogen alpha chain were found to be the highly phosphorylated proteins in DEY. The biological functions of the identified phosphoproteins were illuminated through gene ontology analysis, which showed that they were mainly involved in binding, catalytic, immune response, and metabolic activity. S-X-E and S-X-S were found to be the most conserved serine motifs of phosphorylation in DEY. The comparison of DEY phosphoproteins with those of chicken egg yolk (CEY) revealed that differences mostly involved molecular functions and biological processes. The comparison also revealed a higher phosphorylation level in DEY proteins. CONCLUSION The higher phosphorylation level in DEY proteins than that in CEY proteins are supposed to help enhance duck growth performance and biological activities (e.g. antibacterial and antioxidant ability) for better adapting the humid environment the duck lived. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rida Arshad
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
36
|
Fan S, Li X, Lin S, Li Y, Ma H, Zhang Z, Qin Z. Screening and Identification of Transcription Factors Potentially Regulating Foxl2 Expression in Chlamys farreri Ovary. BIOLOGY 2022; 11:biology11010113. [PMID: 35053111 PMCID: PMC8772818 DOI: 10.3390/biology11010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 04/09/2023]
Abstract
Foxl2 is an evolutionarily conserved female sex gene, which is specifically expressed in the ovary and mainly involved in oogenesis and ovarian function maintenance. However, little is known about the mechanism that regulates Foxl2 specific expression during the ovary development. In the present study, we constructed the gonadal yeast one-hybrid (Y1H) library of Chlamysfarreri with ovaries and testes at different developmental stages using the Gateway technology. The library capacity was more than 1.36 × 107 CFU, and the length of the inserted fragment was 0.75 Kb~2 Kb, which fully met the demand of yeast library screening. The highly transcriptional activity promoter sequence of C. farreri Foxl2 (Cf-Foxl2) was determined at -1000~-616 bp by dual-luciferase reporter (DLR) assay and was used as bait to screen possible transcription factors from the Y1H library. Eleven candidate factors, including five unannotated factors, were selected based on Y1H as well as their expressional differences between ovaries and testes and were verified for the first time to be involved in the transcriptional regulation of Cf-Foxl2 by RT-qPCR and DLR. Our findings provided valuable data for further studying the specific regulation mechanism of Foxl2 in the ovary.
Collapse
Affiliation(s)
- Shutong Fan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Siyu Lin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Yunpeng Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Huixin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Correspondence: (Z.Z.); (Z.Q.)
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Correspondence: (Z.Z.); (Z.Q.)
| |
Collapse
|
37
|
Carducci F, Biscotti MA, Canapa A, Barucca M. The vitellogenin genes in Cynops orientalis: New insights on the evolution of the vtg gene family in amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:554-561. [PMID: 34170078 PMCID: PMC8596760 DOI: 10.1002/jez.b.23067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
The vitellogenins (Vtgs) are glycolipophosphoproteins that play a key role in constituting nutritional reserves for embryo development in nonmammalian vertebrates. However, additional functional roles have been evidenced. These vtg genes are present in multiple copies, different in number and sequences in various vertebrate lineages. The comprehension of the vtg gene family evolutionary history remains a matter of intense interrogation for this field of research. In tetrapods, information about vtg genes are limited to few taxa. Up to date concerning amphibians, detailed studies have been conducted only in Anura. Therefore, in this study, to further increase knowledge about vtg genes in Amphibia class, the urodele Cynops orientalis (Amphibia: Caudata) was analyzed and four complete vtg sequences were obtained. Moreover, genomic data available for the caecilians Microcaecilia unicolor and Rhinatrema bivittatum (Amphibia: Gymnophiona) were also included. In these amphibians, our findings evidenced the presence of a vtgI sequence ortholog to that of tetrapods, absent in Anura. Moreover, microsyntenic, phylogenetic, and gene conversion analyses allowed postulating two hypotheses to explain the complex evolutionary history of this gene family.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell'AmbienteUniversità Politecnica delle MarcheAnconaItaly
| | - Maria A. Biscotti
- Dipartimento di Scienze della Vita e dell'AmbienteUniversità Politecnica delle MarcheAnconaItaly
