1
|
Manthattil Vysyan S, Suraj Prasanna M, Jayanandan A, Gangadharan AK, Chittalakkottu S. Phytocompounds hesperidin, rebaudioside a and rutin as drug leads for the treatment of tuberculosis targeting mycobacterial phosphoribosyl pyrophosphate synthetase. J Biomol Struct Dyn 2024:1-15. [PMID: 39659199 DOI: 10.1080/07391102.2024.2438363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/29/2024] [Indexed: 12/12/2024]
Abstract
The main aim of this study is to address the global health crisis posed by tuberculosis (TB) through the exploration of novel therapeutic strategies targeting Mycobacterial phosphoribosyl pyrophosphate synthetase (MtPrsA), an untried enzyme involved in essential metabolic pathways of Mycobacterium tuberculosis. This enzyme plays a crucial role in cell wall synthesis, nucleotide biosynthesis and amino acid synthesis in M tb. Any hindrance to these may affect the growth and survival of the organism. Phytochemicals were systematically screened for potential inhibitors to MtPrsA. Subsequently, based on molecular docking studies, three compounds, namely, hesperidin, rebaudiosideA and rutin were selected. The binding stabilities of these compounds were analyzed using molecular dynamics simulation. Based on the RMSD score obtained, the binding stability of the compounds was confirmed. To validate the findings, an enzyme inhibition assay was done using recombinant MtPrsA. Ligation Independent Cloning (LIC cloning) method was used to produce recombinant His-tagged MtPrsA, followed by purification using Histrap columns. Enzyme kinetic studies unveiled the distinct modes of inhibition exhibited by each compound towards MtPrsA. RebaudiosideA and rutin emerged as competitive inhibitors, while hesperidin showcased a mixed inhibition profile. In conclusion, the study contributes valuable insights into potential therapeutic strategies for TB, through the exploration of alternative enzyme targets and the identification of phytochemical inhibitors. Notably, todate, no effective plant compounds have been reported as inhibitors to MtPrsA.
Collapse
Affiliation(s)
| | - Meera Suraj Prasanna
- Department of Biotechnology & Microbiology, Kannur University, Thalassery, India
| | - Abhithaj Jayanandan
- Department of Biotechnology & Microbiology, Kannur University, Thalassery, India
| | | | | |
Collapse
|
2
|
Greenwald MA, Edwards N, Eastlund DT, Gurevich I, Ho APZ, Khalife G, Lin-Torre J, Thompson HW, Wilkins RM, Alrabaa SF. The American Association of Tissue Banks tissue donor screening for Mycobacterium tuberculosis-Recommended criteria and literature review. Transpl Infect Dis 2024; 26 Suppl 1:e14294. [PMID: 38852068 DOI: 10.1111/tid.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024]
Abstract
After two multistate outbreaks of allograft tissue-transmitted tuberculosis (TB) due to viable bone, evidence-based donor screening criteria were developed to decrease the risk of transmission to recipients. Exclusionary criteria, commentary, and references supporting the criteria are provided, based on literature search and expert opinion. Both exposure and reactivation risk factors were considered, either for absolute exclusion or for exclusion in combination with multiple risk factors. A criteria subset was devised for tissues containing viable cells. Risk factors for consideration included exposure (e.g., geographic birth and residence, travel, homelessness, incarceration, healthcare, and workplace) and reactivation (e.g., kidney disease, liver disease, history of transplantation, immunosuppressive medications, and age). Additional donor considerations include the possibility of sepsis and chronic illness. Donor screening criteria represent minimal criteria for exclusion and do not completely exclude all possible donor TB risks. Additional measures to reduce transmission risk, such as donor and product testing, are discussed but not included in the recommendations. Careful donor evaluation is critical to tissue safety.
Collapse
Affiliation(s)
- Melissa A Greenwald
- American Association of Tissue Banks, McLean, Virginia, USA
- Uniformed Services University, Bethesda, Maryland, USA
- Donor Alliance, Denver, Colorado, USA
| | | | | | | | | | - Ghada Khalife
- Solvita, Dayton, Ohio, USA
- Wright State University, Dayton, Ohio, USA
| | - Janet Lin-Torre
- MTF Biologics, Edison, New Jersey, USA
- Department of Medicine, Cooperman Barnabas Medical Center, Livingston, New Jersey, USA
| | | | | | - Sally F Alrabaa
- University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- LifeLink Tissue Bank, Tampa, Florida, USA
| |
Collapse
|
3
|
Iswanti FC, Handayani KM, Kusumaningrum A, Yamazaki T, Handayani D, Sadikin M. Lysosomal enzymes and the oxygen burst capability of monocyte-derived macrophages in active drug-resistant tuberculosis patients in relation to cell attachment. Tuberculosis (Edinb) 2024; 146:102498. [PMID: 38461765 DOI: 10.1016/j.tube.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Drug resistance to tuberculosis (TB) has become an obstacle in eliminating tuberculosis. The transmission of drug-resistant TB from patients increases the incidence of primary drug-resistant (DR) TB in individuals who are in close contact. Therefore, it is necessary to incorporate an immunological approach into preventive therapy. This study focuses on the activity of lysosomal enzymes, oxygen bursts, and the attachment ability of macrophages among individuals diagnosed with active drug-resistant TB compared with close contacts with latent TB or healthy cases. We measured macrophage oxygen burst ability (Water-soluble tetrazolium salt (WST) test, Nitric Oxide production, and myeloperoxidase activity) and the degradative ability of lysosomes (activity of the β-glucuronidase and acid phosphatase enzymes). Six active DR-TB patients and 18 close-contact cases (8 Latent Tuberculosis Infection (LTBI); 10 healthy) were recruited at Universitas Indonesia Hospital. The macrophage attachment of the LTBI group was higher than in the other groups. NO production, myeloperoxidase activity, β-glucuronidase, and acid phosphatase were higher in the active DR-TB group. A negative correlation was uncovered between phagocytosis and NO production, myeloperoxidase activity, and lysosomal enzymes. The difference in macrophage function is expected to be a further reference in active DR-TB treatment or preventive therapy.
