1
|
Silva-Santana G, Baêta Júnior ES, Silva Conceição GM, Aguiar-Alves F, Lima Brandão ML, Lopes-Torres EJ, Mattos-Guaraldi AL. Intervention of Corynebacterium striatum in the sessile lifestyle of Staphylococcus aureus wild-type and mutants for ica genes in polymicrobial biofilms. Microb Pathog 2025; 204:107577. [PMID: 40222568 DOI: 10.1016/j.micpath.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
This study investigated the interactions between Corynebacterium striatum and Staphylococcus aureus, two bacterial species commonly found in the human microbiota, particularly colonizing the skin and mucous membranes. Both organisms, however, are also capable of causing acute and chronic infections. While S. aureus is widely recognized as a clinically significant pathogen, C. striatum is frequently underestimated and often regarded as a contaminant-even when isolated in pure culture from nosocomial infections. The ability of these microorganisms to develop multidrug resistance and form biofilms complicates the management of the infections they cause. This study focused on the interaction between C. striatum and S. aureus, particularly the influence of the former on the pathogenic potential of the latter, emphasizing biofilm formation in S. aureus mutants deficient in the icaR and icaC genes. Antimicrobial susceptibility testing revealed that 85.7 % of the S. aureus strains were multidrug-resistant, with all strains resistant to β-lactam antibiotics. Additionally, 55.6 % of the strains produced strong slime on Congo Red agar, indicating a high potential for biofilm formation. In monomicrobial assays, both C. striatum and S. aureus exhibited enhanced adhesion to hydrophilic surfaces. In polymicrobial settings, C. striatum predominated in most cases: on glass surfaces, 70 % of biofilms were dominated by C. striatum, 20 % by S. aureus, and 10 % showed an even distribution. On polystyrene, 80 % of the biofilms were dominated by C. striatum, while 20 % were dominated by S. aureus. Analysis of extracellular polymeric substances (EPS) revealed distinct compositional profiles: C. striatum primarily produced proteinaceous matrices, whereas S. aureus biofilms were rich in polysaccharides. Ultrastructural examination showed that S. aureus formed dense clusters embedded in large amounts of EPS, while C. striatum biofilms exhibited lower EPS production overall. Furthermore, the effect of C. striatum-derived compounds on S. aureus biofilms was assessed. In 90 % of co-cultured strains, a progressive decrease in sessile cell populations was observed, accompanied by an increase in planktonic cells. This finding suggests that C. striatum can disrupt the biofilm integrity of S. aureus, potentially modulating its pathogenic phenotype. In conclusion, the results demonstrate that C. striatum competes effectively with S. aureus for surface colonization and, under certain conditions, may induce a transition of S. aureus from a sessile to a planktonic state. These findings highlight the complexity of interspecies interactions in polymicrobial communities and suggest that C. striatum may play a modulatory role in S. aureus virulence. Such insights have important implications for the understanding and treatment of polymicrobial infections.
Collapse
Affiliation(s)
- Giorgio Silva-Santana
- Health Science Center, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro. The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil.
| | - Eustáquio Souza Baêta Júnior
- Department of Mechanical Engineering, Postgraduate Program in Mechanical Engineering, FEN, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Greice Maria Silva Conceição
- Systems, Analytical Indicators and Data Section, Department of Quality Control, Bio- Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Fabio Aguiar-Alves
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, FL, 33401, USA
| | - Marcelo Luiz Lima Brandão
- Laboratory of Microbiology Control, Department of Quality Control, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Eduardo José Lopes-Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Brazil; Laboratório Multiusuário de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Brazil
| | - Ana Luiza Mattos-Guaraldi
- Health Science Center, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro. The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Yong E, Zhu X, Weng J, Ng MJM, Khoo YM, Lo ZJ. Role of therapeutic treatment with antiseptic solutions in the care of diabetic foot ulcers. J Wound Care 2025; 34:S4-S13. [PMID: 40173121 DOI: 10.12968/jowc.2025.34.sup4c.s4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) are a prevalent and severe complication of diabetes, leading to significant morbidity, impaired health-related quality of life (HRQoL) and economic burden on healthcare systems. The complexity of DFUs often results in prolonged healing and high recurrence rates. Effective management strategies are crucial for improving outcomes and reducing complications. AIM This study aimed to review the efficacy of antiseptic solutions in the treatment and care of DFUs. METHOD A literature analysis was conducted to review clinical studies and guidelines on the use and efficacy of antiseptic solutions, particularly Octenisept® (0.1% octenidine dihydrochloride and 2% 2-phenoxyethanol). The review focused on the antimicrobial properties, biofilm-disruption capabilities and wound healing outcomes associated with the use of antiseptic solutions in DFU management. RESULTS Antiseptic solutions have potential to reduce bioburden, disrupt biofilm and modulate healing. There is a need to balance antimicrobial clinical efficacy with tolerability and cytotoxicity. The use and choice of adjunctive antiseptic solutions must be tailored to the patient, as antimicrobial efficacy can vary for antiseptic solutions, particularly for hypochlorous solutions. It is important to use products according to their instructions, with consideration of minimum contact time to maximise clinical efficacy. Low-pressure irrigation is adjunctive, and concurrent wound-bed preparation, including debridement, frequent inspection, infection and moisture control, remain important. CONCLUSIONS The therapeutic application of antiseptic solutions in DFU care presents a promising approach to enhancing wound healing and reducing infection risks. Integrating these solutions into standard wound care protocols could lower the incidence of complications, improve HRQoL and decrease the economic burden associated with diabetic foot disease. Further large-scale studies are recommended to validate these findings and refine guidelines for antiseptic use in DFU management.
Collapse
Affiliation(s)
- Enming Yong
- Consultant, Vascular Surgery Service, Department of General Surgery, Tan Tock Seng Hospital, Singapore
| | - Xiaoli Zhu
- Senior Nurse Clinician, Nursing Services, National Healthcare Group Polyclinics, Singapore
| | - Jiayi Weng
- Medical Officer, Department of Orthopaedics, Woodlands Health, Singapore
| | - Marcus Jia Ming Ng
- Resident, Plastic, Reconstructive and Aesthetic Surgery Service, Tan Tock Seng Hospital, Singapore
| | | | - Zhiwen Joseph Lo
- Head and Senior Consultant, Vascular Surgery Service, Department of Surgery, Woodlands Health, Singapore
| |
Collapse
|
3
|
Silva-Santana G. Staphylococcus aureus: Dynamics of pathogenicity and antimicrobial-resistance in hospital and community environments - Comprehensive overview. Res Microbiol 2025; 176:104267. [PMID: 39805330 DOI: 10.1016/j.resmic.2025.104267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
This study reviews Staphylococcus aureus, a significant pathogen in both hospital and community-acquired infections, addressing its epidemiology, pathogenesis, and antimicrobial resistance. It highlights virulence mechanisms, such as adhesion factors, toxins, enzymes, and biofilms, which contribute to survival and immune evasion. The spread of resistance occurs through the transfer of mobile genetic elements like SCCmec and genetic mutations. The analysis also compares hospital and community strains, including multidrug-resistant lineages like MRSA, VISA, and VRSA. The study concludes that S. aureus presents a major public health challenge, requiring new therapeutic approaches and preventive strategies.
Collapse
Affiliation(s)
- Giorgio Silva-Santana
- Health Science Center, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
4
|
Honegger AL, Schweizer TA, Achermann Y, Bosshard PP. Antimicrobial Efficacy of Five Wound Irrigation Solutions in the Periprosthetic Joint Infection Microenvironment In Vitro and Ex Vivo. Antibiotics (Basel) 2025; 14:25. [PMID: 39858311 PMCID: PMC11762658 DOI: 10.3390/antibiotics14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/16/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Periprosthetic joint infections (PJI) are difficult to treat due to biofilm formation on implant surfaces and the surrounding tissue, often requiring removal or exchange of prostheses along with long-lasting antibiotic treatment. Antiseptic irrigation during revision surgery might decrease bacterial biofilm load and thereby improve treatment success. This in vitro study investigated and compared the effect of five advanced wound irrigation solutions to reduce bacterial burden in the PJI microenvironment. Methods: We treated in vitro biofilms grown on titanium alloy implant discs with clinical bacterial strains isolated from patients with PJIs, as well as abscess communities in a plasma-supplemented collagen matrix. The biofilms were exposed for 1 min to the following wound irrigation solutions: Preventia®, Prontosan®, Granudacyn®, ActiMaris® forte ('Actimaris'), and Octenilin®. We measured the bacterial reduction of these irrigation solutions compared to Ringer-Lactate and to the strong bactericidal but not approved Betaseptic solution. Additionally, ex vivo free-floating bacteria isolated directly from clinical sonication fluids were treated in the same way, and regrowth or lack of regrowth was recorded as the outcome. Results: Irrigation solutions demonstrated variable efficacy. The mean CFU log10 reduction was as follows: Octenilin, 3.07, Preventia, 1.17, Actimaris, 1.11, Prontosan, 1.03, and Granudacyn, 0.61. For SACs, the reduction was: Actimaris, 8.27, Octenilin, 0.58, Prontosan, 0.56, Preventia, 0.35, and Granudacyn, 0.24. Conclusions: All solutions achieved complete bacterial eradication in all tested ex vivo sonication fluids, except Granudacyn, which was ineffective in 33% of the samples (2 out of 6). Advanced wound irrigation solutions have the potential to reduce bacterial burden in the PJI microenvironment during revision surgery. However, their efficacy varies depending on bacterial species, growth state, and the composition of the irrigation solution. This underscores the importance of considering these factors when developing future PJI-specific irrigation solutions.