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'AmbienteUniversità Politecnica delle MarcheAnconaItaly
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'AmbienteUniversità Politecnica delle MarcheAnconaItaly
| |
Collapse
|
38
|
Kalic T, Radauer C, Lopata AL, Breiteneder H, Hafner C. Fish Allergy Around the World—Precise Diagnosis to Facilitate Patient Management. FRONTIERS IN ALLERGY 2021; 2:732178. [PMID: 35387047 PMCID: PMC8974716 DOI: 10.3389/falgy.2021.732178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/17/2021] [Indexed: 02/03/2023] Open
Abstract
The accurate and precise diagnosis of IgE-mediated fish allergy is one of the biggest challenges in allergy diagnostics. A wide range of fish species that belong to evolutionary distant classes are consumed globally. Moreover, each fish species may contain multiple isoforms of a given allergen that often differ in their allergenicity. Recent studies indicated that the cross-reactivity between different fish species is limited in some cases and depends on the evolutionary conservation of the involved allergens. Fish allergens belong to several protein families with different levels of stability to food processing. Additionally, different preparation methods may contribute to specific sensitization patterns to specific fish species and allergens in different geographic regions. Here, we review the challenges and opportunities for improved diagnostic approaches to fish allergy. Current diagnostic shortcomings include the absence of important region-specific fish species in commercial in vitro and in vivo tests as well as the lack of their standardization as has been recently demonstrated for skin prick test solutions. These diagnostic shortcomings may compromise patients' safety by missing some of the relevant species and yielding false negative test results. In contrast, the avoidance of all fish as a common management approach is usually not necessary as many patients may be only sensitized to specific species and allergens. Although food challenges remain the gold standard, other diagnostic approaches are investigated such as the basophil activation test. In the context of molecular allergy diagnosis, we discuss the usefulness of single allergens and raw and heated fish extracts. Recent developments such as allergen microarrays offer the possibility to simultaneously quantify serum IgE specific to multiple allergens and allergen sources. Such multiplex platforms may be used in the future to design diagnostic allergen panels covering evolutionary distant fish species and allergens relevant for particular geographic regions.
Collapse
Affiliation(s)
- Tanja Kalic
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christian Radauer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Heimo Breiteneder
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
- Karl Landsteiner Institute for Dermatological Research, Karl Landsteiner Society, St. Poelten, Austria
- *Correspondence: Christine Hafner
| |
Collapse
|
39
|
Ji R, Fu J, Shi Y, Li J, Jing M, Wang L, Yang S, Tian T, Wang L, Ju J, Guo H, Liu B, Dou D, Hoffmann AA, Zhu-Salzman K, Fang J. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. THE NEW PHYTOLOGIST 2021; 232:802-817. [PMID: 34260062 DOI: 10.1111/nph.17620] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Vitellogenin (Vg) is a well-known nutritious protein involved in reproduction in nearly all oviparous animals, including insects. Recently, Vg has been detected in saliva proteomes of several piercing-sucking herbivorous arthropods, including the small brown planthopper (Laodelphax striatellus, SBPH). Its function, however, remains unexplored. We investigated the molecular mechanism underlying SBPH orally secreted Vg-mediated manipulation of plant-insect interaction by RNA interference, phytohormone and H2 O2 profiling, protein-protein interaction studies and herbivore bioassays. A C-terminal polypeptide of Vg (VgC) in SBPH, when secreted into rice plants, acted as a novel effector to attenuate host rice defenses, which in turn improved insect feeding performance. Silencing Vg reduced insect feeding and survival on rice. Vg-silenced SBPH nymphs consistently elicited higher H2 O2 production, a well-established defense mechanism in rice, whereas expression of VgC in planta significantly hindered hydrogen peroxide (H2 O2 ) accumulation and promoted insect performance. VgC interacted directly with the rice transcription factor OsWRKY71, a protein which is involved in induction of H2 O2 accumulation and plant resistance to SBPH. These findings indicate a novel effector function of Vg: when secreted into host rice plants, this protein effectively weakened H2 O2 -mediated plant defense through its association with a plant immunity regulator.