Collapse
Affiliation(s)
- Febriana Catur Iswanti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, 10430, Indonesia; Center of Hypoxia and Oxidative Stress Studies, Indonesia.
| | - Kurnia Maidarmi Handayani
- Master's Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, 10430, Indonesia; Faculty of Medicine, Universitas Baiturrahmah, 25172, Indonesia.
| | - Ardiana Kusumaningrum
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Universitas Indonesia Hospital, 10430, Indonesia.
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, 305-0047, Ibaraki, Japan.
| | - Diah Handayani
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Universitas Indonesia Hospital, 10430, Indonesia.
| | - Mohamad Sadikin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, 10430, Indonesia; Center of Hypoxia and Oxidative Stress Studies, Indonesia.
| |
Collapse
|
4
|
Malheiros Borges KC, Kipnis A, Junior Neves B, Junqueira-Kipnis AP. Promising New Targets for the Treatment of Infections Caused by Acinetobacter baumannii: A Review. Curr Drug Targets 2024; 25:971-986. [PMID: 39225221 DOI: 10.2174/0113894501319269240819060245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Acinetobacter baumannii is a globally disseminated Gram-negative bacterium that causes several types of serious nosocomial infections, the most worrisome being ventilator-associated pneumonia and bacteremia related to using venous catheters. Due to its great ability to form biofilms, combined with its survival for prolonged periods on abiotic surfaces and its potential to acquire and control the genes that determine antibiotic resistance, A. baumannii is at the top of the World Health Organization's priority list of pathogens in urgent need of new therapies. In this sense, this review aimed to present and discuss new molecular targets present in A. baumannii with potential for promising treatment approaches. This review highlights crucial molecular targets, including cell division proteins, membrane synthesis enzymes, and biofilm-associated components, offering promising targets for novel antimicrobial drug development against A. baumannii infections.
Collapse
Affiliation(s)
- Kellen Christina Malheiros Borges
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Microbiology Laboratory, Department of Biology, Academic Areas, Federal Institute of Goiás, Anápolis, Goiás, Brazil
| | - André Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Junqueira-Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
5
|
Thakur M, Muniyappa K. Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 138:102284. [PMID: 36459831 DOI: 10.1016/j.tube.2022.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression. This review focuses on present published knowledge about the crucial roles of Mtb NER proteins in the survival and multiplication of the pathogen within the macrophages and as potential targets for drug discovery.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
6
|
Thakur M, Parulekar RS, Barale SS, Sonawane KD, Muniyappa K. Interrogating the substrate specificity landscape of UvrC reveals novel insights into its non-canonical function. Biophys J 2022; 121:3103-3125. [PMID: 35810330 PMCID: PMC9463653 DOI: 10.1016/j.bpj.2022.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Although it is relatively unexplored, accumulating data highlight the importance of tripartite crosstalk between nucleotide excision repair (NER), DNA replication, and recombination in the maintenance of genome stability; however, elucidating the underlying mechanisms remains challenging. While Escherichia coli uvrA and uvrB can fully complement polAΔ cells in DNA replication, uvrC attenuates this alternative DNA replication pathway, but the exact mechanism by which uvrC suppresses DNA replication is unknown. Furthermore, the identity of bona fide canonical and non-canonical substrates for UvrCs are undefined. Here, we reveal that Mycobacterium tuberculosis UvrC (MtUvrC) strongly binds to, and robustly cleaves, key intermediates of DNA replication/recombination as compared with the model NER substrates. Notably, inactivation of MtUvrC ATPase activity significantly attenuated its endonuclease activity, thus suggesting a causal link between these two functions. We built an in silico model of the interaction of MtUvrC with the Holliday junction (HJ), using a combination of homology modeling, molecular docking, and molecular dynamic simulations. The model predicted residues that were potentially involved in HJ binding. Six of these residues were mutated either singly or in pairs, and the resulting MtUvrC variants were purified and characterized. Among them, residues Glu595 and Arg597 in the helix-hairpin-helix motif were found to be crucial for the interaction between MtUvrC and HJ; consequently, mutations in these residues, or inhibition of ATP hydrolysis, strongly abrogated its DNA-binding and endonuclease activities. Viewed together, these findings expand the substrate specificity landscape of UvrCs and provide crucial mechanistic insights into the interplay between NER and DNA replication/recombination.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| | | | - Sagar S Barale
- Structural Bioinformatics Unit, Shivaji University, Kolhapur, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, India; Structural Bioinformatics Unit, Shivaji University, Kolhapur, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
7
|