Collapse
Affiliation(s)
- Anja L. Honegger
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (A.L.H.); (T.A.S.); (P.P.B.)
| | - Tiziano A. Schweizer
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (A.L.H.); (T.A.S.); (P.P.B.)
- Department of Cranio-Maxillo-Facial and Oral Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Yvonne Achermann
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (A.L.H.); (T.A.S.); (P.P.B.)
- Internal Medicine, Hospital Zollikerberg, 8125 Zollikerberg, Switzerland
| | - Philipp P. Bosshard
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (A.L.H.); (T.A.S.); (P.P.B.)
| |
Collapse
|
5
|
Li JG, Zhang CJ, Liang LY, Lu TY, Zhong LG, Zhong WC, Niu CY, Sun J, Liao XP, Zhou YF. Assessment of anti-MRSA activity of auranofin and florfenicol combination: a PK/PD analysis. J Appl Microbiol 2024; 135:lxae299. [PMID: 39694699 DOI: 10.1093/jambio/lxae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
AIMS Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen with multidrug-resistant phenotypes increasingly prevalent in both human and veterinary clinics. This study evaluated the potential of auranofin (AF) as an antibiotic adjuvant to enhance the anti-MRSA activity of florfenicol (FFC) and established a pharmacokinetic/pharmacodynamic (PK/PD) model to compare the efficacy of FFC alone or in combination with AF against MRSA. METHODS AND RESULTS We observed an increased susceptibility and significant synergistic effects of MRSA to FFC in the presence of AF. The combination treatment of FFC and AF significantly inhibited MRSA biofilm formation and decreased the metabolic activity of mature biofilms. Importantly, AF fully restored the efficacy of FFC in both Galleria mellonella larvae and murine models. PK/PD studies demonstrated that the AUC24h/MIC targets required to achieve the bacteriostatic and bactericidal effects were significantly lower with the combination therapy compared to florfenicol monotherapy. CONCLUSIONS These results reveal the potential of AF as a novel adjuvant to improve the efficacy of FFC in treating MRSA invasive infections and provide valuable PK/PD insights for designing effective combination therapies.
Collapse
Affiliation(s)
- Jian-Guo Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Chuan-Jian Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Liu-Yan Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Ting-Yin Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Long-Gen Zhong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Wei-Cheng Zhong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Chao-Yan Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, China
| | - Yu-Feng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, China
| |
Collapse
|
6
|
Ruanchaiman S, Amornchai P, Wuthiekanun V, Langla S, Maroongruang P, Le KK, Blacksell SD. Effectiveness of Umonium 38 against Burkholderia pseudomallei, Escherichia coli, Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus (MRSA). BMC Infect Dis 2024; 24:212. [PMID: 38365598 PMCID: PMC10873964 DOI: 10.1186/s12879-024-09102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
AIMS We investigated the antibacterial efficacy of Umonium38 and Virkon® against Burkholderia pseudomallei, Escherichia coli, Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus (MRSA) up to 14 days following treatment. METHODS AND RESULTS Umonium38 was diluted to 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3%, tested against the bacterial strains at various contact times (15 min to 24 h), and incubated for up to 14 days. A minimum concentration of 0.5% Umonium38 with a contact time of 15 min effectively killed approximately 108 CFU/ml of all four bacterial species. No growth was observed on agar plates from day 0 until day 14 for all six concentrations. The bacteria were also inactivated by a 30-minute treatment time using Virkon® 1% solution. CONCLUSIONS Umonium38 effectively inactivates B. pseudomallei, E. coli, P. aeruginosa and MRSA at a concentration of ≥ 0.5% with a contact time of at least 15 min. The antimicrobial effect of Umonium38 remained for 14 days.
Collapse
Affiliation(s)
- Soiratchaneekorn Ruanchaiman
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Sayan Langla
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Peerapol Maroongruang
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Khanh Kim Le
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Stuart D Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand.
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ, Oxford, UK.
| |
Collapse
|
7
|
Li JG, Chen XF, Lu TY, Zhang J, Dai SH, Sun J, Liu YH, Liao XP, Zhou YF. Increased Activity of β-Lactam Antibiotics in Combination with Carvacrol against MRSA Bacteremia and Catheter-Associated Biofilm Infections. ACS Infect Dis 2023; 9:2482-2493. [PMID: 38019707 DOI: 10.1021/acsinfecdis.3c00338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
β-Lactam antibiotics are the mainstay for the treatment of staphylococcal infections, but their utility is greatly limited by the emergence and rapid dissemination of methicillin-resistant Staphylococcus aureus (MRSA). Herein, we evaluated the ability of the plant-derived monoterpene carvacrol to act as an antibiotic adjuvant, revitalizing the anti-MRSA activity of β-lactam antibiotics. Increased susceptibility of MRSA to β-lactam antibiotics and significant synergistic activities were observed with carvacrol-based combinations. Carvacrol significantly inhibited MRSA biofilms and reduced the production of exopolysaccharide, polysaccharide intercellular adhesin, and extracellular DNA and showed synergistic biofilm inhibition in combination with β-lactams. Transcriptome analysis revealed profound downregulation in the expression of genes involved in two-component systems and S. aureus infection. Mechanistic studies indicate that carvacrol inhibits the expression of staphylococcal accessory regulator sarA and interferes with SarA-mecA promoter binding that decreases mecA-mediated β-lactam resistance. Consistently, the in vivo experiment also supported that carvacrol restored MRSA sensitivity to β-lactam antibiotic treatments in both murine models of bacteremia and biofilm-associated infection. Our results indicated that carvacrol has a potential role as a combinatorial partner with β-lactam antibiotics to address MRSA infections.
Collapse
Affiliation(s)
- Jian-Guo Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Feng Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ting-Yin Lu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Yantai Fushan Center for Animal Disease Control and Prevention, Fushan, Yantai, Shandong 265500, China
| | - Shu-He Dai
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Feng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
10
|
Denysko TV, Nazarchuk OA, Gruzevskyi O, Bahniuk NÀ, Dmytriiev DV, Chornopyschuk RM, Bebyk VV. In vitro evaluation of the antimicrobial activity of antiseptics against clinical Acinetobacter baumannii strains isolated from combat wounds. Front Microbiol 2022; 13:932467. [PMID: 36267170 PMCID: PMC9577188 DOI: 10.3389/fmicb.2022.932467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Healthcare-associated infections (HCAIs) are among the most prominent medical problems worldwide. In the context of increasing antibiotic resistance globally, the use of antiseptics as the main active agent and potentiator of antibiotics for the treatment of purulent-inflammatory complications of traumatic wounds, burns, and surgical wounds can be considered to tackle opportunistic infections and their prevention during war. This study presents a comparative investigation of the antimicrobial efficacy of antiseptics used for surgical antisepsis and antiseptic treatment of skin, mucous membranes, and wounds against multidrug-resistant clinical isolates of Acinetobacter baumannii as a wound pathogen of critical priority (according to the WHO). It was found that strains of A. baumannii, which have natural and acquired resistance to antimicrobial drugs, remain susceptible to modern antiseptics. Antiseptic drugs based on decamethoxine, chlorhexidine, octenidine, polyhexanide, and povidone-iodine 10% and 2% provide effective bactericidal activity against A. baumannii within the working concentrations of these drugs. Chlorhexidine and decamethoxine can inhibit biofilm formation by A. baumannii cells. In terms of bactericidal properties and biofilm formation inhibition, chlorhexidine and decamethoxine are the most effective of all tested antiseptics.
Collapse
Affiliation(s)
- Tetyana Valeriyivna Denysko
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Oleksandr Adamovych Nazarchuk
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
- *Correspondence: Oleksandr Adamovych Nazarchuk,
| | - Oleksandr Gruzevskyi
- Department of Microbiology, Virology and Immunology Odessa National Medical University, Odessa, Ukraine
| | - Nataliia Ànatoliivna Bahniuk
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Dmytro Valeriiovych Dmytriiev
- Department of Anesthesiology, Intensive care, and Emergency Medicine, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | | | - Vira Volodymyrivna Bebyk
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| |
Collapse
|
11
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
12
|
Asharaf S, Chakraborty K. Pharmacological potential of seaweed-associated heterotrophic Firmicutes. Lett Appl Microbiol 2022; 75:1042-1054. [PMID: 35771159 DOI: 10.1111/lam.13780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Seaweed-associated bacterial symbionts are sources of potential pharmacological properties. The present study resulted in the culture-dependent isolation of bioactive heterotrophs belonging to the bacterial phylum Firmicutes, which were dominated more than 30% of the 127 cultivable isolates, among which 23 of them showed potential antimicrobial activities against a wide range of pathogens. The symbionts isolated from the seaweed Sargassum wightii showed significant bioactivity. Those were characterised as Bacillus safensis MTCC13040, B. valismortis MTCC13041, B. velezensis MTCC13044, B. methylotrophicus MTCC13042, Oceanobacillus profundus MTCC13045, B. tequilensis MTCC13043, and B. altitudinis MTCC13046. The organic extracts of the studied isolates showed potential antimicrobial properties against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci (minimum inhibitory concentration 6.25-12.5 μg ml-1 ). The organic extract of B. altitudinis MTCC13046 displayed significantly greater radical quenching ability (IC90 133 μg ml-1 , p < 0.05) other than attenuating hydroxymethyl glutaryl coenzyme A reductase (IC90 10.21 μg ml-1 , p < 0.05) and angiotensin converting enzyme-1 (IC90 498 μg ml-1 , p < 0.05) relative to other studied heterotrophs. The organic extract of B. tequilensis MTCC13043 displayed significantly greater attenuation potential against pro-inflammatory 5-lipooxygenase (IC90 5.94 μg ml-1 , p < 0.05) and dipeptidyl peptidase-4 (IC90 271 μg ml-1 , p < 0.05). The seaweed-associated B. altitudinis MTCC13046 and B. tequilensis MTCC13043 could be used to develop promising pharmacological leads.
