1
|
Mukherjee A, Biswas S, Roy I. Exploring immunotherapeutic strategies for neurodegenerative diseases: a focus on Huntington's disease and Prion diseases. Acta Pharmacol Sin 2025; 46:1511-1538. [PMID: 39890942 PMCID: PMC12098710 DOI: 10.1038/s41401-024-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for the treatment of neurodegenerative disorders, which are characterized by the progressive loss of neurons and impaired cognitive functions. In this review, active and passive immunotherapeutic strategies that help address the underlying pathophysiology of Huntington's disease (HD) and prion diseases by modulating the immune system are discussed. The current landscape of immunotherapeutic strategies, including monoclonal antibodies and vaccine-based approaches, to treat these diseases is highlighted, along with their potential benefits and mechanisms of action. Immunotherapy generally works by targeting disease-specific proteins, which serve as the pathological hallmarks of these diseases. Additionally, the review addresses the challenges and limitations associated with immunotherapy. For HD, immunotherapeutic approaches focus on neutralizing the toxic effects of mutant huntingtin and tau proteins, thereby reducing neurotoxicity. Immunotherapeutic approaches targeting flanking sequences, rather than the polyglutamine tract in the mutant huntingtin protein, have yielded promising outcomes for patients with HD. In prion diseases, therapies attempt to prevent or eliminate misfolded proteins that cause neurodegeneration. The major challenge in prion diseases is immune tolerance. Approaches to overcome the highly tolerogenic nature of the prion protein have been discussed. A common hurdle in delivering antibodies is the blood‒brain barrier, and strategies that can breach this barrier are being investigated. As protein aggregation and neurotoxicity are related, immunotherapeutic strategies being developed for other neurodegenerative diseases could be repurposed to target protein aggregation in HD and prion diseases. While significant advances in this field have been achieved, continued research and development are necessary to overcome the existing limitations, which will help in shaping the future of immunotherapy as a strategy for managing neurological disorders.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Zhang J, Wang M, Wang D, Zhang X, Ma Y, Pardon E, Steyaert J, Abskharon R, Wang F, Ma J. Investigating the In Vivo Effects of Anti-Prion Protein Nanobodies on Prion Disease with AAV Vector. Pathogens 2025; 14:131. [PMID: 40005509 PMCID: PMC11858434 DOI: 10.3390/pathogens14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Prion diseases are fatal neurodegenerative disorders affecting humans and animals, and the central pathogenic event is the conversion of normal prion protein (PrPC) into the pathogenic PrPSc isoform. Previous studies have identified nanobodies that specifically recognize PrPC and inhibit the PrPC to PrPSc conversion in vitro. In this study, we investigated the potential for in vivo expression of anti-PrPC nanobodies and evaluated their impact on prion disease. The coding sequences of three nanobodies were packaged into recombinant adeno-associated virus (rAAV) and were administered via intracerebroventricular (ICV) injection in newborn mice. We found that the expression of these nanobodies remained robust for over 180 days, with no observed detrimental effects. To assess their therapeutic potential, we performed ICV injections of nanobody-expressing rAAVs in newborn mice, followed by intracerebral prion inoculation at 5-6 weeks of age. One nanobody exhibited a small yet statistically significant therapeutic effect, extending survival time from 176 days to 184 days. Analyses of diseased brains revealed that the nanobodies did not alter the pathological changes. Our findings suggest that high levels of anti-PrPC nanobodies are necessary to delay disease progression. Further optimization of the nanobodies, AAV vectors, or delivery methods is essential to achieve a significant therapeutic effect.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Mengfei Wang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Dan Wang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiangyi Zhang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium (R.A.)
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium (R.A.)
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Romany Abskharon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium (R.A.)
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Fei Wang
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiyan Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
3
|
Benavente R, Morales R. Therapeutic perspectives for prion diseases in humans and animals. PLoS Pathog 2024; 20:e1012676. [PMID: 39656691 DOI: 10.1371/journal.ppat.1012676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Affiliation(s)
- Rebeca Benavente
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
4
|
Jurcau MC, Jurcau A, Diaconu RG, Hogea VO, Nunkoo VS. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurol Int 2024; 16:1039-1065. [PMID: 39311352 PMCID: PMC11417857 DOI: 10.3390/neurolint16050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
Creutzfeldt-Jakob disease is a rare neurodegenerative and invariably fatal disease with a fulminant course once the first clinical symptoms emerge. Its incidence appears to be rising, although the increasing figures may be related to the improved diagnostic tools. Due to the highly variable clinical picture at onset, many specialty physicians should be aware of this disease and refer the patient to a neurologist for complete evaluation. The diagnostic criteria have been changed based on the considerable progress made in research on the pathogenesis and on the identification of reliable biomarkers. Moreover, accumulated knowledge on pathogenesis led to the identification of a series of possible therapeutic targets, although, given the low incidence and very rapid course, the evaluation of safety and efficacy of these therapeutic strategies is challenging.