Mir MA, Mir B, Kumawat M, Alkhanani M, Jan U. Manipulation and exploitation of host immune system by pathogenic Mycobacterium tuberculosis for its advantage. Future Microbiol 2022; 17:1171-1198. [PMID: 35924958 DOI: 10.2217/fmb-2022-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can become a long-term infection by evading the host immune response. Coevolution of Mtb with humans has resulted in its ability to hijack the host's immune systems in a variety of ways. So far, every Mtb defense strategy is essentially dependent on a subtle balance that, if shifted, can promote Mtb proliferation in the host, resulting in disease progression. In this review, the authors summarize many important and previously unknown mechanisms by which Mtb evades the host immune response. Besides recently found strategies by which Mtb manipulates the host molecular regulatory machinery of innate and adaptive immunity, including the intranuclear regulatory machinery, costimulatory molecules, the ubiquitin system and cellular intrinsic immune components will be discussed. A holistic understanding of these immune-evasion mechanisms is of foremost importance for the prevention, diagnosis and treatment of tuberculosis and will lead to new insights into tuberculosis pathogenesis and the development of more effective vaccines and treatment regimens.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bilkees Mir
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, UP, India
| | - Manoj Kumawat
- Department of Microbiology, Indian Council of Medical Research (ICMR)-NIREH, Bhopal, MP, India
| | - Mustfa Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafar Al Batin, Saudi Arabia
| | - Ulfat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
8
|
Sunita, Singh Y, Beamer G, Sun X, Shukla P. Recent developments in systems biology and genetic engineering toward design of vaccines for TB. Crit Rev Biotechnol 2022; 42:532-547. [PMID: 34641752 PMCID: PMC11208086 DOI: 10.1080/07388551.2021.1951649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Tuberculosis (TB) is one of the most prevalent diseases worldwide. The currently available Bacillus Calmette-Guérin vaccine is not sufficient in protecting against pulmonary TB. Although many vaccines have been evaluated in clinical trials, but none of them yet has proven to be more successful. Thus, new strategies are urgently needed to design more effective TB vaccines. The emergence of new technologies will undoubtedly accelerate the process of vaccine development. This review summarizes the potential and validated applications of emerging technologies, including: systems biology (genomics, proteomics, and transcriptomics), genetic engineering, and other computational tools to discover and develop novel vaccines against TB. It also discussed that the significant implementation of these approaches will play crucial roles in the development of novel vaccines to cure and control TB.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, MA, USA
| | - Xingmin Sun
- Department of Molecular Medicine, College of Medicine (COM), University of South Florida, Tampa, FL, USA
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Synthesis and Antimycobacterial Activity of 3-Phenyl-1 H-indoles. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175148. [PMID: 34500579 PMCID: PMC8433792 DOI: 10.3390/molecules26175148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Tuberculosis has been described as a global health crisis since the 1990s, with an estimated 1.4 million deaths in the last year. Herein, a series of 20 1H-indoles were synthesized and evaluated as in vitro inhibitors of Mycobacterium tuberculosis (Mtb) growth. Furthermore, the top hit compounds were active against multidrug-resistant strains, without cross-resistance with first-line drugs. Exposing HepG2 and Vero cells to the molecules for 72 h showed that one of the evaluated structures was devoid of apparent toxicity. In addition, this 3-phenyl-1H-indole showed no genotoxicity signals. Finally, time-kill and pharmacodynamic model analyses demonstrated that this compound has bactericidal activity at concentrations close to the Minimum Inhibitory Concentration, coupled with a strong time-dependent behavior. To the best of our knowledge, this study describes the activity of 3-phenyl-1H-indole against Mtb for the first time.
Collapse
|
10
|
Sundararajan S, Muniyan R. Latent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosis. Mol Biol Rep 2021; 48:6181-6196. [PMID: 34351540 DOI: 10.1007/s11033-021-06611-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) remains a prominent health concern worldwide. Besides extensive research and vaccinations available, attempts to control the pandemic are cumbersome due to the complex physiology of Mycobacterium tuberculosis (Mtb). Alongside the emergence of drug-resistant TB, latent TB has worsened the condition. The tubercle bacilli are unusually behaved and successful with its strategies to modulate genes to evade host immune system and persist within macrophages. Under latent/unfavorable conditions, Mtb conceals itself from immune system and modulates its genes. Among many intracellular modulated genes, important are those involved in cell entry, fatty acid degradation, mycolic acid synthesis, phagosome acidification inhibition, inhibition of phagosome-lysosome complex and chaperon protein modulation. Though the study on these genes date back to early times of TB, an insight on their inter-relation within and to newly evolved genes are still required. This review focuses on the findings and discussions on these genes, possible mechanism, credibility as target for novel drugs and repurposed drugs and their interaction that enables Mtb in survival, pathogenesis, resistance and latency.