Collapse
Affiliation(s)
- Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Maofeng Jing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Shiying Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Tian Tian
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jiafei Ju
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| |
Collapse
|
40
|
Amorim MJB, Gansemans Y, Gomes SIL, Van Nieuwerburgh F, Scott-Fordsmand JJ. Annelid genomes: Enchytraeus crypticus, a soil model for the innate (and primed) immune system. Lab Anim (NY) 2021; 50:285-294. [PMID: 34489599 PMCID: PMC8460440 DOI: 10.1038/s41684-021-00831-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Abstract
Enchytraeids (Annelida) are soil invertebrates with worldwide distribution that have served as ecotoxicology models for over 20 years. We present the first high-quality reference genome of Enchytraeus crypticus, assembled from a combination of Pacific Bioscience single-molecule real-time and Illumina sequencing platforms as a 525.2 Mbp genome (910 gapless scaffolds and 18,452 genes). We highlight isopenicillin, acquired by horizontal gene transfer and conferring antibiotic function. Significant gene family expansions associated with regeneration (long interspersed nuclear elements), the innate immune system (tripartite motif-containing protein) and response to stress (cytochrome P450) were identified. The ACE (Angiotensin-converting enzyme) - a homolog of ACE2, which is involved in the coronavirus SARS-CoV-2 cell entry - is also present in E. crypticus. There is an obvious potential of using E. crypticus as a model to study interactions between regeneration, the innate immune system and aging-dependent decline.
Collapse
Affiliation(s)
- Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
41
|
Guedes M, Vieira SF, Reis RL, Ferreira H, Neves NM. Fishroesomes as carriers with antioxidant and anti-inflammatory bioactivities. Biomed Pharmacother 2021; 140:111680. [PMID: 34020247 DOI: 10.1016/j.biopha.2021.111680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
The great diversity of marine habitats and organisms renders them a high-value source to find/develop novel drugs and formulations. Therefore, herein, sardine (Sardina pilchardus) roe was used as a lipidic source to produce liposomes. This fish product presents high nutritional value, being its lipidic content associated with important health benefits. Consequently, it can be advantageously used to produce therapeutically active delivery devices. Roe lipids were extracted using the Matyash method. After lipid film hydration and extrusion, sardine roe-derived large unilamellar liposomes (LUVs), designated as fishroesomes, presented a size of ≈330 nm and a significant negative surface charge (≈-27 mV). Radical scavenging assays demonstrated that fishroesomes efficiently neutralized peroxyl, hydroxyl and nitric oxide radicals. Moreover, fishroesomes significantly reduced the expression of pro-inflammatory cytokines and chemokines by LPS-stimulated macrophages at non-toxic concentrations for L929 and THP-1 cells. Consequently, the developed liposomes exhibit unique properties as bioactive drug carriers for inflammatory diseases treatment.
Collapse
Affiliation(s)
- Marta Guedes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sara F Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
42
|
Molecular Characterization of the Von Willebrand Factor Type D Domain of Vitellogenin from Takifugu flavidus. Mar Drugs 2021; 19:md19040181. [PMID: 33806251 PMCID: PMC8065724 DOI: 10.3390/md19040181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
The von Willebrand factor type D (VWD) domain in vitellogenin has recently been found to bind tetrodotoxin. The way in which this protein domain associates with tetrodotoxin and participates in transporting tetrodotoxin in vivo remains unclear. A cDNA fragment of the vitellogenin gene containing the VWD domain from pufferfish (Takifugu flavidus) (TfVWD) was cloned. Using in silico structural and docking analyses of the predicted protein, we determined that key amino acids (namely, Val115, ASP116, Val117, and Lys122) in TfVWD mediate its binding to tetrodotoxin, which was supported by in vitro surface plasmon resonance analysis. Moreover, incubating recombinant rTfVWD together with tetrodotoxin attenuated its toxicity in vivo, further supporting protein–toxin binding and indicating associated toxicity-neutralizing effects. Finally, the expression profiling of TfVWD across different tissues and developmental stages indicated that its distribution patterns mirrored those of tetrodotoxin, suggesting that TfVWD may be involved in tetrodotoxin transport in pufferfish. For the first time, this study reveals the amino acids that mediate the binding of TfVWD to tetrodotoxin and provides a basis for further exploration of the molecular mechanisms underlying the enrichment and transfer of tetrodotoxin in pufferfish.
