1
|
Yao Y, Jing R, Liu X, Kang L, Liu P. Cepharanthine: A promising natural compound against feline infectious peritonitis virus infection and associated inflammation. Virology 2025; 604:110422. [PMID: 39884162 DOI: 10.1016/j.virol.2025.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Feline infectious peritonitis (FIP), a fatal disease in cats caused by feline infectious peritonitis virus (FIPV), has limited treatment options and lacks effective vaccines. Cepharanthine (CEP), a natural isoquinoline alkaloid, possesses many medicinal properties, including antiviral activities. However, the role of CEP in management of FIPV infection remains poorly understood. Here, we identified that CEP had a potent ability to inhibit FIPV infection in vitro. CEP significantly inhibited FIPV infection when administered at different times, with co-treatment showing the most significant inhibitory effect. Time-of-addition assays demonstrated that CEP exerted antiviral activity during the post-entry stages of the FIPV infection. We also verified that CEP inhibited FIPV infection not through affecting type I interferon expression, and it could decrease pro-inflammatory factors expression induced by FIPV infection. The combination of CEP and GS-441524 exhibited synergistic antiviral effects against FIPV infection. Our findings highlight the therapeutic potential of CEP for treatment of FIP.
Collapse
Affiliation(s)
- Yao Yao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Rui Jing
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiang Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Kang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Pinghuang Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Del Sorbo L, Giugliano R, Cerracchio C, Iovane V, Salvatore MM, Serra F, Amoroso MG, Pellegrini F, Levante M, Capozza P, Diakoudi G, Galdiero M, Fusco G, Pratelli A, Andolfi A, Fiorito F. In Vitro Evaluation of Aryl Hydrocarbon Receptor Involvement in Feline Coronavirus Infection. Viruses 2025; 17:227. [PMID: 40006982 PMCID: PMC11860311 DOI: 10.3390/v17020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Feline coronavirus (FCoV) is an alphacoronavirus (αCoV) that causes moderate or chronic asymptomatic infection in cats. However, in a single infected cat, FCoV can modify its cellular tropism by acquiring the ability to infect macrophages, resulting in the development of feline infectious peritonitis (FIP). In this context, to restrain the impact of FCoV infection, scientific research has focused attention on the development of antiviral therapies involving novel mechanisms of action. Recent studies have demonstrated that aryl hydrocarbon receptor (AhR) signaling regulates the host response to different human and animal CoVs. Hence, the mechanism of action of AhR was evaluated upon FCoV infection in Crandell Feline Kidney (CRFK) and in canine fibrosarcoma (A72) cells. Following infection with feline enteric CoV (FECV), strain "München", a significant activation of AhR and of its target CYP1A1, was observed. The selective AhR antagonist CH223191 provoked a reduction in FCoV replication and in the levels of viral nucleocapsid protein (NP). Furthermore, the effect of the AhR inhibitor on the acidity of lysosomes in infected cells was observed. Our findings indicate that FCoV acts on viral replication that upregulates AhR. CH223191 repressed virus yield through the inhibition of AhR. In this respect, for counteracting FCoV, AhR represents a new target useful for identifying antiviral drugs. Moreover, in the presence of CH223191, the alkalinization of lysosomes in FCoV-infected CRFK cells was detected, outlining their involvement in antiviral activity.
Collapse
Affiliation(s)
- Luca Del Sorbo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (R.G.); (C.C.)
| | - Rosa Giugliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (R.G.); (C.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (R.G.); (C.C.)
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (V.I.); (A.A.)
| | - Maria Michela Salvatore
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (R.G.); (C.C.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Francesco Serra
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Italy; (F.S.); (M.G.A.); (M.L.)
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Italy; (F.S.); (M.G.A.); (M.L.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari, 70010 Valenzan, Italy; (F.P.); (P.C.); (G.D.)
| | - Martina Levante
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Italy; (F.S.); (M.G.A.); (M.L.)
| | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari, 70010 Valenzan, Italy; (F.P.); (P.C.); (G.D.)
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari, 70010 Valenzan, Italy; (F.P.); (P.C.); (G.D.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Giovanna Fusco
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Italy; (F.S.); (M.G.A.); (M.L.)
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari, 70010 Valenzan, Italy; (F.P.); (P.C.); (G.D.)
| | - Anna Andolfi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (V.I.); (A.A.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (R.G.); (C.C.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
3
|
Chou AA, Lin CH, Chang YC, Chang HW, Lin YC, Pi CC, Kan YM, Chuang HF, Chen HW. Antiviral activity of Vigna radiata extract against feline coronavirus in vitro. Vet Q 2024; 44:1-13. [PMID: 38712855 PMCID: PMC11078076 DOI: 10.1080/01652176.2024.2349665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.