Collapse
Affiliation(s)
- Sadhana Sundararajan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
11
|
Epidemiology of Mycobacterium tuberculosis lineages and strain clustering within urban and peri-urban settings in Ethiopia. PLoS One 2021; 16:e0253480. [PMID: 34252107 PMCID: PMC8274931 DOI: 10.1371/journal.pone.0253480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/06/2021] [Indexed: 11/25/2022] Open
Abstract
Background Previous work has shown differential predominance of certain Mycobacterium tuberculosis (M. tb) lineages and sub-lineages among different human populations in diverse geographic regions of Ethiopia. Nevertheless, how strain diversity is evolving under the ongoing rapid socio-economic and environmental changes is poorly understood. The present study investigated factors associated with M. tb lineage predominance and rate of strain clustering within urban and peri-urban settings in Ethiopia. Methods Pulmonary Tuberculosis (PTB) and Cervical tuberculous lymphadenitis (TBLN) patients who visited selected health facilities were recruited in the years of 2016 and 2017. A total of 258 M. tb isolates identified from 163 sputa and 95 fine-needle aspirates (FNA) were characterized by spoligotyping and compared with international M.tb spoligotyping patterns registered at the SITVIT2 databases. The molecular data were linked with clinical and demographic data of the patients for further statistical analysis. Results From a total of 258 M. tb isolates, 84 distinct spoligotype patterns that included 58 known Shared International Type (SIT) patterns and 26 new or orphan patterns were identified. The majority of strains belonged to two major M. tb lineages, L3 (35.7%) and L4 (61.6%). The observed high percentage of isolates with shared patterns (n = 200/258) suggested a substantial rate of overall clustering (77.5%). After adjusting for the effect of geographical variations, clustering rate was significantly lower among individuals co-infected with HIV and other concomitant chronic disease. Compared to L4, the adjusted odds ratio and 95% confidence interval (AOR; 95% CI) indicated that infections with L3 M. tb strains were more likely to be associated with TBLN [3.47 (1.45, 8.29)] and TB-HIV co-infection [2.84 (1.61, 5.55)]. Conclusion Despite the observed difference in strain diversity and geographical distribution of M. tb lineages, compared to earlier studies in Ethiopia, the overall rate of strain clustering suggests higher transmission and warrant more detailed investigations into the molecular epidemiology of TB and related factors.
Collapse
|
12
|
Targeting NAD-dependent dehydrogenases in drug discovery against infectious diseases and cancer. Biochem Soc Trans 2021; 48:693-707. [PMID: 32311017 DOI: 10.1042/bst20191261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Dehydrogenases are oxidoreductase enzymes that play a variety of fundamental functions in the living organisms and have primary roles in pathogen survival and infection processes as well as in cancer development. We review here a sub-set of NAD-dependent dehydrogenases involved in human diseases and the recent advancements in drug development targeting pathogen-associated NAD-dependent dehydrogenases. We focus also on the molecular aspects of the inhibition process listing the structures of the most relevant molecules targeting this enzyme family. Our aim is to review the most impacting findings regarding the discovery of novel inhibitory compounds targeting the selected NAD-dependent dehydrogenases involved in cancer and infectious diseases.
Collapse
|
13
|
Identification and validation of the mode of action of the chalcone anti-mycobacterial compounds. ACTA ACUST UNITED AC 2020; 6:100041. [PMID: 32743153 PMCID: PMC7388970 DOI: 10.1016/j.tcsw.2020.100041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/03/2022]
Abstract
Chalcone 1a inhibits the growth of Mycobacterium bovis BCG (MIC 6.25 µg.ml−1). Chalcone 1a directly targets InhA.
Objectives The search for new TB drugs has become one of the great challenges for modern medicinal chemistry. An improvement in the outcomes of TB chemotherapy can be achieved by the development of new, shorter, cheap, safe and effective anti-TB regimens. Methods Chalcones (1a-1o) were synthesized and evaluated for their antimycobacterial activity against Mycobacterium bovis BCG using growth inhibition assays. Compound 1a was selected as a ‘hit’ compound. The mode of action of compound 1a, was identified by mycolic acid methyl esters (MAMEs) and fatty acid methyl esters (FAMEs) analysis using thin layer chromatography. Dose dependent experiments were conducted by over-expressing components of FAS-II in M. bovis BCG to confirm the target. Ligand binding using intrinsic tryptophan assay and molecular docking were used to further validate the target. Results MAMEs and FAMEs analysis showed dose-dependent reduction of MAMEs with the overall abundance of FAMEs suggesting that compound 1a targets mycolic acid biosynthesis. Direct binding of 1a to InhA was observed using an intrinsic tryptophan fluorescence binding assay, and a 2-fold IC50 shift was observed with an InhA overexpressing strain confirming InhA as the cellular target. Conclusion The chalcone 1a exhibits potent antimycobacterial activity, displays a good safety profile and is a direct inhibitor of InhA, a key component in mycolic acid synthesis, validating this series for further anti-TB drug development.
Collapse
|
14
|
Mycobacterium tuberculosis Pathogenesis, Infection Prevention and Treatment. Pathogens 2020; 9:pathogens9050385. [PMID: 32443469 PMCID: PMC7281116 DOI: 10.3390/pathogens9050385] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis (MTB) and it represents a persistent public health threat for a number of complex biological and sociological reasons. According to the most recent Global Tuberculosis Report (2019) edited by the World Health Organization (WHO), TB is considered the ninth cause of death worldwide and the leading cause of mortality by a single infectious agent, with the highest rate of infections and death toll rate mostly concentrated in developing and low-income countries. We present here the editorial section to the Special Issue entitled “Mycobacterium tuberculosis Pathogenesis, Infection Prevention and Treatment” that includes 7 research articles and a review. The scientific contributions included in the Special Issue mainly focus on the characterization of MTB strains emerging in TB endemic countries as well as on multiple mechanisms adopted by the bacteria to resist and to adapt to antitubercular therapies.