Collapse
Affiliation(s)
- Sumayya Asharaf
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No, 1603, Cochin, -682018, Kerala State, India.,Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala State, India
| | - Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No, 1603, Cochin, -682018, Kerala State, India
| |
Collapse
|
13
|
Isolation and Analysis of the Biological Characteristics of a Novel Bacteriophage vB_SauP_P992 Against Staphylococcus aureus. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Staphylococcus aureus is one of the most virulent pathogens inducing various diseases in humans and animals. Disturbingly, the degree and rate of drug resistance in this pathogen have sharply increased and have become a global concern. Objectives: This study analyzed the lytic activity and the biological characteristics of a mitomycin C-induced bacteriophage from S. aureus isolated and identified from hospital sewage to explore novel antibacterial therapeutic strategies for the clinical treatment of drug-resistant S. aureus, including urinary tract infections caused by MRSA strains. Methods: The new bacteriophage vB_SauP_P992, which can effectively lyse the MRSA strain, was successfully isolated and purified using the double agar plate method. In this regard, pH sensitivity, one-step growth curve, the optimal multiplicity of infection (MOI), thermo-sensitivity, phage host range, and the effects of organic reagents on phage activity were determined. Results: Electron microscopic results showed that the bacteriophage head was hexagonal with a non-contractile tail and could form a single, neatly-bordered plaque. Moreover, the optimal MOI was 0.1. The one-step growth curve showed a bacteriophage incubation period of about 20 min, a lysis period of 90 min, and a burst size of about 65.8 PFU per infected cell. The bacteriophage vB_SauP_P992 had acceptable thermal stability, pH stability, and resistance to physical and chemical factors, indicating a bacteriophage with no capsule. Conclusions: With an intense lytic activity and acceptable stability, this novel bacteriophage lays a solid foundation to enrich the bacteriophage library and better prevent and control drug-resistant S. aureus infections.
Collapse
|
14
|
Chakraborty K, Kizhakkekalam VK, Joy M, Chakraborty RD. Novel amylomacins from seaweed-associated Bacillus amyloliquefaciens as prospective antimicrobial leads attenuating resistant bacteria. World J Microbiol Biotechnol 2021; 37:200. [PMID: 34664128 DOI: 10.1007/s11274-021-03161-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
The rise in antibiotic-resistant bacterial strains prompting nosocomial infections drives the search for new bioactive substances of promising antibacterial properties. The surfaces of seaweeds are rich in heterotrophic bacteria with prospective antimicrobial substances. This study aimed to isolate antibacterial leads from a seaweed-associated bacterium. Heterotrophic Bacillus amyloliquefaciens MTCC 12716 associated with the seaweed Hypnea valentiae, was isolated and screened for antimicrobial properties against drug-resistant pathogens. The bacterial crude extract was purified and three novel amicoumacin-class of isocoumarin analogues, 11'-butyl acetate amicoumacin C (amylomacin A), 4'-hydroxy-11'-methoxyethyl carboxylate amicoumacin C (amylomacin B) and 11'-butyl amicoumacin C (amylomacin C) were isolated to homogeneity. The studied amylomacins possessed potential activities against Pseudomonas aeruginosa, vancomycin-resistant Enterococcus faecalis, Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus, and Shigella flexneri with a range of minimum inhibitory concentration values from 0.78 to 3.12 µg/mL, although standard antibiotics ampicillin and chloramphenicol were active at 6.25-25 µg/mL. Noticeably, the amylomacin compound encompassing 4'-hydroxy-11'-methoxyethyl carboxylate amicoumacin C functionality (amylomacin B), displayed considerably greater antagonistic activities against methicillin-resistant S. aureus, vancomycin-resistant E. faecalis, Vibrio parahaemolyticus, Escherichia coli, and K. pneumoniae (minimum inhibitory concentration 0.78 μg/mL) compared to the positive controls and other amylomacin analogues. Antimicrobial properties of the amylomacins, coupled with the presence of polyketide synthase-I/non-ribosomal peptide synthetase hybrid gene attributed the bacterium as a promising source of antimicrobial compounds with pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, Kerala, 682018, India.
| | - Vinaya Kizhakkepatt Kizhakkekalam
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, Kerala, 682018, India
- Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala State, India
| | - Minju Joy
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, Kerala, 682018, India
| | - Rekha Devi Chakraborty
- Crustacean Fisheries Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| |
Collapse
|
15
|
Huang J, Fan Q, Guo M, Wu M, Wu S, Shen S, Wang X, Wang H. Octenidine dihydrochloride treatment of a meticillin-resistant Staphylococcus aureus biofilm-infected mouse wound. J Wound Care 2021; 30:106-114. [PMID: 33573482 DOI: 10.12968/jowc.2021.30.2.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study sought to estimate the effect of a liquid octenidine dihydrochloride (OCT)-impregnated gauze dressing in the treatment of meticillin-resistant Staphylococcus aureus (MRSA) biofilm-infected wounds. METHOD In this animal study, a six-millimetre punch full-thickness wound on each mouse back was inoculated with MRSA suspension, and then covered with a Tegaderm (3M Health Care, US) dressing for an established biofilm model. Animals were divided into three groups for topical application: control group (treated with phosphate-buffered saline, PBS); mupirocin group (treated with 2% mupirocin); and OCT group (treated with OCT). All applications were administrated once 24 hours post-wounding. The bioburden was determined by counting colony-forming units (cfus) and the biofilm architecture was viewed using fluorescent staining and scanning electron microscopy (SEM) on day two. The tissue repair was evaluated histologically and the related genes were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) on day 15. RESULTS The results suggested OCT accelerated healing and reduced by >3.6 log cfu/g bacterial counts on the wounds relative to the PBS-treated control (p<0.05). Histological analysis showed OCT-treated tissue exhibited lower burden of the inflammatory cells, more mature collagen fibres and well-defined epithelialisation. LIVE/DEAD fluorescent staining and SEM confirmed OCT induced a substantial destruction to biofilm structure. RT-qPCR further demonstrated that OCT therapy could inhibit the expression of MRSA and its biofilm genes by nearly 100% (p<0.05). CONCLUSION This investigation provides a rare in vivo experimental basis for OCT improvement on MRSA-infected wound healing and the superior efficacy implies OCT topical application may represent an ideal choice to address established bacterial biofilm in hard-to-heal wounds.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China
| | - Qing Fan
- Department of Dermatology, Shanghai Fengxian District Hospital, Shanghai (201499), PR China
| | - Mingquan Guo
- Shanghai Institute of Bacteriophage and Drug Resistance, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201514, PR China
| | - Minfeng Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China
| | - Shutian Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China
| | - Shuzhan Shen
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China
| | - Xiuli Wang
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China
| | - Hongwei Wang
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
16
|
Dydak K, Junka A, Dydak A, Brożyna M, Paleczny J, Fijalkowski K, Kubielas G, Aniołek O, Bartoszewicz M. In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed with Antiseptics against Biofilm Formed by Pathogens Isolated from Chronic Wounds. Int J Mol Sci 2021; 22:3996. [PMID: 33924416 PMCID: PMC8069587 DOI: 10.3390/ijms22083996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
Local administration of antiseptics is required to prevent and fight against biofilm-based infections of chronic wounds. One of the methods used for delivering antiseptics to infected wounds is the application of dressings chemisorbed with antimicrobials. Dressings made of bacterial cellulose (BC) display several features, making them suitable for such a purpose. This work aimed to compare the activity of commonly used antiseptic molecules: octenidine, polyhexanide, povidone-iodine, chlorhexidine, ethacridine lactate, and hypochlorous solutions and to evaluate their usefulness as active substances of BC dressings against 48 bacterial strains (8 species) and 6 yeast strains (1 species). A silver dressing was applied as a control material of proven antimicrobial activity. The methodology applied included the assessment of minimal inhibitory concentrations (MIC) and minimal biofilm eradication concentration (MBEC), the modified disc-diffusion method, and the modified antibiofilm dressing activity measurement (A.D.A.M.) method. While in 96-well plate-based methods (MIC and MBEC assessment), the highest antimicrobial activity was recorded for chlorhexidine, in the modified disc-diffusion method and in the modified A.D.A.M test, povidone-iodine performed the best. In an in vitro setting simulating chronic wound conditions, BC dressings chemisorbed with polyhexanide, octenidine, or povidone-iodine displayed a similar or even higher antibiofilm activity than the control dressing containing silver molecules. If translated into clinical conditions, the obtained results suggest high applicability of BC dressings chemisorbed with antiseptics to eradicate biofilm from chronic wounds.