Collapse
|
43
|
Davico CE, Pereira AG, Nezzi L, Jaramillo ML, de Melo MS, Müller YMR, Nazari EM. Reproductive toxicity of Roundup WG® herbicide: impairments in ovarian follicles of model organism Danio rerio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15147-15159. [PMID: 33226558 DOI: 10.1007/s11356-020-11527-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Glyphosate-based herbicides are widely used in global agriculture, and their effects on different non-target animal organisms have been the focus of many toxicological studies. Regarding the potential role of glyphosate-based herbicides as an endocrine disruptor, the present study aims to investigate the effects of the herbicide Roundup WG® (RWG) on female reproduction, specifically on the ovarian maturation of Danio rerio. Adult females were exposed to low concentrations of RWG (0.065, 0.65, and 6.5 mg L-1) for 15 days, and then the ovaries were submitted to structural and morphometric procedures, accompanied by analysis of the vitellin protein content. Our results showed an increase of initial ovarian follicle numbers, decrease of late ovarian follicles, and smaller diameter of ovarian follicles in fish exposed to 0.065 and 6.5 mg L-1. The thickness of vitelline envelope was reduced, and the vitellin protein content was increased in the ovarian follicle in the two highest concentrations. Ultrastructural changes in the ovarian follicular component were evident and expressed by the cell index; vacuolization in follicular cells, increase of perivitelline space, and impaired mitochondria in oocytes were observed. Therefore, RWG adversely affects the ovarian maturation in D. rerio, and these changes can lead to reproductive toxicity, compromising population dynamics.
Collapse
Affiliation(s)
- Carla Eliana Davico
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Aline Guimarães Pereira
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Luciane Nezzi
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Michael Lorenz Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Yara Maria Rauh Müller
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, 88040-900, Brazil.
| |
Collapse
|
44
|
Green Etxabe A, Pini JM, Short S, Cunha L, Kille P, Watson GJ. Identifying conserved polychaete molecular markers of metal exposure: Comparative analyses using the Alitta virens (Annelida, Lophotrochozoa) transcriptome. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108913. [PMID: 33164845 DOI: 10.1016/j.cbpc.2020.108913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Polychaetes are vital for evaluating the effects of toxic metals in marine systems, and sensitive molecular biomarkers should be integral to monitoring efforts. However, the few polychaete markers that exist are inconsistent, even within the same species, failing to identify gene expression changes in metal-exposed animals incurring clear metabolic costs. Comparing previously characterised polychaete metal-responsive genes with those of another carefully selected species could identify biomarkers applicable across polychaetes. The ragworm Alitta virens (Sars, 1835) is particularly suited for such comparisons due to its dominance of fully saline coastal areas, widespread distribution, large biomass, and its phylogenetic position relative to other polychaete 'omic' resources. A transcriptome atlas for A. virens was generated and an RNASeq-qPCR screening approach was used to characterise the response to chronic exposures of environmentally relevant concentrations of copper and zinc in controlled mesocosms. Genes presenting dramatic expression changes in A. virens were compared with known metal-responsive genes in other polychaetes to identify new possible biomarkers and assess those currently used. This revealed some current markers should probably be abandoned (e.g. Atox1), while others, such as GST-Omega, should be used with caution, as different polychaete species appear to upregulate distinct GST-Omega orthologues. In addition, the comparisons give some indication of genes that are induced by metal exposure across phylogenetically divergent polychaetes, including a suite of haemoglobin subunits and linker chains that could play conserved roles in metal-stress response. Although such newly identified markers need further characterisation, they offer alternatives to current markers that are plainly insufficient.