Collapse
|
15
|
Ferrario E, Miggiano R, Rizzi M, Ferraris DM. Structure of Thermococcus litoralis Δ 1-pyrroline-2-carboxylate reductase in complex with NADH and L-proline. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:496-505. [PMID: 32355045 DOI: 10.1107/s2059798320004866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/05/2020] [Indexed: 11/10/2022]
Abstract
L-Hydroxyproline (L-Hyp) is a nonstandard amino acid that is present in certain proteins, in some antibiotics and in the cell-wall components of plants. L-Hyp is the product of the post-translational modification of protein prolines by prolyl hydroxylase enzymes, and the isomers trans-3-hydroxy-L-proline (T3LHyp) and trans-4-hydroxy-L-proline (T4LHyp) are major components of mammalian collagen. T4LHyp follows two distinct degradation pathways in bacteria and mammals, while T3LHyp is metabolized by a two-step metabolic pathway that is conserved in bacteria and mammals, which involves a T3LHyp dehydratase and a Δ1-pyrroline-2-carboxylate (Pyr2C) reductase. In order to shed light on the structure and catalysis of the enzyme involved in the second step of the T3LHyp degradation pathway, the crystal structure of Pyr2C reductase from the archaeon Thermococcus litoralis DSM 5473 complexed with NADH and L-proline is presented. The model allows the mapping of the residues involved in cofactor and product binding and represents a valid model for rationalizing the catalysis of Pyr2C reductases.
Collapse
Affiliation(s)
- Eugenio Ferrario
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Riccardo Miggiano
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Menico Rizzi
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Davide M Ferraris
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
16
|
Skariyachan S, Muddebihalkar AG, Badrinath V, Umashankar B, Eram D, Uttarkar A, Niranjan V. Natural epiestriol-16 act as potential lead molecule against prospective molecular targets of multidrug resistant Acinetobacter baumannii-Insight from in silico modelling and in vitro investigations. INFECTION GENETICS AND EVOLUTION 2020; 82:104314. [PMID: 32268193 DOI: 10.1016/j.meegid.2020.104314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/05/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The current study aimed to identify putative drug targets of multidrug resistant Acinetobacter baumannii (MDRAb) and study the therapeutic potential of natural epiestriol-16 by computer aided virtual screening and in vitro studies. The clinical isolates (n = 5) showed extreme dug resistance to carbapenems and colistins (p ≤ .05). Computational screening suggested that out of 236 natural molecules selected, 06 leads were qualified for drug likeliness, pharmacokinetic features and one potential molecule namely natural epiestriol-16 (16b-Hydroxy-17a-estradiol) exhibited significant binding potential towards four prioritised drug targets in comparison with the binding of faropenem to their usual target. Natural epiestriol demonstrated profound binding to the outer membrane protein (Omp38), protein RecA (RecA), orotate phosphoribosyltransferase (PyrE) and orotidine 5'-phosphate decarboxylase (PyrF) with binding energy of -6.0, -7.3, -7.3 and -8.0 kcal/mol respectively. MD simulations suggested that 16-epiestriol-receptor complexes demonstrated stability throughout the simulation. The growth curve and time kill assays revealed that MDRAb showed resistance to faropenem and polymyxin-B and the pure epiestriol-16 showed significant inhibitory properties at a concentration of 200 μg/mL (p ≤ .5). Thus, natural epiestriol-16 can be used as potential inhibitor against the prioritised targets of MDRAb and this study provide insight for drug development against carbapenem and colistin resistant A. baumannii.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St. Pius X College Rajapuram, Kasaragod, Kerala, India; Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India.
| | - Aditi G Muddebihalkar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India
| | - Vaishnavi Badrinath
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India
| | - Bindu Umashankar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India
| | - Daniya Eram
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| |
Collapse
|
17
|
Intelligent Mechanisms of Macrophage Apoptosis Subversion by Mycobacterium. Pathogens 2020; 9:pathogens9030218. [PMID: 32188164 PMCID: PMC7157668 DOI: 10.3390/pathogens9030218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the first innate defense barriers and play an indispensable role in communication between innate and adaptive immune responses, leading to restricted Mycobacterium tuberculosis (Mtb) infection. The macrophages can undergo programmed cell death (apoptosis), which is a crucial step to limit the intracellular growth of bacilli by liberating them into extracellular milieu in the form of apoptotic bodies. These bodies can be taken up by the macrophages for the further degradation of bacilli or by the dendritic cells, thereby leading to the activation of T lymphocytes. However, Mtb has the ability to interplay with complex signaling networks to subvert macrophage apoptosis. Here, we describe the intelligent strategies of Mtb inhibition of macrophages apoptosis. This review provides a platform for the future study of unrevealed Mtb anti-apoptotic mechanisms and the design of therapeutic interventions.
Collapse
|
18
|
Miggiano R, Morrone C, Rossi F, Rizzi M. Targeting Genome Integrity in Mycobacterium Tuberculosis: From Nucleotide Synthesis to DNA Replication and Repair. Molecules 2020; 25:E1205. [PMID: 32156001 PMCID: PMC7179400 DOI: 10.3390/molecules25051205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis (TB), an ancient disease which still today causes 1.4 million deaths worldwide per year. Long-term, multi-agent anti-tubercular regimens can lead to the anticipated non-compliance of the patient and increased drug toxicity, which in turn can contribute to the emergence of drug-resistant MTB strains that are not susceptible to first- and second-line available drugs. Hence, there is an urgent need for innovative antitubercular drugs and vaccines. A number of biochemical processes are required to maintain the correct homeostasis of DNA metabolism in all organisms. Here we focused on reviewing our current knowledge and understanding of biochemical and structural aspects of relevance for drug discovery, for some such processes in MTB, and particularly DNA synthesis, synthesis of its nucleotide precursors, and processes that guarantee DNA integrity and genome stability. Overall, the area of drug discovery in DNA metabolism appears very much alive, rich of investigations and promising with respect to new antitubercular drug candidates. However, the complexity of molecular events that occur in DNA metabolic processes requires an accurate characterization of mechanistic details in order to avoid major flaws, and therefore the failure, of drug discovery approaches targeting genome integrity.