Collapse
Affiliation(s)
- Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Agata Dydak
- Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland;
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Karol Fijalkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastow 45, 70-311 Szczecin, Poland;
| | - Grzegorz Kubielas
- Faculty of Health Sciences, Wroclaw Medical University, 50-996 Wroclaw, Poland;
| | - Olga Aniołek
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland;
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| |
Collapse
|
17
|
Reda B, Dudek J, Martínez-Hernández M, Hannig M. Effects of Octenidine on the Formation and Disruption of Dental Biofilms: An Exploratory In Situ Study in Healthy Subjects. J Dent Res 2021; 100:950-959. [PMID: 33733895 DOI: 10.1177/0022034521999044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dental biofilms are highly structured, complex multispecies communities that, if left untreated, lead to severe oral complications such as caries and periodontal diseases. Therefore, antibiofilm agents are often recommended for both preventive and therapeutic measures. However, biofilm management can be challenging due to the low sensitivity of biofilms to antimicrobial treatments. Octenidine dihydrochloride (OCT) is a highly effective antibacterial agent. Because the OCT antibiofilm efficacy has not been studied in situ, this exploratory crossover study aimed to evaluate the effects of OCT mouth rinsing on biofilm formation and on the disruption of mature biofilms. Moreover, a comparison to the gold-standard chlorhexidine (CHX) was conducted. The biofilms were formed intraorally by 5 healthy volunteers on enamel specimens fixed to acrylic splints. For biofilm formation analysis, OCT, CHX, or water rinses were applied for 30 s every 12 h. The samples evaluation took place at 24-and 48-h time points. For biofilm disruption analysis, sample assessment was performed before and directly after the first OCT or CHX rinse on 48-h mature biofilms. A second rinse was carried out 12 h later. The last assessment was applied to 72-h mature biofilms. The biofilms were analyzed by fluorescence microscopy and transmission electron microscopy. The results showed OCT significantly reducing biofilm formation and bacterial vitality in situ. Simultaneously, the biofilm thickness was strongly decreased. Moreover, a single application of OCT to a 48-h mature biofilm induced substantial biofilm disruption. In addition, the efficacy of OCT compared favorably to CHX. These findings show that OCT rinses prevent biofilm formation and disrupt preexisting mature biofilms formed by healthy subjects. This work suggests that OCT might be used for dental biofilm management as a part of the medical treatment of oral diseases. Future studies with a larger subject heterogeneity and number are needed to confirm the observed OCT effects.
Collapse
Affiliation(s)
- B Reda
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - J Dudek
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - M Martínez-Hernández
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.,Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City, Mexico
| | - M Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| |
Collapse
|
18
|
Loose M, Naber KG, Purcell L, Wirth MP, Wagenlehner FME. Anti-Biofilm Effect of Octenidine and Polyhexanide on Uropathogenic Biofilm-Producing Bacteria. Urol Int 2021; 105:278-284. [PMID: 33401282 DOI: 10.1159/000512370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND A catheter allowing a release of antibacterial substances such as antiseptics into the bladder could be a new way of preventing biofilm formation and subsequent catheter-associated urinary tract infections. METHODS Minimal inhibitory and bactericidal concentration (MIC/MBC) determinations in cation-adjusted Mueller-Hinton broth and artificial urine were performed for 4 antiseptics against 3 uropathogenic biofilm producers, Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis. Furthermore, effects of octenidine and polyhexanide against catheter biofilm formation were determined by quantification of biofilm-producing bacteria. RESULTS Sodium hypochlorite showed MIC/MBC values between 200 and 800 mg/L for all strains tested. Triclosan was efficient against E. coli and P. mirabilis (MIC ≤2.98 mg/L) but ineffective against P. aeruginosa. Octenidine and polyhexanide showed antibacterial activity against all 3 species tested (MIC 1.95-7.8 and 3.9-31.25 mg/L). Both octenidine and polyhexanide were able to prevent biofilm formation on catheter segments in a concentration dependent manner. Furthermore, adding 250 mg/L of each biocide disrupted biofilms formed by E. coli and P. mirabilis, whereas even 500 mg/L was not sufficient to completely destroy P. aeruginosa biofilms. CONCLUSION Octenidine- and polyhexanide-containing antiseptics showed a broad effect against typical uropathogenic biofilm producers even in high dilutions. This study provides a basis for further investigation of the potential of octenidine and polyhexanide as prophylaxis or treatment of catheter biofilms.
Collapse
Affiliation(s)
- Maria Loose
- Clinic for Urology, Paediatric Urology and Andrology, Justus-Liebig University of Giessen, Giessen, Germany,
| | - Kurt G Naber
- Department of Urology, Technical University of Munich, Munich, Germany
| | | | - Manfred P Wirth
- Department of Urology, Technical University of Dresden, Dresden, Germany
| | - Florian M E Wagenlehner
- Clinic for Urology, Paediatric Urology and Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
19
|
Günther F, Blessing B, Dapunt U, Mischnik A, Mutters NT. Ability of chlorhexidine, octenidine, polyhexanide and chloroxylenol to inhibit metabolism of biofilm-forming clinical multidrug-resistant organisms. J Infect Prev 2020; 22:12-18. [PMID: 33841557 DOI: 10.1177/1757177420963829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/15/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose This in vitro study was designed to determine if standard antiseptics used for skin and environmental surface cleansing can disrupt the metabolic activity (as a measure of viability) of multidrug-resistant gram-negative bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus isolates within their native biofilms. Methods Sixty clinical isolates of multidrug-resistant bacteria were selected for testing in different chlorhexidine gluconate, octenidine, polyhexanide and chloroxylenol concentrations. Metabolic inhibition of biofilm for each clinical isolate was analysed using a biofilm viability assay. Results Chlorhexidine gluconate (mean = 83.8% ± 9.8%) and octenidine (mean = 84.5% ± 6.8%) showed the greatest efficacy against biofilms of the tested microorganisms, with the greatest efficacies against MRSA. The antiseptics demonstrated the least efficacy against biofilms of Pseudomonas aeruginosa. Conclusion Chlorhexidine gluconate and octenidine showed the greatest level of bacterial metabolic inhibition and were statistically equivalent. Polyhexanide was more effective than chloroxylenol, but both were inferior to chlorhexidine gluconate and octenidine against the tested organisms.
Collapse
Affiliation(s)
- Frank Günther
- Institute of Medical Microbiology and Hospital Hygiene, Division of Infection Control, University of Marburg, Marburg, Germany.,Heidelberg University Hospital, Centre of Infectious Diseases, Heidelberg, Germany
| | - Brigitte Blessing
- Heidelberg University Hospital, Centre of Infectious Diseases, Heidelberg, Germany
| | - Ulrike Dapunt
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Nico T Mutters
- Heidelberg University Hospital, Centre of Infectious Diseases, Heidelberg, Germany.,Institute for Hygiene and Public Health, Bonn University Hospital, Bonn, Germany
| |
Collapse
|
20
|
Addressing the challenges in antisepsis: focus on povidone iodine. Int J Antimicrob Agents 2020; 56:106064. [DOI: 10.1016/j.ijantimicag.2020.106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/21/2020] [Accepted: 06/21/2020] [Indexed: 12/15/2022]
|
21
|
Encapsulation of octenidine hydrochloride into bioresorbable polyesters for extended antimicrobial activity. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Pharmacological properties of some mangrove sediment-associated bacillus isolates. Arch Microbiol 2020; 203:67-76. [PMID: 32749660 DOI: 10.1007/s00203-020-01999-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Mangrove sediment-associated bacteria are of significantly important in the field of medicine and pharmaceuticals as new promising sources of biologically active pharmacophores due to the extreme conditions, such as high salt concentration and soil anoxia. The sediment bacteria associated with Acanthus ilicifolius and Avicennia officinalis collected from the Mangalavanam mangrove ecosystem of the Kerala State of India were evaluated using various in vitro models for the assessment of their pharmacological properties. The bacteria exhibiting significant antioxidant and antimicrobial activities were isolated, identified, and characterized by the integrated microbiological, biochemical, and 16S rRNA sequencing. Among the varied bacteria isolated from mangrove sediments, Bacillus amyloliquefaciens MBMS5 (GenBank accession number MK765025) exhibited significant antimicrobial activities against various pathogenic bacteria, such as Aeromonas caviae, Vibrio parahemolyticus, and methicillin-resistant Staphylococcus aureus. The extracellular extracts of B. amyloliquefaciens MBMS5 exhibited potential antioxidant activity against free radical species coupled with anti-inflammatory property as displayed by the attenuation activity against pro-inflammatory 5-lipoxygenase.