Collapse
Affiliation(s)
- Ai-Ai Chou
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- TACS-alliance Research Center, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Lin
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Chia-Chen Pi
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Yao-Ming Kan
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Fen Chuang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Solikhah TI, Agustin QAD, Damaratri RA, Siwi DAF, Rafi’uttaqi GN, Hartadi VA, Solikhah GP. A review of feline infectious peritonitis virus infection. Vet World 2024; 17:2417-2432. [PMID: 39829669 PMCID: PMC11736369 DOI: 10.14202/vetworld.2024.2417-2432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/20/2024] [Indexed: 01/22/2025] Open
Abstract
Feline infectious peritonitis (FIP) is an infectious disease characterized by non-specific laboratory changes and clinical signs. Clinical symptoms include anorexia, jaundice, fever, and weight loss. Moreover, some lesions are found in the digestive and respiratory systems. FIP, whose virulence varies, cannot be distinguished using several diagnostic methods. Moreover, feline coronaviruses (FCoVs) can be classified into two serotypes based on differences in their amino acid sequences, spike (S) protein sequences, and antibody (Ab) neutralization. There are two pathotypes, namely those caused by FCoV, which are often referred to as feline enteric coronavirus and FIP virus (FIPV). Furthermore, FIPV infection can be caused by sub-neutralizing levels of anti-FIPV S Abs. Therefore, a supporting diagnosis is needed to confirm FIP because there are no specific symptoms. This review aimed to provide updated information on FIP, including epizootiology, clinical and pathological characteristics, pathogenesis, hematology, clinicopathological and imaging features, pathological features, experimental infection, treatment and prevention, infection and immunity, animal and public health considerations.
Collapse
Affiliation(s)
- Tridiganita Intan Solikhah
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Qurrotul Aini Dwi Agustin
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Ratmasari Alifina Damaratri
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Della Ayuke Fika Siwi
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Ghulam Naufal Rafi’uttaqi
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | - Vincent Angelino Hartadi
- Division of Veterinary Clinic, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga, Banyuwangi, Indonesia
| | | |
Collapse
|
5
|
Ma H, Hao J, Li W, Yu K, Zhu K, Yang M, Cao S, Xue H, Liu D, Song Y, Zhang S, Zhang X, Sun Z, Gao X. Evaluation of feline mesenchymal stem cell susceptibility to feline viruses. Sci Rep 2024; 14:18598. [PMID: 39127765 PMCID: PMC11316800 DOI: 10.1038/s41598-024-69343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Feline mesenchymal stem cells (fMSCs) are well known for their robust differentiation capabilities and are commonly used in studying immune-related diseases in cats. Despite their importance, the susceptibility of fMSCs to viral infections remains uncertain. This study aimed to assess the susceptibility of feline adipose-derived mesenchymal stem cells (fAD-MSCs) and feline umbilical cord-derived mesenchymal stem cells (fUC-MSCs) to common feline viruses, including feline coronavirus (FCoV), feline herpesvirus type 1 (FHV-1), and feline panleukopenia virus (FPV). The results demonstrated that both FCoV and FHV-1 were able to infect both types of cells, while FPV did not exhibit cytopathic effects on fUC-MSCs. Furthermore, all three viruses were successfully isolated from fAD-MSCs. These findings suggest that certain feline viruses can replicate in fMSCs, indicating potential limitations in using fMSCs for treating viral diseases caused by these specific viruses. This study has important clinical implications for veterinarians, particularly in the management of viral diseases.