Collapse
Affiliation(s)
- Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (C.M.); (F.R.)
| | | | | | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (C.M.); (F.R.)
| |
Collapse
|
19
|
Mittal P, Sinha R, Kumar A, Singh P, Ngasainao MR, Singh A, Singh IK. Focusing on DNA Repair and Damage Tolerance Mechanisms in Mycobacterium tuberculosis: An Emerging Therapeutic Theme. Curr Top Med Chem 2020; 20:390-408. [PMID: 31924156 DOI: 10.2174/1568026620666200110114322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is one such disease that has become a nuisance in the world scenario and one of the most deadly diseases of the current times. The etiological agent of tuberculosis, Mycobacterium tuberculosis (M. tb) kills millions of people each year. Not only 1.7 million people worldwide are estimated to harbor M. tb in the latent form but also 5 to 15 percent of which are expected to acquire an infection during a lifetime. Though curable, a long duration of drug regimen and expense leads to low patient adherence. The emergence of multi-, extensive- and total- drug-resistant strains of M. tb further complicates the situation. Owing to high TB burden, scientists worldwide are trying to design novel therapeutics to combat this disease. Therefore, to identify new drug targets, there is a growing interest in targeting DNA repair pathways to fight this infection. Thus, this review aims to explore DNA repair and damage tolerance as an efficient target for drug development by understanding M. tb DNA repair and tolerance machinery and its regulation, its role in pathogenesis and survival, mutagenesis, and consequently, in the development of drug resistance.
Collapse
Affiliation(s)
- Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Rajesh Sinha
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Amit Kumar
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Pooja Singh
- Public Health Research Institute, NJMS-Rutgers University, New Jersey, United States
| | - Moses Rinchui Ngasainao
- Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
20
|
Fenn K, Wong CT, Darbari VC. Mycobacterium tuberculosis Uses Mce Proteins to Interfere With Host Cell Signaling. Front Mol Biosci 2020; 6:149. [PMID: 31998747 PMCID: PMC6961568 DOI: 10.3389/fmolb.2019.00149] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis continues to be the main cause for mortality by an infectious agent, making Mycobacterium tuberculosis one of the most successful pathogens to survive for long durations within human cells. In order to survive against host defenses, M. tuberculosis modulates host cell signaling. It employs many proteins to achieve this and the Mce proteins are emerging as one group that play a role in host cell signaling in addition to their primary role as lipid/sterol transporters. Mce proteins belong to the conserved Mce/MlaD superfamily ubiquitous in diderm bacteria and chloroplasts. In mycobacteria, mce operons, encode for six different Mce proteins that assemble with inner membrane permeases into complexes that span across the mycobacterial cell wall. Their involvement in signaling modulation is varied and they have been shown to bind ERK1/2 to alter host cytokine expression; eEF1A1 to promote host cell proliferation and integrins for host cell adherence and entry. Recently, structures of prokaryotic Mce/MlaD proteins have been determined, giving an insight into the conserved domain. In this mini-review, we discuss current evidence for the role of mycobacterial Mce proteins in host cell signaling and structural characteristics of the protein-protein interactions coordinated by the human proteins to modulate the host signaling.
Collapse
Affiliation(s)
- Katherine Fenn
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chi Tung Wong
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Vidya Chandran Darbari
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
21
|
Chen C, Liu Z, Liu L, Wang J, Jin Q. Structural characterization of glycinamide-RNase-transformylase T from Mycobacterium tuberculosis. Emerg Microbes Infect 2020; 9:58-66. [PMID: 31894729 PMCID: PMC6968694 DOI: 10.1080/22221751.2019.1707716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymes from the purine salvage pathway in Mycobacterium tuberculosis (Mtb) have been regarded as an attractive target for the development of anti-bacterial drugs. Although this pathway has not been extensively studied in Mtb, it has been identified as essential for growth and survival. Glycinamide-RNase-transformylase T (PurT) is found only in some specific bacteria including Mtb and utilizes ATP-dependent ligation to catalyze the formylation of 5′-phosphoribosyl-glycinamide (GAR) in the third reaction of the de novo purine salvage pathway. In the study, we determined the crystal structure of MtbPurT at a resolution of 2.79 Å. In contrast to Pyrococcus horikoshii OT3 PurT (phBCCPPurT), MtbPurT exhibits an “open” conformation, which results in a broader ATP-binding pocket and thus might facilitate the entry and exit of the cofactor. Additionally, active site superposition with E.coli PurT (EcPurT) showed that residues involved in the ATP-binding site in MtbPurT exhibited structural similarity but had notable difference in the GAR-binding site. The loop 383-389 in MtbPurT was much shorter and shifted 5.7 Å away from the phosphate of the GAR substrate. The different GAR-binding mode might result in a large conformational change in MtbPurT, and would provide a possible opportunity for anti-TB drug development.