Collapse
|
23
|
Silva-Santana G, Aguiar-Alves F, Lenzi-Almeida KC, Lopes VGS, Silva LE, Hirata Júnior R, Viana VG, Simpson-Lourêdo L, Escaleira ACN, Gerth JC, Almosny NRP, Souza AM, Mattos-Guaraldi AL. Pathological profiles of systemic infections by Panton-Valentine leukocidin-positive, methicillin-resistant Staphylococcus aureus strains in a murine model. J Appl Microbiol 2020; 128:1820-1842. [PMID: 31999872 DOI: 10.1111/jam.14598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AIMS Staphylococcus aureus is one of the most common pathogens in hospital environment and community. Panton-Valentine leukocidin (PVL) production is clinically associated with skin abscesses, soft tissues infections, bacteraemia and sepsis. This study aimed to investigate the effects of the presence of genes lukF/S-PV coding for PVL, in histological and haematological features during systemic infection, using a Swiss mice experimental model. METHODS AND RESULTS Experiments were performed using 25 mice distributed into five experimental groups, intravenously inoculated with 50 µl suspensions at density 1·0 × 107 CFU per ml of strains: methicillin-susceptible (MSSA) and pvl-negative strains isolated from nasal colonization; MSSA pvl-positive strains isolated from nasal colonization; methicillin-resistant (MRSA) and pvl-positive strains isolated from peripheral blood of a patient with severe pulmonary infection; and a MRSA pvl-positive strains isolated from a peripheral blood culture of a patient with bacteraemia. Haematological analysis was performed at 24, 48, 72 and 96 h post-infection. Morphoanatomy and histopathological analyses were performed at 96 h post-infection. For all S. aureus strains tested, the capability of intravenous dissemination and survival into mice tissues was demonstrated. Inflammatory processes at different levels were related to the presence of pvl genes, and included alterations in the format, size and colour of the organs. Staphylococcus aureus pvl-positive strains were detected in greater numbers in the organs of the infected animals. CONCLUSIONS The pvl-positive strains isolated from blood cultures were capable to induce the greatest modifications in both haematological and histopathological profiles, and seemed to aggravate the systemic infections. SIGNIFICANCE AND IMPACT OF THE STUDY These findings are valuable in characterizing infections caused by S. aureus in humans and murine.
Collapse
Affiliation(s)
- G Silva-Santana
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brasil.,Health Sciences Center, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brasil
| | - F Aguiar-Alves
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brasil
| | - K C Lenzi-Almeida
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brasil.,Environmental Science and Conservation Department, College of Medicine, Federal University of Rio de Janeiro, Macaé, Brazil
| | - V G S Lopes
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brasil
| | - L E Silva
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, Brasil.,Department of Statistics, Institute of Mathematics and Statistics, Fluminense Federal University, Niterói, Brazil
| | - R Hirata Júnior
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brasil.,Microbiology, Immunology and Parasitology Department, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - V G Viana
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brasil.,Microbiology, Immunology and Parasitology Department, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Simpson-Lourêdo
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brasil.,Microbiology, Immunology and Parasitology Department, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C N Escaleira
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brasil.,Microbiology, Immunology and Parasitology Department, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J C Gerth
- Pathology and Veterinary Clinic Departament, College of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
| | - N R P Almosny
- Pathology and Veterinary Clinic Departament, College of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
| | - A M Souza
- Pathology and Veterinary Clinic Departament, College of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
| | - A L Mattos-Guaraldi
- Health Sciences Center, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brasil.,Microbiology, Immunology and Parasitology Department, College of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Yuan Z, Dai Y, Ouyang P, Rehman T, Hussain S, Zhang T, Yin Z, Fu H, Lin J, He C, Lv C, Liang X, Shu G, Song X, Li L, Zou Y, Yin L. Thymol Inhibits Biofilm Formation, Eliminates Pre-Existing Biofilms, and Enhances Clearance of Methicillin-Resistant Staphylococcus aureus (MRSA) in a Mouse Peritoneal Implant Infection Model. Microorganisms 2020; 8:microorganisms8010099. [PMID: 31936809 PMCID: PMC7023310 DOI: 10.3390/microorganisms8010099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common human pathogen that causes several difficult-to-treat infections, including biofilm-associated infections. The biofilm-forming ability of S. aureus plays a pivotal role in its resistance to most currently available antibiotics, including vancomycin, which is the first-choice drug for treating MRSA infections. In this study, the ability of thymol (a monoterpenoid phenol isolated from plants) to inhibit biofilm formation and to eliminate mature biofilms, was assessed. We found that thymol could inhibit biofilm formation and remove mature biofilms by inhibiting the production of polysaccharide intracellular adhesin (PIA) and the release of extracellular DNA (eDNA). However, cotreatment with thymol and vancomycin was more effective at eliminating MRSA biofilms, in a mouse infection model, than monotherapy with vancomycin. Comparative histopathological analyses revealed that thymol reduced the pathological changes and inflammatory responses in the wounds. Assessments of white blood cell counts and serum TNF-α and IL-6 levels showed reduced inflammation and an increased immune response following treatment with thymol and vancomycin. These results indicate that combinatorial treatment with thymol and vancomycin has the potential to serve as a more effective therapy for MRSA biofilm-associated infections than vancomycin monotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lizi Yin
- Correspondence: ; Tel.: +86-170-9284-8186
| |
Collapse
|
25
|
Yuan Z, Ouyang P, Gu K, Rehman T, Zhang T, Yin Z, Fu H, Lin J, He C, Shu G, Liang X, Yuan Z, Song X, Li L, Zou Y, Yin L. The antibacterial mechanism of oridonin against methicillin-resistant Staphylococcus aureus (MRSA). PHARMACEUTICAL BIOLOGY 2019; 57:710-716. [PMID: 31622118 PMCID: PMC8871620 DOI: 10.1080/13880209.2019.1674342] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/22/2019] [Accepted: 09/22/2019] [Indexed: 05/29/2023]
Abstract
Context: Methicillin-resistant Staphylococcus aureus (MRSA) is a very harmful bacterium. Oridonin, a component in Rabdosia rubescens (Hemsl.) Hara (Lamiaceae), is widely used against bacterial infections in China. Objective: We evaluated oridonin effects on MRSA cell membrane and wall, protein metabolism, lactate dehydrogenase (LDH), DNA and microscopic structure. Materials and methods: Broth microdilution and flat colony counting methods were used to measure oridonin minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against USA300 strain. Electrical conductivity and DNA exosmosis were analysed to study oridonin effects (128 μg/mL) on cell membrane and wall for 0, 1, 2, 4 and 6 h. Sodium dodecyl sulphate polyacrylamide gel electrophoresis was used to detect effects on soluble protein synthesis after 6, 10 and 16 h. LDH activity was examined with an enzyme-linked immunosorbent assay. Effects of oridonin on USA300 DNA were investigated with DAPI staining. Morphological changes in MRSA following oridonin treatment were determined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: Oridonin MIC and MBC values against USA300 were 64 and 512 μg/mL, respectively. The conductivity and DNA exosmosis level of oridonin-treated USA300 improved by 3.20±0.84% and increased by 58.63 ± 1.78 μg/mL, respectively. LDH and soluble protein levels decreased by 30.85±7.69% and 27.51 ± 1.39%, respectively. A decrease in fluorescence intensity was reported with time. Oridonin affected the morphology of USA300. Conclusions: Oridonin antibacterial mechanism was related to changes in cell membrane and cell wall permeability, disturbance in protein and DNA metabolism, and influence on bacterial morphology. Thus, oridonin may help in treating MRSA infection.
Collapse
Affiliation(s)
- Zhongwei Yuan
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Kexin Gu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Tayyab Rehman
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Tianyi Zhang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Hualin Fu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Juchun Lin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Zhixiang Yuan
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| |
Collapse
|
26
|
Stewart PS, Parker AE. Measuring Antimicrobial Efficacy against Biofilms: a Meta-analysis. Antimicrob Agents Chemother 2019; 63:e00020-19. [PMID: 30803974 PMCID: PMC6496104 DOI: 10.1128/aac.00020-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Through a statistical meta-analysis of published data on antimicrobial efficacy against biofilms formed by two common bacterial species, it was concluded that the particular experimental method used is the most important factor determining the outcome of the test. An expected dose-response relationship (greater killing with higher doses or longer treatment times) was observed for data sets derived from a single method but was not observed when data from multiple studies using diverse methods were pooled. Method-specific properties such as the surface area/volume ratio, areal biofilm cell density, and microbial species were shown to influence quantitative measurements of biofilm killing. A better appreciation of the method characteristics that affect antibiofilm efficacy tests could aid decision-making related to investment in research and development and regulatory approvals for biofilm control strategies. The following recommendations are offered to those working in research and development related to biofilm control: (i) report the log reduction, surface area/volume ratio, and biofilm areal cell density; (ii) include data for a benchmark agent, making sure that this agent performs competitively at the dose tested; (iii) measure the dose-response relationship, i.e., make measurements at multiple treatment concentrations or dose durations; and (iv) use a standardized method in addition to research methods.