Collapse
Affiliation(s)
- Haoyuan Ma
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Jingrui Hao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Weijian Li
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Kai Yu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Kunru Zhu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Meng Yang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Shuoning Cao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Haowen Xue
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Dan Liu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Yanhao Song
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Siqi Zhang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Xifeng Zhang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Zheng Sun
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Xu Gao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
6
|
Sase O, Iwami T, Sasaki T, Sano T. GS-441524 and molnupiravir are similarly effective for the treatment of cats with feline infectious peritonitis. Front Vet Sci 2024; 11:1422408. [PMID: 39091389 PMCID: PMC11291256 DOI: 10.3389/fvets.2024.1422408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Although not registered for feline infectious peritonitis (FIP) in Japan, nucleoside analogs have shown efficacy and we have been offering them to owners of cats with FIP at our clinic since January 2020. The aim of this study was to investigate outcomes in cats with FIP who received GS-441524 or molnupiravir. Diagnosis of FIP was based on clinical signs, laboratory test results, and the presence of feline coronavirus RNA in blood or effusion aspirate. After providing verbal and written information, owners of cats with a presumptive diagnosis of FIP with a were offered antiviral treatment with commercially sourced GS-441524 from June 2020, and either GS-441524 or compounded molnupiravir from January 2022. Dosing was 12.5-25 mg/kg/day for GS-441524 and 20-40 mg/kg/day for molnupiravir, depending on the presence of effusion and neurological and/or ocular signs, and continued for 84 days. Overall, 118 cats with FIP (effusive in 76) received treatment, 59 with GS-4421524 and 59 with molnupiravir. Twenty cats died, 12/59 (20.3%) in the GS-441524 group and 8/59 (13.6%) in the molnupiravir group (p = 0.326), with most deaths within the first 10 days of starting treatment. Among survivors, neurological and ocular signs resolved in all but one cat, who had persistent seizures. Of the cats completing treatment, 48/48 in the GS-441524 group and 51/52 in the molnupiravir group achieved remission. Laboratory parameters normalized within 6 to 7 weeks of starting drug administration. Adverse events, such as primarily hepatic function abnormalities, were transient and resolved without specific intervention. Our data indicate that GS-441524 and molnupiravir show similar effects and safety in cats with FIP.
Collapse
Affiliation(s)
| | | | | | - Tadashi Sano
- Obihiro University of Agriculture and Veterinary Medicine, Department of Clinical Veterinary Science, Hokkaido, Japan
| |
Collapse
|
7
|
Helfer-Hungerbuehler AK, Spiri AM, Meili T, Riond B, Krentz D, Zwicklbauer K, Buchta K, Zuzzi-Krebitz AM, Hartmann K, Hofmann-Lehmann R, Meli ML. Alpha-1-Acid Glycoprotein Quantification via Spatial Proximity Analyte Reagent Capture Luminescence Assay: Application as Diagnostic and Prognostic Marker in Serum and Effusions of Cats with Feline Infectious Peritonitis Undergoing GS-441524 Therapy. Viruses 2024; 16:791. [PMID: 38793672 PMCID: PMC11125897 DOI: 10.3390/v16050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Until recently, the diagnosis of feline infectious peritonitis (FIP) in cats usually led to euthanasia, but recent research has revealed that antiviral drugs, including the nucleoside analog GS-441524, have the potential to effectively cure FIP. Alpha-1-acid glycoprotein (AGP) has been suggested as a diagnostic marker for FIP. However, AGP quantification methods are not easily accessible. This study aimed to establish a Spatial Proximity Analyte Reagent Capture Luminescence (SPARCLTM) assay on the VetBio-1 analyzer to determine the AGP concentrations in feline serum and effusion samples. Linearity was found in serial dilutions between 1:2000 and 1:32,000; the intra-run and inter-run precision was <5% and <15%, respectively; and AGP was stable in serum stored for at least 8 days at room temperature, at 4 °C and at -20 °C. Cats with confirmed FIP had significantly higher serum AGP concentrations (median: 2954 µg/mL (range: 200-5861 µg/mL)) than those with other inflammatory diseases (median: 1734 µg/mL (305-3449 µg/mL)) and clinically healthy cats (median 235 µg/mL (range: 78-616 µg/mL); pKW < 0.0001). The AGP concentrations were significantly higher in the effusions from cats with FIP than in those from diseased cats without FIP (pMWU < 0.0001). The AGP concentrations in the serum of cats with FIP undergoing GS-441524 treatment showed a significant drop within the first seven days of treatment and reached normal levels after ~14 days. In conclusion, the VetBio-1 SPARCLTM assay offers a precise, fast and cost-effective method to measure the AGP concentrations in serum and effusion samples of feline patients. The monitoring of the AGP concentration throughout FIP treatment provides a valuable marker to evaluate the treatment's effectiveness and identify potential relapses at an early stage.