Collapse
Affiliation(s)
- Cong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. People's Republic of China
| | - Zuliang Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. People's Republic of China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. People's Republic of China
| | - Jianmin Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. People's Republic of China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR People's Republic of China
| |
Collapse
|
22
|
Novel thiazolidinedione-hydroxamates as inhibitors of Mycobacterium tuberculosis virulence factor Zmp1. Eur J Med Chem 2019; 185:111812. [PMID: 31703818 DOI: 10.1016/j.ejmech.2019.111812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/07/2019] [Accepted: 10/23/2019] [Indexed: 11/21/2022]
Abstract
Zinc metalloprotease 1 (Zmp1) is an extracellular enzyme, which has been found essential for the intracellular survival and pathogenesis of Mycobacterium tuberculosis. In this work, we designed and synthesized a series of novel thiazolidinedione-hydroxamates and evaluated in silico their drug-likeness behavior. Then, their inhibitory properties towards a recombinant Zmp1 from Mycobacterium tuberculosis were analyzed by MALDI-TOF MS. Nine of the tested compounds were found to inhibit the enzymatic reaction more effectively than the generic metalloprotease inhibitor phosphoramidon. Furthermore, the synthesized thiazolidinedione-hydroxamate hybrids were evaluated for their in vitro antimycobacterial activity and acute cytotoxicity using whole-cell assays. Results showed that none of the hybrids exhibited acute cytotoxicity against RAW264.7 macrophages. Whereas extracellular antimycobacterial activity was limited, RAW264.7 macrophage infection results showed that a majority of the hybrids inhibited the intracellular growth of Mycobacterium tuberculosis at a concentration of 100 and 10 μM. The thiazolidinedione-hydroxamate compound 2n was considered to be the best candidate of the evaluated library.
Collapse
|
23
|
Blocking the Trigger: Inhibition of the Initiation of Bacterial Chromosome Replication as an Antimicrobial Strategy. Antibiotics (Basel) 2019; 8:antibiotics8030111. [PMID: 31390740 PMCID: PMC6784150 DOI: 10.3390/antibiotics8030111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/19/2022] Open
Abstract
All bacterial cells must duplicate their genomes prior to dividing into two identical daughter cells. Chromosome replication is triggered when a nucleoprotein complex, termed the orisome, assembles, unwinds the duplex DNA, and recruits the proteins required to establish new replication forks. Obviously, the initiation of chromosome replication is essential to bacterial reproduction, but this process is not inhibited by any of the currently-used antimicrobial agents. Given the urgent need for new antibiotics to combat drug-resistant bacteria, it is logical to evaluate whether or not unexploited bacterial processes, such as orisome assembly, should be more closely examined for sources of novel drug targets. This review will summarize current knowledge about the proteins required for bacterial chromosome initiation, as well as how orisomes assemble and are regulated. Based upon this information, we discuss current efforts and potential strategies and challenges for inhibiting this initiation pharmacologically.
Collapse
|
24
|
Moural TW, White DSD, Choy CJ, Kang C, Berkman CE. Crystal Structure of Phosphoserine BlaC from Mycobacterium tuberculosis Inactivated by Bis(Benzoyl) Phosphate. Int J Mol Sci 2019; 20:E3247. [PMID: 31269656 PMCID: PMC6650796 DOI: 10.3390/ijms20133247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis, the pathogen responsible for tuberculosis (TB), is the leading cause of death from infectious disease worldwide. The class A serine β-lactamase BlaC confers Mycobacterium tuberculosis resistance to conventional β-lactam antibiotics. As the primary mechanism of bacterial resistance to β-lactam antibiotics, the expression of a β-lactamase by Mycobacterium tuberculosis results in hydrolysis of the β-lactam ring and deactivation of these antibiotics. In this study, we conducted protein X-ray crystallographic analysis of the inactivation of BlaC, upon exposure to the inhibitor bis(benzoyl) phosphate. Crystal structure data confirms that serine β-lactamase is phosphorylated at the catalytic serine residue (Ser-70) by this phosphate-based inactivator. This new crystallographic evidence suggests a mechanism for phosphorylation of BlaC inhibition by bis(benzoyl) phosphate over acylation. Additionally, we confirmed that bis(benzoyl) phosphate inactivated BlaC in a time-dependent manner.
Collapse
Affiliation(s)
- Timothy W Moural
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Cindy J Choy
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Chulhee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Clifford E Berkman
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
25
|
Kuo CJ, Gao J, Huang JW, Ko TP, Zhai C, Ma L, Liu W, Dai L, Chang YF, Chen TH, Hu Y, Yu X, Guo RT, Chen CC. Functional and structural investigations of fibronectin-binding protein Apa from Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj 2019; 1863:1351-1359. [PMID: 31175911 DOI: 10.1016/j.bbagen.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Alanine and proline-rich protein (Apa) is a secreted antigen of Mycobacterium spp. which involves in stimulating immune responses and adhering to host cells by binding to fibronectin (Fn). Here, we report the crystal structure of Apa from Mycobacterium tuberculosis (Mtb) and its Fn-binding characteristics. METHODS The crystal structure of Mtb Apa was determined at resolutions of 1.54 Å. The dissociation constants (KD) of Apa and individual modules of Fn were determined by surface plasmon resonance and enzyme-linked immunosorbent assay. Site-directed mutagenesis was performed to investigate the putative Fn-binding motif of Apa. RESULTS Mtb Apa folds into a large seven-stranded anti-parallel β-sheet which is flanked by three α-helices. The binding affinity of Mtb Apa to individual Fn modules was assessed and the results indicated that the Mtb Apa binds to FnIII-4 and FnIII-5 of Fn CBD segment. Notably, structure analysis suggested that the previously proposed Fn-binding motif 258RWFV261 is buried within the protein and may not be accessible to the binding counterpart. CONCLUSIONS The structural and Fn-binding characteristics we reported here provide molecular insights into the multifunctional protein Mtb Apa. FnIII-4 and FnIII-5 of CBD are the only two modules contributing to Apa-Fn interaction. GENERAL SIGNIFICANCE This is the first study to report the structure and Fn-binding characteristics of mycobacterial Apa. Since Apa plays a central role in stimulating immune responses and host cells adhesion, these results are of great importance in understanding the pathogenesis of mycobacterium. This information shall provide a guidance for the development of anti-mycobacteria regimen.