Collapse
Affiliation(s)
- Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Albert E Parker
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Mathematical Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
27
|
Granata G, Stracquadanio S, Consoli GML, Cafiso V, Stefani S, Geraci C. Synthesis of a calix[4]arene derivative exposing multiple units of fucose and preliminary investigation as a potential broad-spectrum antibiofilm agent. Carbohydr Res 2019; 476:60-64. [PMID: 30913401 DOI: 10.1016/j.carres.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
Calix[4]arene derivative (1), bearing four α-l-C-fucosyl units linked via a flexible spacer, and a monomeric analogous (2) bearing a single moiety of fucose, were synthesized. Compounds 1 and 2 were assayed for antibiofilm activity against Pseudomonas aeruginosa (Gram-) and Staphylococcus epidermidis (Gram+). The macrocyclic compound 1 showed very high percentage of biofilm inhibition against two different bacterial strains while compound 2, which does not possess a macrocyclic structure, showed only moderate biofilm inhibition against P. aeruginosa and no biofilm inhibition against S. epidermidis. The fucose multivalent derivative could be a new broad-spectrum antibiofilm agent.
Collapse
Affiliation(s)
- Giuseppe Granata
- Istituto di Chimica Biomolecolare - C.N.R, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | | | - Viviana Cafiso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Corrada Geraci
- Istituto di Chimica Biomolecolare - C.N.R, Via Paolo Gaifami 18, 95126, Catania, Italy.
| |
Collapse
|
28
|
Staneviciute E, Na'amnih W, Kavaliauskas P, Prakapaite R, Ridziauskas M, Kevlicius L, Kirkliauskiene A, Zabulis V, Urboniene J, Triponis V. New in vitro model evaluating antiseptics' efficacy in biofilm-associated Staphylococcus aureus prosthetic vascular graft infection. J Med Microbiol 2019; 68:432-439. [PMID: 30735113 DOI: 10.1099/jmm.0.000939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To develop a new in vitro model of prosthetic vascular graft infection (PVGI) and evaluate antimicrobial and biofilm-disrupting efficacy of 0.1% octenidine dihydrochloride, 10% povidone-iodine and 0.02% chlorhexidine digluconate against biofilm-producing Staphylococcus aureus (S. aureus). METHODOLOGY The effect of antiseptics on the microscopic integrity and antimicrobial effect on S. aureus biofilms was tested by growing biofilms on glass coverslips, in the modified Lubbock chronic wound pathogenic biofilm (LCWPB) model and on the surface of vascular grafts using qualitive and quantitative methods as well as by scanning electron microscopy (SEM). RESULTS Chlorhexidine worked best on destroying the integrity of S. aureus biofilms (P=0.002). In the LCWPB model, octenidine and povidone-iodine eradicated all S. aureus colonies (from 1.79 × 109 c.f.u. ml-1 to 0). In the newly developed PVGI model, the grafts were successfully colonized with biofilms as seen in SEM images. All antiseptics demonstrated significant antimicrobial efficacy, decreasing colony counts by seven orders of magnitude (P=0.002). Octenidine was superior to povidone-iodine (P=0.009) and chlorhexidine (P=0.041). CONCLUSION We implemented an innovative in vitro model on S. aureus biofilms grown in different settings, including a clinically challenging situation of PVGI. The strongest antimicrobial activity against S. aureus biofilms, grown on prosthetic vascular grafts, was showed by 0.1% octenidine dihydrochloride. We suggest that combinational therapy of antiseptics between chlorhexidine with either povidone-iodine or octenidine dihydrochloride should be tested in further experiments. Despite the need of further studies, our findings of these in vitro experiments will assist the management of vascular graft infection in clinical cases.
Collapse
Affiliation(s)
- Elvyra Staneviciute
- 1 Vilnius University Faculty of Medicine, M. K. Ciurlionio str. 21, Vilnius, Lithuania
| | - Wasef Na'amnih
- 2 Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Povilas Kavaliauskas
- 3 Lithuanian University of Health Sciences Biological Research Center, Tilzes str. 18, Kaunas, Lithuania.,4 Institute for Infectious Diseases and Pathogenic Microbiology, Birstono str. 38A, Prienai, Lithuania
| | - Ruta Prakapaite
- 4 Institute for Infectious Diseases and Pathogenic Microbiology, Birstono str. 38A, Prienai, Lithuania.,5 Vilnius University Life Sciences Center, Sauletekio av. 7, Vilnius, Lithuania
| | - Martynas Ridziauskas
- 1 Vilnius University Faculty of Medicine, M. K. Ciurlionio str. 21, Vilnius, Lithuania
| | - Lukas Kevlicius
- 1 Vilnius University Faculty of Medicine, M. K. Ciurlionio str. 21, Vilnius, Lithuania
| | - Agne Kirkliauskiene
- 1 Vilnius University Faculty of Medicine, M. K. Ciurlionio str. 21, Vilnius, Lithuania
| | - Vaidotas Zabulis
- 6 Vilnius University Hospital Santaros Klinikos, Santariskiu str. 2, Vilnius, Lithuania
| | - Jurgita Urboniene
- 6 Vilnius University Hospital Santaros Klinikos, Santariskiu str. 2, Vilnius, Lithuania
| | - Vytautas Triponis
- 1 Vilnius University Faculty of Medicine, M. K. Ciurlionio str. 21, Vilnius, Lithuania
| |
Collapse
|
29
|
Singh AK, Bai X, Amalaradjou MAR, Bhunia AK. Antilisterial and Antibiofilm Activities of Pediocin and LAP Functionalized Gold Nanoparticles. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
30
|
Pharmacological properties of marine macroalgae-associated heterotrophic bacteria. Arch Microbiol 2018; 201:505-518. [DOI: 10.1007/s00203-018-1592-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/28/2018] [Accepted: 10/28/2018] [Indexed: 11/25/2022]
|
31
|
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9:522-554. [PMID: 28362216 PMCID: PMC5955472 DOI: 10.1080/21505594.2017.1313372] [Citation(s) in RCA: 818] [Impact Index Per Article: 116.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host.
Collapse
Affiliation(s)
- Ranita Roy
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Monalisa Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Gianfranco Donelli
- b Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Vishvanath Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
32
|
Coaguila-Llerena H, Stefanini da Silva V, Tanomaru-Filho M, Guerreiro Tanomaru JM, Faria G. Cleaning capacity of octenidine as root canal irrigant: A scanning electron microscopy study. Microsc Res Tech 2018; 81:523-527. [DOI: 10.1002/jemt.23007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Hernán Coaguila-Llerena
- Araraquara School of Dentistry, Department of Restorative Dentistry; UNESP - São Paulo State University; Araraquara SP Brazil
| | - Virgínia Stefanini da Silva
- Araraquara School of Dentistry, Department of Restorative Dentistry; UNESP - São Paulo State University; Araraquara SP Brazil
| | - Mario Tanomaru-Filho
- Araraquara School of Dentistry, Department of Restorative Dentistry; UNESP - São Paulo State University; Araraquara SP Brazil
| | | | - Gisele Faria
- Araraquara School of Dentistry, Department of Restorative Dentistry; UNESP - São Paulo State University; Araraquara SP Brazil
| |
Collapse
|
33
|
Thet NT, Wallace L, Wibaux A, Boote N, Jenkins ATA. Development of a mixed-species biofilm model and its virulence implications in device related infections. J Biomed Mater Res B Appl Biomater 2018. [PMID: 29520965 DOI: 10.1002/jbm.b.34103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is becoming increasingly accepted that to understand and model the bacterial colonization and infection of abiotic surfaces requires the use of a biofilm model. There are many bacterial colonizations by at least two primary species, however this is difficult to model in vitro. This study reports the development of a simple mixed-species biofilm model using strains of two clinically significant bacteria: Staphylococcus aureus and Pseudomonas aeruginosa grown on nanoporous polycarbonate membranes on nutrient agar support. Scanning electron microscopy revealed the complex biofilm characteristics of two bacteria blending in extensive extracellular matrices. Using a prototype wound dressing which detects cytolytic virulence factors, the virulence secretion of 30 single and 40 mixed-species biofilms was tested. P. aeruginosa was seen to out-compete S. aureus, resulting in a biofilm with P. aeruginosa dominating. In situ growth of mixed-species biofilm under prototype dressings showed a real-time correlation between the viable biofilm population and their associated virulence factors, as seen by dressing fluorescent assay. This paper aims to provide a protocol for scientists working in the field of device related infection to create mixed-species biofilms and demonstrate that such biofilms are persistently more virulent in real infections. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 129-137, 2019.