Collapse
Affiliation(s)
- A. Katrin Helfer-Hungerbuehler
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Theres Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Barbara Riond
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Daniela Krentz
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Katharina Zwicklbauer
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Katharina Buchta
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Anna-Maria Zuzzi-Krebitz
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (D.K.); (K.Z.); (K.B.); (A.-M.Z.-K.); (K.H.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (T.M.); (B.R.); (R.H.-L.); (M.L.M.)
| |
Collapse
|
8
|
Romanelli P, Bertazzolo W, Prisciandaro A, Leone A, Bonfanti U, Paltrinieri S. Measurement of Feline Alpha-1 Acid Glycoprotein in Serum and Effusion Using an ELISA Method: Analytical Validation and Diagnostic Role for Feline Infectious Peritonitis. Pathogens 2024; 13:289. [PMID: 38668244 PMCID: PMC11055121 DOI: 10.3390/pathogens13040289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Alpha-1 acid glycoprotein (AGP) may support a clinical diagnosis of feline infectious peritonitis (FIP). In this study, we assessed the analytical and diagnostic performances of a novel ELISA method to measure feline AGP. METHODS AGP was measured in sera and effusions from cats with FIP (n = 20) or with other diseases (n = 15). Precision was calculated based on the coefficient of variation (CV) of repeated testing, and accuracy was calculated by linearity under dilution (LUD). RESULTS The test is precise (intra-assay CVs: <6.0% in individual samples, <15.0% in pooled samples; inter-assay CVs <11.0% and <15.0%) and accurate (serum LUD r2: 0.995; effusion LUD r2: 0.950) in serum and in effusions. AGP is higher in cats with FIP than in other cats in both serum (median: 1968, I-III interquartile range: 1216-3371 μg/mL and 296, 246-1963 μg/mL; p = 0.009) and effusion (1717, 1011-2379 μg/mL and 233, 165-566 μg/mL; p < 0.001). AGP discriminates FIP from other diseases (area under the receiver operating characteristic curve: serum, 0.760; effusion, 0.877), and its likelihood ratio is high (serum: 8.50 if AGP > 1590 μg/mL; effusion: 3.75 if AGP > 3780 μg/mL). CONCLUSION This ELISA method is precise and accurate. AGP in serum and in effusions is a useful diagnostic marker for FIP.
Collapse
Affiliation(s)
- Pierpaolo Romanelli
- MYLAV Veterinary Laboratory, 20017 Passirana di Rho, Italy; (P.R.); (A.P.); (A.L.); (U.B.)
| | - Walter Bertazzolo
- MYLAV Veterinary Laboratory, 20017 Passirana di Rho, Italy; (P.R.); (A.P.); (A.L.); (U.B.)
| | - Andrea Prisciandaro
- MYLAV Veterinary Laboratory, 20017 Passirana di Rho, Italy; (P.R.); (A.P.); (A.L.); (U.B.)
| | - Andrea Leone
- MYLAV Veterinary Laboratory, 20017 Passirana di Rho, Italy; (P.R.); (A.P.); (A.L.); (U.B.)
| | - Ugo Bonfanti
- MYLAV Veterinary Laboratory, 20017 Passirana di Rho, Italy; (P.R.); (A.P.); (A.L.); (U.B.)
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy;
| |
Collapse
|
9
|
Schmied K, Ehmann R, Kristen-Burmann C, Ebert N, Barut GT, Almeida L, Kelly JN, Thomann L, Stalder H, Lang R, Tekes G, Thiel V. An RNA replicon system to investigate promising inhibitors of feline coronavirus. J Virol 2024; 98:e0121623. [PMID: 38236006 PMCID: PMC10878086 DOI: 10.1128/jvi.01216-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an in vitro screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (Mpro), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system. Different combinations of these compounds also proved to be potent inhibitors, having an additive effect when combined. Remdesivir, GC376, and Nirmatrelvir all have a 50% cytotoxic concentration (CC50) more than 200 times higher than their half-maximal inhibitory concentrations (IC50), making them important candidates for future in vivo studies as well as clinically implemented drug candidates. In addition, results were acquired with a virus infection system, where Felis catus whole fetus 4 (Fcwf-4) cells were infected with a previously described recombinant GFP-expressing FIPV (based on the laboratory-adapted serotype I FIPV strain Black) and treated with the most promising compounds. Results acquired with the replicon system were comparable to the results acquired with the virus infection system, demonstrating that we successfully implemented the FCoV replicon system for antiviral screening. We expect that this system will greatly facilitate future screens for anti-FIPV compounds and provide a non-infectious system to study and evaluate drug-resistant mutations that may emerge in the FIPV genome.IMPORTANCEFIPV is of great significance in the cat population around the world, causing 0.3%-1.4% of feline deaths in veterinary practices (2). As there are neither effective preventive measures nor approved treatment options available, there is an urgent need to identify antiviral drugs against FIPV. Our FCoV replicon system provides a valuable tool for drug discovery in vitro. Due to the lack of cell culture systems for serotype I FCoVs (the serotype most prevalent in the feline population) (2), a different system is needed to study these viruses. A viral replicon system is a valuable tool for studying FCoVs. Overall, our results demonstrate the utility of the serotype I feline coronavirus replicon system for antiviral screening as well as to study this virus in general. We propose several compounds representing promising candidates for future clinical trials and ultimately with the potential to save cats suffering from FIP.