Collapse
Affiliation(s)
- Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Jian Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; Tianjin Institute of Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taiwan
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Weidong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; Tianjin Institute of Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; Tianjin Institute of Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
26
|
Labiuk SL, Sygusch J, Grochulski P. Structures of soluble rabbit neprilysin complexed with phosphoramidon or thiorphan. Acta Crystallogr F Struct Biol Commun 2019; 75:405-411. [PMID: 31204686 PMCID: PMC6572095 DOI: 10.1107/s2053230x19006046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Neutral endopeptidase (neprilysin; NEP) is a proteinase that cleaves a wide variety of peptides and has been implicated in Alzheimer's disease, cardiovascular conditions, arthritis and other inflammatory diseases. The structure of the soluble extracellular domain (residues 55-750) of rabbit neprilysin was solved both in its native form at 2.1 Å resolution, and bound to the inhibitors phosphoramidon and thiorphan at 2.8 and 3.0 Å resolution, respectively. Consistent with the extracellular domain of human neprilysin, the structure reveals a large central cavity which contains the active site and the location for inhibitor binding.
Collapse
Affiliation(s)
- Shaunivan L. Labiuk
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Jurgen Sygusch
- Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Pawel Grochulski
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
27
|
Synthesis and Structure-Activity relationship of 1-(5-isoquinolinesulfonyl)piperazine analogues as inhibitors of Mycobacterium tuberculosis IMPDH. Eur J Med Chem 2019; 174:309-329. [PMID: 31055147 PMCID: PMC6990405 DOI: 10.1016/j.ejmech.2019.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is a major infectious disease associated increasingly with drug resistance. Thus, new anti-tubercular agents with novel mechanisms of action are urgently required for the treatment of drug-resistant TB. In prior work, we identified compound 1 (cyclohexyl(4-(isoquinolin-5-ylsulfonyl)piperazin-1-yl)methanone) and showed that its anti-tubercular activity is attributable to inhibition of inosine-5′-monophosphate dehydrogenase (IMPDH) in Mycobacterium tuberculosis. In the present study, we explored the structure–activity relationship around compound 1 by synthesizing and evaluating the inhibitory activity of analogues against M. tuberculosis IMPDH in biochemical and whole-cell assays. X-ray crystallography was performed to elucidate the mode of binding of selected analogues to IMPDH. We establish the importance of the cyclohexyl, piperazine and isoquinoline rings for activity, and report the identification of an analogue with IMPDH-selective activity against a mutant of M. tuberculosis that is highly resistant to compound 1. We also show that the nitrogen in urea analogues is required for anti-tubercular activity and identify benzylurea derivatives as promising inhibitors that warrant further investigation. Forty-eight analogues of 1-(5-isoquinolinesulfonyl)piperazine were synthesized. Biochemical, whole-cell, and X-ray studies were performed to elucidate the IMPDH inhibition. Piperazine and isoquinoline rings were essential for target-selective whole-cell activity. Compound 47 showed improved IC50 against the MtbIMPDH and maintained on-target whole-cell activity. Compound 21 showed activity against IMPDH in both wild type M. tuberculosis and a resistant mutant of compound 1.
Collapse
|
28
|
Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis. J Mol Biol 2018; 430:5120-5136. [DOI: 10.1016/j.jmb.2018.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 01/25/2023]
|
29
|
Rabbad AH, Agoni C, Olotu FA, Soliman ME. Microbes, not humans: exploring the molecular basis of Pseudouridimycin selectivity towards bacterial and not human RNA polymerase. Biotechnol Lett 2018; 41:115-128. [PMID: 30377869 DOI: 10.1007/s10529-018-2617-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Bacterial RNA polymerase (bRNAP) represent a crucial target for curtailing microbial activity but its structural and sequence similarities with human RNA polymerase II (hRNAPII) makes it difficult to target. Recently, Pseudouridimycin (PUM), a novel nucleoside analogue was reported to selectively inhibit bRNAP and not hRNAP. Till date, underlying mechanisms of PUM selectivity remains unresolved, hence the aim of this study. RESULTS Using sequence alignment method, we observed that the β' of bRNAP and the RPB1 subunits of hRNAPII were highly conserved while the β and RPB2 subunits of both proteins were also characterized by high sequence variations. Furthermore, the impact of these variations on the differential binding of PUM was evaluated using MMPB/SA binding free energy and per-residue decomposition analysis. These revealed that PUM binds better to bRNAP than hRNAP with prominent bRNAP active site residues that contributed the most to PUM binding and stabilization lacking in hRNAPII active site due to positional substitution. Also, the binding of PUM to hRNAP was characterized by the formation of unfavorable interactions. In addition, PUM assumed favorable orientations that possibly enhanced its mobility towards the hydrophobic core region of bRNAP. On the contrary, unfavorable intramolecular interactions characterize PUM orientations at the binding site of hRNAPII, which could restrict its movement due to electrostatic repulsions. CONCLUSION These findings would enhance the design of potent and selective drugs for broad-spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Ali H Rabbad
- Molecular Bio-Computation Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, 4001, South Africa
| | - Clement Agoni
- Molecular Bio-Computation Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-Computation Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E Soliman
- Molecular Bio-Computation Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|