Collapse
Affiliation(s)
- Amaia Green Etxabe
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, UK
| | - Jennifer M Pini
- CP-Texinfine (France), 60 Rue Duguesclin, 69006 Lyon, France
| | - Stephen Short
- Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AT, UK.
| | - Luis Cunha
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; School of Applied Sciences, University of South Wales, Pontypridd, Wales CF37 4BD, UK
| | - Peter Kille
- Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AT, UK
| | - Gordon J Watson
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO4 9LY, UK
| |
Collapse
|
45
|
Arshad R, Meng Y, Qiu N, Sun H, Keast R, Rehman A. Phosphoproteomic analysis of duck egg white and insight into the biological functions of identified phosphoproteins. J Food Biochem 2020; 44:e13367. [PMID: 32729115 DOI: 10.1111/jfbc.13367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
Abstract
Phosphorylation of proteins is one of the most important and pleiotropic modifications. It plays a vital role in controlling protein functions. However, the phosphoproteome of duck egg white (DEW) has not been studied yet. To investigate the role of phosphorylation on DEW proteins, a detailed phosphoproteome analysis of DEW was performed using an immobilized metal affinity chromatography enrichment strategy. A total of 92 phosphosites representing 36 phosphoproteins were identified. [S-x-E] and [T-x-E] were found to be the most overrepresented motifs in DEW. The identified phosphoproteins in DEW were mainly involved in the binding, transport activity, biological regulation, and metabolic processes. Gene ontology analysis was used to elucidate the biological functions of DEW phosphoproteins and compare them with those of chicken egg white (CEW), which showed the differences mostly involved molecular functions and biological processes. PRACTICAL APPLICATIONS: These findings provide fundamental insight into the biological functions of identified phosphoproteins of DEW to better understand the roles of phosphorylated DEW proteins for food industries and human health. Phosphoproteomic study of DEW would be valuable for the food and nutrition industry to exploit the potential of this avian proteins in the processing of health benefit products.
Collapse
Affiliation(s)
- Rida Arshad
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Haohao Sun
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Russell Keast
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| |
Collapse
|
46
|
Seyoum A, Pradhan A, Jass J, Olsson PE. Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139682. [PMID: 32521362 DOI: 10.1016/j.scitotenv.2020.139682] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 05/15/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFASs) are synthetic organofluorine compounds with unique stability accompanied with hydrophobic and lipophobic properties. Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) are of high concern due to their wide application in consumer and industrial products, extreme persistence, abundant occurrence in the environment and their toxic effect to humans and animals. However, knowledge on the molecular mechanisms of toxicity and the effects on reproduction output remain scarce. In this study, we analyzed the effects of PFOS and PFOA on Daphnia magna. Acute toxicity, development, reproduction, lipid metabolism (lipid-accumulation) and lifespan was investigated, as well as the expression of genes related to these endpoints. Exposure of PFOS and PFOA at 1, 10 and 25 μM did not cause acute lethality. Hatching was reduced following exposure to both compounds, and lifespan was decreased following exposure to 25 μM PFOS. Body length of Daphnia magna was reduced significantly by 25 μM PFOS following 7 days exposure. Lipid staining revealed that all PFAS exposures increased lipid accumulation. qRT-PCR analysis of genes involved in lipid metabolism suggests that the increase in lipid content could be due to inhibition of genes involved on absorption and catabolism of fatty acids. Exposure to both PFOA and PFOS reduced the fecundity significantly. Downregulation of genes involved in development and reproductive process, including vtg2, vasa, EcRA, EcRB, usp, jhe, HR3, ftz-F1, E74 and E75 were observed. The alterations in developmental and reproductive genes as well as the disturbed lipid metabolism provides mechanistic insight into the possible causes for decreased fecundity and lifespan observed following exposure to both PFOS and PFOA.