Collapse
Affiliation(s)
- Kimberly Schmied
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rosina Ehmann
- Institute of Virology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Nadine Ebert
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Güliz Tuba Barut
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna N. Kelly
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Lisa Thomann
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Lang
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Gergely Tekes
- Institute of Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
10
|
Taylor SS, Coggins S, Barker EN, Gunn-Moore D, Jeevaratnam K, Norris JM, Hughes D, Stacey E, MacFarlane L, O'Brien C, Korman R, McLauchlan G, Salord Torres X, Taylor A, Bongers J, Espada Castro L, Foreman M, McMurrough J, Thomas B, Royaux E, Calvo Saiz I, Bertoldi G, Harlos C, Work M, Prior C, Sorrell S, Malik R, Tasker S. Retrospective study and outcome of 307 cats with feline infectious peritonitis treated with legally sourced veterinary compounded preparations of remdesivir and GS-441524 (2020-2022). J Feline Med Surg 2023; 25:1098612X231194460. [PMID: 37732386 PMCID: PMC10812036 DOI: 10.1177/1098612x231194460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Feline infectious peritonitis (FIP) is a serious disease that arises due to feline coronavirus infection. The nucleoside analogues remdesivir and GS-441524 can be effective in its treatment, but most studies have used unregulated products of unknown composition. The aim of the present study was to describe the treatment of FIP using legally sourced veterinary-prescribed regulated veterinary compounded products containing known amounts of remdesivir (injectable) or GS-441524 (oral tablets). METHODS Cats were recruited via email advice services, product sales contacts and study publicity. Cats were excluded if they were deemed unlikely to have FIP, were not treated exclusively with the veterinary compounded products, or if there was a lack of cat and/or treatment (including response) data. Extensive cat and treatment data were collected. RESULTS Among the 307 cats recruited, the predominant type of FIP was most commonly abdominal effusive (49.5%) and then neurological (14.3%). Three treatment protocols were used; remdesivir alone (33.9%), remdesivir followed by GS-441524 (55.7%) and GS-441524 alone (10.4%). The median (range) initial treatment period duration and longest follow-up time point after starting treatment were 84 (1-330) days and 248 (1-814) days, respectively. The most common side effect was injection pain (in 47.8% of those given subcutaneous remdesivir). Of the 307 cats, 33 (10.8%) relapsed, 15 (45.5%) during and 18 (54.5%) after the initial treatment period. At the longest follow-up time point after completion of the initial treatment period, 84.4% of cats were alive. The cats achieving a complete response within 30 days of starting treatment were significantly more likely to be alive at the end of the initial treatment period than those cats that did not. CONCLUSIONS AND RELEVANCE Legally sourced remdesivir and GS-441524 products, either alone or used sequentially, were very effective in the treatment of FIP in this group of cats. Variable protocols precluded statistical comparison of treatment regimens.
Collapse
Affiliation(s)
- Samantha S Taylor
- International Society of Feline Medicine, Tisbury, UK
- Linnaeus Veterinary Limited, Shirley, UK
- University of Surrey, Guildford, UK
| | | | - Emi N Barker
- Langford Vets, University of Bristol, Langford, UK
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | | | | | - David Hughes
- Concord Veterinary Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | | - Aimee Taylor
- Langford Vets, University of Bristol, Langford, UK
| | | | | | | | | | | | | | | | | | | | - Megan Work
- Willows Veterinary Centre and Referral Service, Shirley, UK
| | - Cameron Prior
- Willows Veterinary Centre and Referral Service, Shirley, UK
| | | | | | - Séverine Tasker
- Linnaeus Veterinary Limited, Shirley, UK
- Bristol Veterinary School, University of Bristol, Langford, UK
| |
Collapse
|
11
|
Tasker S, Addie DD, Egberink H, Hofmann-Lehmann R, Hosie MJ, Truyen U, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Thiry E, Möstl K, Hartmann K. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses 2023; 15:1847. [PMID: 37766254 PMCID: PMC10535984 DOI: 10.3390/v15091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.