Collapse
Affiliation(s)
- Naing T Thet
- Department of Chemistry, University of Bath, BA2 7AY, Bath, UK
| | - Laura Wallace
- Department of Chemistry, University of Bath, BA2 7AY, Bath, UK
| | - Anne Wibaux
- Scapa Healthcare, Hilldrop Lane, Ramsbury, Marlborough, SN8 2RB, UK
| | - Nick Boote
- Scapa Healthcare, Hilldrop Lane, Ramsbury, Marlborough, SN8 2RB, UK
| | | |
Collapse
|
34
|
Obermeier A, Schneider J, Harrasser N, Tübel J, Mühlhofer H, Pförringer D, von Deimling C, Foehr P, Kiefel B, Krämer C, Stemberger A, Schieker M, Burgkart R, von Eisenhart-Rothe R. Viable adhered Staphylococcus aureus highly reduced on novel antimicrobial sutures using chlorhexidine and octenidine to avoid surgical site infection (SSI). PLoS One 2018; 13:e0190912. [PMID: 29315313 PMCID: PMC5760023 DOI: 10.1371/journal.pone.0190912] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/22/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Surgical sutures can promote migration of bacteria and thus start infections. Antiseptic coating of sutures may inhibit proliferation of adhered bacteria and avoid such complications. OBJECTIVES This study investigated the inhibition of viable adhering bacteria on novel antimicrobially coated surgical sutures using chlorhexidine or octenidine, a critical factor for proliferation at the onset of local infections. The medical need, a rapid eradication of bacteria in wounds, can be fulfilled by a high antimicrobial efficacy during the first days after wound closure. METHODS As a pretesting on antibacterial efficacy against relevant bacterial pathogens a zone of inhibition assay was conducted with middle ranged concentrated suture coatings (22 μg/cm). For further investigation of adhering bacteria in detail the most clinically relevant Staphylococcus aureus (ATCC®49230™) was used. Absorbable braided sutures were coated with chlorhexidine-laurate, chlorhexidine-palmitate, octenidine-laurate, and octenidine-palmitate. Each coating type resulted in 11, 22, or 33 μg/cm drug content on sutures. Scanning electron microscopy (SEM) was performed once to inspect the coating quality and twice to investigate if bacteria have colonized on sutures. Adhesion experiments were assessed by exposing coated sutures to S. aureus suspensions for 3 h at 37°C. Subsequently, sutures were sonicated and the number of viable bacteria released from the suture surface was determined. Furthermore, the number of viable planktonic bacteria was measured in suspensions containing antimicrobial sutures. Commercially available sutures without drugs (Vicryl®, PGA Resorba®, and Gunze PGA), as well as triclosan-containing Vicryl® Plus were used as control groups. RESULTS Zone of inhibition assay documented a multispecies efficacy of novel coated sutures against tested bacterial strains, comparable to most relevant S. aureus over 48 hours. SEM pictures demonstrated uniform layers on coated sutures with higher roughness for palmitate coatings and sustaining integrity of coated sutures. Adherent S. aureus were found via SEM on all types of investigated sutures. The novel antimicrobial sutures showed significantly less viable adhered S. aureus bacteria (up to 6.1 log) compared to Vicryl® Plus (0.5 log). Within 11 μg/cm drug-containing sutures, octenidine-palmitate (OL11) showed the highest number of viable adhered S. aureus (0.5 log), similar to Vicryl® Plus. Chlorhexidine-laurate (CL11) showed the lowest number of S. aureus on sutures (1.7 log), a 1.2 log greater reduction. In addition, planktonic S. aureus in suspensions were highly inhibited by CL11 (0.9 log) represents a 0.6 log greater reduction compared to Vicryl® Plus (0.3 log). CONCLUSIONS Novel antimicrobial sutures can potentially limit surgical site infections caused by multiple pathogenic bacterial species. Therefore, a potential inhibition of multispecies biofilm formation is assumed. In detail tested with S. aureus, the chlorhexidine-laurate coating (CL11) best meets the medical requirements for a fast bacterial eradication. This suture coating shows the lowest survival rate of adhering as well as planktonic bacteria, a high drug release during the first-clinically most relevant- 48 hours, as well as biocompatibility. Thus, CL11 coatings should be recommended for prophylactic antimicrobial sutures as an optimal surgical supplement to reduce wound infections. However, animal and clinical investigations are important to prove safety and efficacy for future applications.
Collapse
Affiliation(s)
- Andreas Obermeier
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
- * E-mail:
| | - Jochen Schneider
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Norbert Harrasser
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Jutta Tübel
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Heinrich Mühlhofer
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Dominik Pförringer
- Klinik und Poliklinik für Unfallchirurgie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Constantin von Deimling
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Peter Foehr
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Barbara Kiefel
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Christina Krämer
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Axel Stemberger
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Matthias Schieker
- Klinik für Chirurgie, Experimentelle Chirurgie und Regenerative Medizin, Klinikum der Universität München, München, Germany
| | - Rainer Burgkart
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Rüdiger von Eisenhart-Rothe
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| |
Collapse
|
35
|
Krishnan U, Saji S, Clarkson R, Lalloo R, Moule AJ. Free Active Chlorine in Sodium Hypochlorite Solutions Admixed with Octenidine, SmearOFF, Chlorhexidine, and EDTA. J Endod 2017; 43:1354-1359. [DOI: 10.1016/j.joen.2017.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
|
36
|
Thaha KA, Varma RL, Nair MG, Sam Joseph V, Krishnan U. Interaction between Octenidine-based Solution and Sodium Hypochlorite: A Mass Spectroscopy, Proton Nuclear Magnetic Resonance, and Scanning Electron Microscopy–based Observational Study. J Endod 2017; 43:135-140. [DOI: 10.1016/j.joen.2016.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
|
37
|
Narayanan A, Nair MS, Karumathil DP, Baskaran SA, Venkitanarayanan K, Amalaradjou MAR. Inactivation of Acinetobacter baumannii Biofilms on Polystyrene, Stainless Steel, and Urinary Catheters by Octenidine Dihydrochloride. Front Microbiol 2016; 7:847. [PMID: 27375572 PMCID: PMC4899441 DOI: 10.3389/fmicb.2016.00847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/22/2016] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a major nosocomial pathogen causing human infections with significant mortality rates. In most cases, infections are acquired through exposure to A. baumannii biofilms that persist on contaminated hospital equipment and surfaces. Thus, it is imperative to develop effective measures for controlling A. baumannii biofilms in nosocomial settings. This study investigated the efficacy of octenidine dihydrochloride (OH), a new generation disinfectant for reducing A. baumannii biofilms on polystyrene, stainless steel and catheters. OH at 0.3% (5 mM), 0.6% (10 mM), and 0.9% (15 mM) was effective in significantly inactivating A. baumannii biofilms on all tested surfaces (P < 0.05). Furthermore, OH was equally effective in inactivating biofilms of multidrug resistant and drug susceptible A. baumannii isolates. In addition, confocal imaging revealed the predominance of dead cells in the OH-treated samples in comparison to the control. Further, scanning electron microscopy of biofilms formed on catheters revealed that OH treatment significantly reduced A. baumannii biofilm populations in corroboration with our antibiofilm assay. These data underscore the efficacy of OH in inactivating A. baumannii biofilms, thereby suggesting its potential use as a disinfectant or a catheter lock solution to control A. baumannii infections.
Collapse
Affiliation(s)
- Amoolya Narayanan
- Department of Psychological Sciences, University of Connecticut, Storrs CT, USA
| | - Meera S Nair
- Department of Animal Science, University of Connecticut, Storrs CT, USA
| | | | - Sangeetha A Baskaran
- Department of Veterinary Public Health and Epidemiology, Veterinary College and Research Institute Thanjavur, India
| | | | | |
Collapse
|
38
|
Al Atya AK, Belguesmia Y, Chataigne G, Ravallec R, Vachée A, Szunerits S, Boukherroub R, Drider D. Anti-MRSA Activities of Enterocins DD28 and DD93 and Evidences on Their Role in the Inhibition of Biofilm Formation. Front Microbiol 2016; 7:817. [PMID: 27303396 PMCID: PMC4886693 DOI: 10.3389/fmicb.2016.00817] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a worrisome superbug. This work aimed at studying the effects of two class IIb bacteriocins, enterocins DD28 and DD93 as anti-MRSA agents. Thus, these bacteriocins were purified, from the cultures supernatants of Enterococcus faecalis 28 and 93, using a simplified purification procedure consisting in a cation exchange chromatography and a reversed-phase high-performance liquid chromatography. The anti-Staphylococcal activity was shown in vitro by the assessment of the minimal inhibitory concentration (MIC), followed by a checkerboard and time-kill kinetics experiments. The data unveiled a clear synergistic effect of enterocins DD28 and DD93 in combination with erythromycin or kanamycin against the clinical MRSA-S1 strain. Besides, these combinations impeded as well the MRSA-S1 clinical strain to setup biofilms on stainless steel and glace devices.
Collapse
Affiliation(s)
- Ahmed K Al Atya
- Université de Lille 1 Sciences et Technologies - Institut Charles Viollette Lille, France
| | - Yanath Belguesmia
- Université de Lille 1 Sciences et Technologies - Institut Charles Viollette Lille, France
| | - Gabrielle Chataigne
- Université de Lille 1 Sciences et Technologies - Institut Charles Viollette Lille, France
| | - Rozenn Ravallec
- Université de Lille 1 Sciences et Technologies - Institut Charles Viollette Lille, France
| | - Anne Vachée
- Hôpital Victor Provo de Roubaix Roubaix, France
| | - Sabine Szunerits
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, Université Lille 1 Lille, France
| | - Rabah Boukherroub
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, Université Lille 1 Lille, France
| | - Djamel Drider
- Université de Lille 1 Sciences et Technologies - Institut Charles Viollette Lille, France
| |
Collapse
|
39
|
Sathiyamurthy S, Banerjee J, Godambe SV. Antiseptic use in the neonatal intensive care unit - a dilemma in clinical practice: An evidence based review. World J Clin Pediatr 2016; 5:159-171. [PMID: 27170926 PMCID: PMC4857229 DOI: 10.5409/wjcp.v5.i2.159] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/24/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Infants in the neonatal intensive care unit are highly susceptible to healthcare associated infections (HAI), with a substantial impact on mortality, morbidity and healthcare costs. Effective skin disinfection with topical antiseptic agents is an important intervention in the prevention or reduction of HAI. A wide array of antiseptic preparations in varying concentrations and combinations has been used in neonatal units worldwide. In this article we have reviewed the current evidence of a preferred antiseptic of choice over other agents for topical skin disinfection in neonates. Chlorhexidine (CHG) appears to be a promising antiseptic agent; however there exists a significant concern regarding the safety of all agents used including CHG especially in preterm and very low birth weight infants. There is substantial evidence to support the use of CHG for umbilical cord cleansing and some evidence to support the use of topical emollients in reducing the mortality in infants born in developing countries. Well-designed large multicentre randomized clinical trials are urgently needed to guide us on the most appropriate and safe antiseptic to use in neonates undergoing intensive care, especially preterm infants.