Collapse
Affiliation(s)
- Asmerom Seyoum
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Ajay Pradhan
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Jana Jass
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
47
|
Zhang Y, Wu Q, Fang S, Li S, Zheng H, Zhang Y, Ikhwanuddin M, Ma H. mRNA profile provides novel insights into stress adaptation in mud crab megalopa, Scylla paramamosain after salinity stress. BMC Genomics 2020; 21:559. [PMID: 32795331 PMCID: PMC7430823 DOI: 10.1186/s12864-020-06965-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mud crab, Scylla paramamosain, a euryhaline crustacean species, mainly inhabits the Indo-Western Pacific region. Wild mud crab spawn in high-salt condition and the salinity reduced with the growth of the hatching larvae. When the larvae grow up to megalopa, they migrate back to estuaries and coasts in virtue of the flood tide, settle and recruit adult habitats and metamorphose into the crablet stage. Adult crab can even survive in a wide salinity of 0–35 ppt. To investigate the mRNA profile after salinity stress, S. paramamosain megalopa were exposed to different salinity seawater (low, 14 ppt; control, 25 ppt; high, 39 ppt). Results Firstly, from the expression profiles of Na+/K+/2Cl- cotransporter, chloride channel protein 2, and ABC transporter, it turned out that the 24 h might be the most influenced duration in the short-term stress. We collected megalopa under different salinity for 24 h and then submitted to mRNA profiling. Totally, 57.87 Gb Clean Data were obtained. The comparative genomic analysis detected 342 differentially expressed genes (DEGs). The most significantly DEGs include gamma-butyrobetaine dioxygenase-like, facilitated trehalose transporter Tret1, sodium/potassium-transporting ATPase subunit alpha, rhodanese 1-like protein, etc. And the significantly enriched pathways were lysine degradation, choline metabolism in cancer, phospholipase D signaling pathway, Fc gamma R-mediated phagocytosis, and sphingolipid signaling pathway. The results indicate that in the short-term salinity stress, the megalopa might regulate some mechanism such as metabolism, immunity responses, osmoregulation to adapt to the alteration of the environment. Conclusions This study represents the first genome-wide transcriptome analysis of S. paramamosain megalopa for studying its stress adaption mechanisms under different salinity. The results reveal numbers of genes modified by salinity stress and some important pathways, which will provide valuable resources for discovering the molecular basis of salinity stress adaptation of S. paramamosain larvae and further boost the understanding of the potential molecular mechanisms of salinity stress adaptation for crustacean species.
Collapse
Affiliation(s)
- Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 Daxue Road, Shantou, 515063, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Qingyang Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 Daxue Road, Shantou, 515063, China. .,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| | - Shaobin Fang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 Daxue Road, Shantou, 515063, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 Daxue Road, Shantou, 515063, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 Daxue Road, Shantou, 515063, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 Daxue Road, Shantou, 515063, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Mhd Ikhwanuddin
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.,Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 Daxue Road, Shantou, 515063, China. .,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China. .,Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia.
| |
Collapse
|
48
|
Cole EL, Bayne H, Rosengaus RB. Young but not defenceless: antifungal activity during embryonic development of a social insect. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191418. [PMID: 32968491 PMCID: PMC7481685 DOI: 10.1098/rsos.191418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/27/2020] [Indexed: 05/16/2023]
Abstract
Termites live in environments heavily colonized by diverse microorganisms, including pathogens. Eggs laid within the nest are likely to experience similar pathogenic pressures as those experienced by older nest-mates. Consequently, eggs may be under selective pressures to be immune-competent. Through in vitro experiments using developing embryos of the dampwood termite, Zootermopsis angusticollis, we tested the ontogeny, location and strength of their antifungal activity against the fungus, Metarhizium brunneum. Exterior washes of the chorion (extra-chorionic) and components within the chorion (intra-chorionic) were incubated with fungal conidia, which were then scored for viability. The fungistatic activity was location and developmental stage dependent. Extra-chorionic washes had relatively weak antifungal activity. Intra-chorionic homogenates were highly antifungal, exhibiting increased potency through development. The positive correlation between intra-chorionic fungistasis and developmental stage is probably due to the expression of endogenous proteins during embryogenesis. Boiling of both the extra-chorionic washes and the intra-chorionic contents rescued conidia viability, indicating the antifungal agent(s) is (are) heat-sensitive and probably proteinaceous. This study is the first to address embryonic antifungal activity in a hemimetabolous, eusocial taxon. Our results support the hypothesis that microbes have been significant agents of selection in termites, fostering the evolution of antifungal properties even in the most immature stage of development.