Collapse
Affiliation(s)
- Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
12
|
Choi JC, Jung SW, Choi IY, Kang YL, Lee DH, Lee SW, Park SY, Song CS, Choi IS, Lee JB, Oh C. Rottlerin-Liposome Inhibits the Endocytosis of Feline Coronavirus Infection. Vet Sci 2023; 10:380. [PMID: 37368766 DOI: 10.3390/vetsci10060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Rottlerin (R) is a natural extract from Mallotus philippensis with antiviral properties. Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) that is characterized by systemic granulomatous inflammation and high mortality. We investigated the antiviral effect of liposome-loaded R, i.e., rottlerin-liposome (RL), against FCoV. We demonstrated that RL inhibited FCoV replication in a dose-dependent manner, not only in the early endocytosis stage but also in the late stage of replication. RL resolved the low solubility issue of rottlerin and improved its inhibition efficacy at the cellular level. Based on these findings, we suggest that RL is worth further investigation as a potential treatment for FCoV.
Collapse
Affiliation(s)
- Jong-Chul Choi
- Qvet Co., Ltd., 606, Alumini Association Building of Konkuk University, 5 Achasan-ro 36-gil, Gwangjin-gu, Seoul 05066, Republic of Korea
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Won Jung
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Yeong Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeong-Lim Kang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong-Hun Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang-Won Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Soo Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Changin Oh
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA
| |
Collapse
|
13
|
Xu L, Ye S, Ding Y, Xiao Y, Yao C, Wang Z, Cai S, Ou J, Mao J, Hu X, Cheng S, Wang J, Lu G, Li S. A Combined Method Based on the FIPV N Monoclonal Antibody Immunofluorescence Assay and RT-nPCR Method for the Rapid Diagnosis of FIP-Suspected Ascites. Transbound Emerg Dis 2023; 2023:8429106. [PMID: 40303664 PMCID: PMC12017028 DOI: 10.1155/2023/8429106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 05/02/2025]
Abstract
Feline infectious peritonitis (FIP), which is caused by feline infectious peritonitis virus (FIPV), is a fatal and immunologically mediated infectious disease among cats. At present, due to the atypical clinical symptoms and clinicopathological changes, the clinical diagnosis of FIP is still difficult. The gold standard method for the differential diagnosis of FIP is immunohistochemistry (IHC) which is time-consuming and requires specialized personnel and equipment. Therefore, a rapid and accurate clinical diagnostic method for FIPV infection is still urgently needed. In this study, based on the etiological investigation of FIPV in parts of southern China, we attempted to explore a new rapid and highly sensitive method for clinical diagnosis. The results of the etiological investigation showed that the N gene of the FIPV BS8 strain had the highest homology with other strains. Based on this, a specific FIPV BS8 N protein monoclonal antibody was successfully prepared by expression of the recombinant proteins, immunization of mice, fusion and selection of hybridoma cell lines, and screening and purification of monoclonal antibodies. Furthermore, we carried out a time-saving combination method including indirect immunofluorescence assay (IFA) and nested reverse transcription polymerase chain reaction (RT-nPCR) to examine FIP-suspected clinical samples. These results were 100% consistent with IHC. The results revealed that the combined method could be a rapid and accurate application in the diagnosis of suspected FIPV infection within 24 hours. In conclusion, the combination of IFA and RT-nPCR was shown to be a fast and reliable method for clinical FIPV diagnosis. This study will provide insight into the exploitation of FIPV N antibodies for the clinical diagnosis of FIP-suspected ascites samples.
Collapse
Affiliation(s)
- Liang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Yulin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University/Key Laboratory of Clinical Diagnosis and Treatment Technologyin Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Yuqing Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Congwen Yao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Siqi Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Jiajun Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Jianwei Mao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Xuerui Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Song Cheng
- Laboklin Laboratory for Clinical Diagnostics, Guang Zhou 510700, China
| | - Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| |
Collapse
|
14
|
Prognostic Prediction for Therapeutic Effects of Mutian on 324 Client-Owned Cats with Feline Infectious Peritonitis Based on Clinical Laboratory Indicators and Physical Signs. Vet Sci 2023; 10:vetsci10020136. [PMID: 36851440 PMCID: PMC9964428 DOI: 10.3390/vetsci10020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease classified as either effusive, non-effusive ('dry'), or a mixture ('mixed') of the forms of FIP, with mixed showing signs of both effusive and dry. To determine whether the therapeutic effect of Mutian on dry and mixed FIP can be predicted using clinical indicators before starting treatment, we entered 161 cats with mixed FIP and 163 cats with dry FIP into this study. Physical assessments, the reverse transcriptase-PCR detection of viral genes, and clinical laboratory tests (hematocrit, albumin/globulin ratio, serum amyloid A, α1-acid glycoprotein, and total bilirubin) were performed before Mutian was administered. These indicators were compared between the FIP groups that survived after receiving Mutian for 84 days and those that died before the completion of treatment. Significant differences in body temperature, appetite, and activity scores were confirmed between the surviving and non-surviving groups. The therapeutic effect was insufficient when total bilirubin levels increased in cats with the mixed form. In both of the FIP types, therapeutic effects were difficult to obtain when neurological clinical signs were observed. The therapeutic effects of Mutian on the cats with dry and mixed FIP can be predicted based on pre-treatment body temperature, appetite scores, and activity scores, as well as the presence of neurological signs.