Collapse
|
40
|
Upadhyay A, Chen CH, Yin H, Upadhyaya I, Fancher S, Liu Y, Nair MS, Jankelunas L, Patel JR, Venkitanarayanan K. Inactivation of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157:H7 on cantaloupes by octenidine dihydrochloride. Food Microbiol 2016; 58:121-7. [PMID: 27217367 DOI: 10.1016/j.fm.2016.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 11/24/2022]
Abstract
The efficacy of a new generation disinfectant, octenidine dihydrochloride (OH), as wash and coating treatments for reducing Listeria monocytogenes (LM), Salmonella spp. (SAL), and Escherichia coli O157:H7 (EC) on cantaloupe was investigated. Cantaloupe rind plugs inoculated separately with the three bacterial species (∼8 log CFU/cm(2)) were washed for 1, 3, 5 min at 25 °C in water, or chlorine (200 ppm), ethanol (1%), OH (0.01, 0.05, 0.1%) and surviving populations were measured after treatment. Additionally, inoculated cantaloupe rind plugs were coated with 2% chitosan or chitosan containing OH (0.01, 0.05, 0.1%) and sampled for surviving pathogens. Subsequently, the antimicrobial efficacy of OH wash and coating (0.1, 0.2%) on whole cantaloupes was determined. All OH wash reduced LM, SAL, and EC on cantaloupe rinds by > 5 log CFU/cm(2) by 2 min, and reduced populations to undetectable levels (below 2 log CFU/cm(2)) by 5 min (P < 0.05). Similarly, OH coating on cantaloupe rinds reduced the pathogens by 3-5 log /cm(2) (P < 0.05). Washing and coating whole cantaloupes with OH reduced the three pathogens by at least 5 log and 2 log CFU/cm(2), respectively (P < 0.05). Results suggest that OH could be used as antimicrobial wash and coating to reduce LM, SAL, and EC on cantaloupes.
Collapse
Affiliation(s)
- Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Chi-Hung Chen
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Hsinbai Yin
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Indu Upadhyaya
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Samantha Fancher
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yanyan Liu
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | | | - Leanne Jankelunas
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Jitendra R Patel
- Environmental Microbial & Food Safety Lab, USDA-ARS, 10300 Baltimore Avenue, Building 201 BARC-East, Room 101, Beltsville, MD 20705, USA
| | | |
Collapse
|
41
|
Jain S, Sengupta M, Sarkar S, Ghosh S, (Mitra) AN, Sinha A, Chakravorty S. Can EDTA Change MRSA into MSSA? A Future Prospective! J Clin Diagn Res 2016; 10:DC22-5. [PMID: 27042464 PMCID: PMC4800529 DOI: 10.7860/jcdr/2016/17944.7280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/28/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION In the present era we are left behind with limited options for the treatment of serious infections caused by multidrug resistant S.aureus, most remarkably nosocomially acquired Methicillin resistant S.aureus (MRSA). The problem increases more when these strains easily become multidrug resistant (MDR) due to biofilm formation. Those staphylococcal species that are vancomycin and linezolid resistant are also resistant to other antistaphylococcal agents which call for an urgent intervention to develop newer antimicrobial agents. AIM The present study was undertaken with the aim to evaluate the antibiofilm effect of EDTA against the biofilm forming MRSA isolates, isolated from different clinical infections. MATERIALS AND METHODS The biofilms formed on polystyrene microtitre plates by the MRSA strains were treated by different concentrations of EDTA to find out its anti-biofilm activity. Further simultaneously the antibiotic susceptibility pattern was noted down to check whether the MRSA strains become MSSA (Methicillin sensitive S.aureus). RESULTS Our data demonstrates that EDTA at 4mM concentration inhibits biofilm of MRSA and at 20 mM have an ability to reduce and dissociate the biofilm membrane, allowing the antibiotics to enter and convert MRSA strains into MSSA. CONCLUSION These findings suggest that commercially available EDTA could be used in future to control MRSA and its biofilm- related infections.
Collapse
Affiliation(s)
- Sonia Jain
- PhD Scholar, Department of Microbiology, Medical College, Kolkata, West Bengal, India
| | - Manideepa Sengupta
- Professor and Head, Department of Microbiology, Medical College & Hospital, Kolkata, West-Bengal, India
| | - Soma Sarkar
- Professor, Department of Microbiology, Medical College, Kolkata, West Bengal, India
| | - Sougata Ghosh
- Assistant Professor, Department of Microbiology, Medical College, Kolkata, India
| | - Anita Nandi (Mitra)
- Assistant Professor, Department of Microbiology, Medical College, Kolkata, India
| | - Anuradha Sinha
- PhD Student, IML, National Institute of Cholera and Enteric Diseases, (NICED)Kolkata, West Bengal, India
| | | |
Collapse
|
42
|
Obermeier A, Schneider J, Föhr P, Wehner S, Kühn KD, Stemberger A, Schieker M, Burgkart R. In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine. BMC Microbiol 2015; 15:186. [PMID: 26404034 PMCID: PMC4583139 DOI: 10.1186/s12866-015-0523-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sutures colonized by bacteria represent a challenge in surgery due to their potential to cause surgical site infections. In order to reduce these type of infections antimicrobially coated surgical sutures are currently under development. In this study, we investigated the antimicrobial drug octenidine as a coating agent for surgical sutures. To achieve high antimicrobial efficacy and required biocompatibility for medical devices, we focused on optimizing octenidine coatings based on fatty acids. For this purpose, antimicrobial sutures were prepared with either octenidine-laurate or octenidine-palmitate at 11, 22, and 33 μg/cm drug concentration normalized per length of sutures. Octenidine containing sutures were compared to the commercial triclosan-coated suture Vicryl® Plus. The release of octenidine into aqueous solution was analyzed and long-term antimicrobial efficacy was assessed via agar diffusion tests using Staphylococcus aureus. For determining biocompatibility, cytotoxicity assays (WST-1) were performed using L-929 mouse fibroblasts. RESULTS In a 7 days elution experiment, octenidine-palmitate coated sutures demonstrated much slower drug release (11 μg/cm: 7%; 22 μg/cm: 5%; 33 μg/cm: 33%) than octenidine-laurate sutures (11 μg/cm: 82%; 22 μg/cm: 88%; 33 μg/cm: 87%). Furthermore sutures at 11 μg/cm drug content were associated with acceptable cytotoxicity according to ISO 10993-5 standard and showed, similar to Vicryl® Plus, relevant efficacy to inhibit surrounding bacterial growth for up to 9 days. CONCLUSIONS Octenidine coated sutures with a concentration of 11 μg/cm revealed high antimicrobial efficacy and biocompatibility. Due to their delayed release, palmitate carriers should be preferred. Such coatings are candidates for clinical testing in regard to their safety and efficacy.
Collapse
Affiliation(s)
- A Obermeier
- Klinikum rechts der Isar, Technische Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany.
| | - J Schneider
- Klinikum rechts der Isar, Technische Universität München, Institut für Mikrobiologie, Immunologie und Hygiene, Trogerstr. 30, 81675, Munich, Germany.
| | - P Föhr
- Klinikum rechts der Isar, Technische Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany.
| | - S Wehner
- Klinikum rechts der Isar, Technische Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany.
| | - K-D Kühn
- Universitätsklinik für Orthopädie und Orthopädische Chirurgie, Medizinische Universität, Auenbruggerplatz 5, 8036, Graz, Austria.
| | - A Stemberger
- Klinikum rechts der Isar, Technische Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany.
| | - M Schieker
- Klinikum der Universität München, Klinik für Chirurgie, Experimentelle Chirurgie und Regenerative Medizin, Nußbaumstr. 20, 80336, Munich, Germany.
| | - R Burgkart
- Klinikum rechts der Isar, Technische Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
43
|
Lemos M, Mergulhão F, Melo L, Simões M. The effect of shear stress on the formation and removal of Bacillus cereus biofilms. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2014.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Percival SL, Finnegan S, Donelli G, Vuotto C, Rimmer S, Lipsky BA. Antiseptics for treating infected wounds: Efficacy on biofilms and effect of pH. Crit Rev Microbiol 2014; 42:293-309. [DOI: 10.3109/1040841x.2014.940495] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|