Collapse
|
49
|
Fabrello J, Grapputo A, Munari M, Marin MG, Masiero L, Pacchioni B, Millino C, Matozzo V. Molecular and biochemical responses of vitellogenin in the mussel Mytilus galloprovincialis exposed to the glyphosate-based herbicide Roundup® Power 2.0. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26543-26553. [PMID: 32367242 DOI: 10.1007/s11356-020-08985-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Glyphosate-based herbicides (GBHs) occur in aquatic ecosystems at concentrations of hundreds of micrograms per liter. As formulation adjuvants are suspected to be endocrine-disrupting chemicals, we assessed the effects of the recent GBH formulation Roundup® Power 2.0 on vitellogenin (VTG) in Mytilus galloprovincialis. Mussels were exposed for 7, 14, and 21 days to two concentrations of the commercial formulation, corresponding to 100 and 1000 μg/L of glyphosate. The expression of the vtg gene in gonads of females and males, as well as the levels of alkali labile phosphates (ALP) in gonads and non-gonadal tissues from the two sexes were measured. No significant alterations were observed in vtg expression values during the exposure. Conversely, a significant reduction in gonadal ALP levels was observed in females exposed for 21 days and in males exposed for 7 days. In addition, ALP levels increased significantly in gonads from males exposed for 21 days to the two concentrations of Roundup®. As for non-gonadal tissues, ALP levels did not change significantly in females, whereas ALP levels decreased significantly in non-gonadal tissues from males exposed for 21 days to the lowest concentration tested. An overall statistically significant difference in ALP levels was found between females and males. Although preliminary, our study suggests that GBH can affect reproduction-related parameters in mussels.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Alessandro Grapputo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Villa Dohrn-Benthic Ecology Center Ischia, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Beniamina Pacchioni
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Caterina Millino
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
50
|
Cole EL, Empringham JS, Biro C, Thompson GJ, Rosengaus RB. Relish as a Candidate Marker for Transgenerational Immune Priming in a Dampwood Termite (Blattodae: Archeotermopsidae). INSECTS 2020; 11:E149. [PMID: 32120840 PMCID: PMC7143124 DOI: 10.3390/insects11030149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022]
Abstract
Natural selection should favor the transfer of immune competence from one generation to the next in a context-dependent manner. Transgenerational immune priming (TGIP) is expected to evolve when species exploit pathogen-rich environments and exhibit extended overlap of parent-offspring generations. Dampwood termites are hemimetabolous, eusocial insects (Blattodea: Archeotermopsidae) that possess both of these traits. We predict that offspring of pathogen-exposed queens of Zootermopsis angusticollis will show evidence of a primed immune system relative to the offspring of unexposed controls. We found that Relish transcripts, one of two immune marker loci tested, were enhanced in two-day-old embryos when laid by Serratia-injected queens. These data implicate the immune deficiency (IMD) signaling pathway in TGIP. Although an independent antibacterial assay revealed that embryos do express antibacterial properties, these do not vary as a function of parental treatment. Taken together, Z. angusticollis shows transcriptional but not translational evidence for TGIP. This apparent incongruence between the transcriptional and antimicrobial response from termites suggests that effectors are either absent in two-day-old embryos or their activity is too subtle to detect with our antibacterial assay. In total, we provide the first suggestive evidence of transgenerational immune priming in a termite.
Collapse
Affiliation(s)
- Erin L. Cole
- Department of Marine and Environmental Sciences, Northeastern University, 134 Mugar Life Sciences Building, 360 Huntington Avenue, Boston, MA 02115, USA; (E.L.C.); (C.B.)
| | - Jessica S. Empringham
- Department of Biology, Western University, 1151 Richmond St. London, ON N6A 5B7, Canada; (J.S.E.); (G.J.T.)
| | - Colette Biro
- Department of Marine and Environmental Sciences, Northeastern University, 134 Mugar Life Sciences Building, 360 Huntington Avenue, Boston, MA 02115, USA; (E.L.C.); (C.B.)
| | - Graham J. Thompson
- Department of Biology, Western University, 1151 Richmond St. London, ON N6A 5B7, Canada; (J.S.E.); (G.J.T.)
| | - Rebeca B. Rosengaus
- Department of Marine and Environmental Sciences, Northeastern University, 134 Mugar Life Sciences Building, 360 Huntington Avenue, Boston, MA 02115, USA; (E.L.C.); (C.B.)
| |
Collapse
|