Collapse
|
15
|
Yang C, Li D, Wang S, Xu M, Wang D, Li X, Xu X, Li C. Inhibitory activities of alginate phosphate and sulfate derivatives against SARS-CoV-2 in vitro. Int J Biol Macromol 2023; 227:316-328. [PMID: 36481336 PMCID: PMC9721379 DOI: 10.1016/j.ijbiomac.2022.11.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Alginate derivatives have been demonstrated remarkable antiviral activities. Here we firstly identified polymannuronate phosphate (PMP) as a highly potential anti-SARS-CoV-2 agent. The structure-activity relationship showed polymannuronate monophosphate (PMPD, Mw: 5.8 kDa, P%: 8.7 %) was the most effective component to block the interaction of spike to ACE2 with an IC50 of 85.5 nM. Surface plasmon resonance study indicated that PMPD could bind to spike receptor binding domain (RBD) with the KD value of 78.59 nM. Molecular docking further suggested that the probable binding site of PMPD to spike RBD protein is the interaction interface between spike and ACE2. PMPD has the potential to inhibit the SARS-CoV-2 infection in an independent manner of heparan sulfate proteoglycans. In addition, polyguluronate sulfate (PGS) and propylene glycol alginate sodium sulfate (PSS) unexpectedly showed 3CLpro inhibition with an IC50 of 1.20 μM and 1.42 μM respectively. The polyguluronate backbone and sulfate group played pivotal roles in the 3CLpro inhibition. Overall, this study revealed the potential of PMPD as a novel agent against SARS-CoV-2. It also provided a theoretical basis for further study on the role of PGS and PSS as 3CLpro inhibitors.
Collapse
Affiliation(s)
- Cheng Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dan Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shixin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China,Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Meijie Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dingfu Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China,Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China,Corresponding authors at: School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China,Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China,Corresponding authors at: School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, China
| |
Collapse
|
16
|
Adaptive Mutation in the Main Protease Cleavage Site of Feline Coronavirus Renders the Virus More Resistant to Main Protease Inhibitors. J Virol 2022; 96:e0090722. [PMID: 36000844 PMCID: PMC9472640 DOI: 10.1128/jvi.00907-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.
Collapse
|
17
|
Development of Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Detecting Feline Coronavirus. Animals (Basel) 2022; 12:ani12162075. [PMID: 36009664 PMCID: PMC9405184 DOI: 10.3390/ani12162075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Feline coronavirus infecting domestic cats can cause feline infectious peritonitis (FIP), a fatal infectious disease. Several relevant clinical diagnoses and molecular methods are complicated and often ambiguous for veterinarians. In this work developed a rapid, sensitive, specific, and easy-to-visualize colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with a novel LAMP primer set that has high specificity was developed using neutral red as an indicator dye. This proposed procedure could reliably detect FCoV RNA from effusion fluids comparable to the conventional PCR method. Considering these advantages, the RT-LAMP developed here has great potential on FIP-associated FCoV surveillance. Together with other sophisticated molecular diagnostic tools, this method can further be exploited in clinical laboratories to inspect suspected cats with effusive FIP. Abstract Feline infectious peritonitis (FIP) is a worldwide fatal disease caused by a mutant feline coronavirus (FCoV). Simple and efficient molecular detection methods are needed. Here, sensitive, specific, rapid, and reliable colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect the ORF1a/1b gene of FCoV from cats with suspected FIP using neutral red as an indicator. Novel LAMP primers were specifically designed based on the gene of interest. The isothermal assay could visually detect FCoV at 58 °C for 50 min. The RT-LAMP assay was highly specific and had no cross-reactivity with other related feline viruses. The detection limit of FCoV detection by RT-LAMP was 20 fg/µL. A blind clinical test (n = 81) of the developed RT-LAMP procedure was in good agreement with the conventional PCR method. In the light of its performance specificity, sensitivity, and easy visualization, this neutral-red-based RT-LAMP approach would be a fruitful alternative molecular diagnostic tool for veterinary inspection of FCoV when combined with nucleotide sequencing or specific PCR to affirm the highly virulent FIP-associated FCoV.
Collapse
|
18
|
Meli ML, Spiri AM, Zwicklbauer K, Krentz D, Felten S, Bergmann M, Dorsch R, Matiasek K, Alberer M, Kolberg L, von Both U, Hartmann K, Hofmann-Lehmann R. Fecal Feline Coronavirus RNA Shedding and Spike Gene Mutations in Cats with Feline Infectious Peritonitis Treated with GS-441524. Viruses 2022; 14:1069. [PMID: 35632813 PMCID: PMC9147249 DOI: 10.3390/v14051069] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
As previously demonstrated by our research group, the oral multicomponent drug Xraphconn® containing GS-441524 was effective at curing otherwise fatal feline infectious peritonitis (FIP) in 18 feline coronavirus (FCoV)-infected cats. The aims of the current study were to investigate, using samples from the same animals as in the previous study, (1) the effect of treatment on fecal viral RNA shedding; (2) the presence of spike gene mutations in different body compartments of these cats; and (3) viral RNA shedding, presence of spike gene mutations, and anti-FCoV antibody titers in samples of 12 companion cats cohabitating with the treated cats. Eleven of the eighteen treated FIP cats (61%) were shedding FCoV RNA in feces within the first three days after treatment initiation, but all of them tested negative by day 6. In one of these cats, fecal shedding reoccurred on day 83. Two cats initially negative in feces were transiently positive 1-4 weeks into the study. The remaining five cats never shed FCoV. Viral RNA loads in feces decreased with time comparable with those in blood and effusion. Specific spike gene mutations linked to systemic FCoV spread were consistently found in blood and effusion from treated FIP cats, but not in feces from treated or companion cats. A new mutation that led to a not yet described amino acid change was identified, indicating that further mutations may be involved in the development of FIP. Eight of the twelve companion cats shed FCoV in feces. All but one of the twelve companion cats had anti-FCoV antibodies. Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP. Nonetheless, re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.
Collapse
Affiliation(s)
- Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| | - Katharina Zwicklbauer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany;
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU-Munich, D-80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
- German Center for Infection Research (DZIF), Partner Site Munich, D-80337 Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, D-80539 Munich, Germany; (K.Z.); (D.K.); (S.F.); (M.B.); (R.D.); (K.H.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (A.M.S.); (R.H.-L.)
| |
Collapse
|
19
|
Wang F, Chen C, Wang Z, Han X, Shi P, Zhou K, Liu X, Xiao Y, Cai Y, Huang J, Zhang L, Yang H. The Structure of the Porcine Deltacoronavirus Main Protease Reveals a Conserved Target for the Design of Antivirals. Viruses 2022; 14:v14030486. [PMID: 35336895 PMCID: PMC8949103 DOI: 10.3390/v14030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
The existing zoonotic coronaviruses (CoVs) and viral genetic variants are important microbiological pathogens that cause severe disease in humans and animals. Currently, no effective broad-spectrum antiviral drugs against existing and emerging CoVs are available. The CoV main protease (Mpro) plays an essential role in viral replication, making it an ideal target for drug development. However, the structure of the Deltacoronavirus Mpro is still unavailable. Porcine deltacoronavirus (PDCoV) is a novel CoV that belongs to the genus Deltacoronavirus and causes atrophic enteritis, severe diarrhea, vomiting and dehydration in pigs. Here, we determined the structure of PDCoV Mpro complexed with a Michael acceptor inhibitor. Structural comparison showed that the backbone of PDCoV Mpro is similar to those of alpha-, beta- and gamma-CoV Mpros. The substrate-binding pocket of Mpro is well conserved in the subfamily Coronavirinae. In addition, we also observed that Mpros from the same genus adopted a similar conformation. Furthermore, the structure of PDCoV Mpro in complex with a Michael acceptor inhibitor revealed the mechanism of its inhibition of PDCoV Mpro. Our results provide a basis for the development of broad-spectrum antivirals against PDCoV and other CoVs.
Collapse
Affiliation(s)
- Fenghua Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Xu Han
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Peidian Shi
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Kaixuan Zhou
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Xiaomei Liu
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Yan Cai
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Correspondence: (L.Z.); (H.Y.)
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Correspondence: (L.Z.); (H.Y.)
| |
Collapse
|