Collapse
Affiliation(s)
- Maria Carolina Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Razvan Gabriel Diaconu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vharoon Sharma Nunkoo
- Neurorehabilitation Ward, Clinical Emergency County Hospital Bihor, 410169 Oradea, Romania
| |
Collapse
|
5
|
Liu F, Lü W, Liu L. New implications for prion diseases therapy and prophylaxis. Front Mol Neurosci 2024; 17:1324702. [PMID: 38500676 PMCID: PMC10944861 DOI: 10.3389/fnmol.2024.1324702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Prion diseases are rare, fatal, progressive neurodegenerative disorders that affect both animal and human. Human prion diseases mainly present as Creutzfeldt-Jakob disease (CJD). However, there are no curable therapies, and animal prion diseases may negatively affect the ecosystem and human society. Over the past five decades, scientists are devoting to finding available therapeutic or prophylactic agents for prion diseases. Numerous chemical compounds have been shown to be effective in experimental research on prion diseases, but with the limitations of toxicity, poor efficacy, and low pharmacokinetics. The earliest clinical treatments of CJD were almost carried out with anti-infectious agents that had little amelioration of the course. With the discovery of pathogenic misfolding prion protein (PrPSc) and increasing insights into prion biology, amounts of novel technologies have attempted to eliminate PrPSc. This review presents new perspectives on clinical and experimental prion diseases, including immunotherapy, gene therapy, small-molecule drug, and stem cell therapy. It further explores the prospects and challenge associated with these emerging therapeutic approaches for prion diseases.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqi Lü
- Department of Psychiatry and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Abi Nahed R, Safwan-Zaiter H, Gemy K, Lyko C, Boudaud M, Desseux M, Marquette C, Barjat T, Alfaidy N, Benharouga M. The Multifaceted Functions of Prion Protein (PrP C) in Cancer. Cancers (Basel) 2023; 15:4982. [PMID: 37894349 PMCID: PMC10605613 DOI: 10.3390/cancers15204982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The cellular prion protein (PrPC) is a glycoprotein anchored to the cell surface by glycosylphosphatidylinositol (GPI). PrPC is expressed both in the brain and in peripheral tissues. Investigations on PrPC's functions revealed its direct involvement in neurodegenerative and prion diseases, as well as in various physiological processes such as anti-oxidative functions, copper homeostasis, trans-membrane signaling, and cell adhesion. Recent findings have revealed the ectopic expression of PrPC in various cancers including gastric, melanoma, breast, colorectal, pancreatic, as well as rare cancers, where PrPC promotes cellular migration and invasion, tumor growth, and metastasis. Through its downstream signaling, PrPC has also been reported to be involved in resistance to chemotherapy and tumor cell apoptosis. This review summarizes the variance of expression of PrPC in different types of cancers and discusses its roles in their development and progression, as well as its use as a potential target to treat such cancers.
Collapse
Affiliation(s)
- Roland Abi Nahed
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Hasan Safwan-Zaiter
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Kevin Gemy
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Camille Lyko
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Mélanie Boudaud
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Morgane Desseux
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Christel Marquette
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Tiphaine Barjat
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Nadia Alfaidy
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Mohamed Benharouga
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| |
Collapse
|
7
|
Baiardi S, Mammana A, Capellari S, Parchi P. Human prion disease: molecular pathogenesis, and possible therapeutic targets and strategies. Expert Opin Ther Targets 2023; 27:1271-1284. [PMID: 37334903 DOI: 10.1080/14728222.2023.2199923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Human prion diseases are heterogeneous, and often rapidly progressive, transmissible neurodegenerative disorders associated with misfolded prion protein (PrP) aggregation and self-propagation. Despite their rarity, prion diseases comprise a broad spectrum of phenotypic variants determined at the molecular level by different conformers of misfolded PrP and host genotype variability. Moreover, they uniquely occur in idiopathic, genetically determined, and acquired forms with distinct etiologies. AREA COVERED This review provides an up-to-date overview of potential therapeutic targets in prion diseases and the main results obtained in cell and animal models and human trials. The open issues and challenges associated with developing effective therapies and informative clinical trials are also discussed. EXPERT OPINION Currently tested therapeutic strategies target the cellular PrP to prevent the formation of misfolded PrP or to favor its elimination. Among them, passive immunization and gene therapy with antisense oligonucleotides against prion protein mRNA are the most promising. However, the disease's rarity, heterogeneity, and rapid progression profoundly frustrate the successful undertaking of well-powered therapeutic trials and patient identification in the asymptomatic or early stage before the development of significant brain damage. Thus, the most promising therapeutic goal to date is preventing or delaying phenoconversion in carriers of pathogenic mutations by lowering prion protein expression.
Collapse
Affiliation(s)
- Simone Baiardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Angela Mammana
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Tsitokana ME, Lafon PA, Prézeau L, Pin JP, Rondard P. Targeting the Brain with Single-Domain Antibodies: Greater Potential Than Stated So Far? Int J Mol Sci 2023; 24:ijms24032632. [PMID: 36768953 PMCID: PMC9916958 DOI: 10.3390/ijms24032632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Treatments for central nervous system diseases with therapeutic antibodies have been increasingly investigated over the last decades, leading to some approved monoclonal antibodies for brain disease therapies. The detection of biomarkers for diagnosis purposes with non-invasive antibody-based imaging approaches has also been explored in brain cancers. However, antibodies generally display a low capability of reaching the brain, as they do not efficiently cross the blood-brain barrier. As an alternative, recent studies have focused on single-domain antibodies (sdAbs) that correspond to the antigen-binding fragment. While some reports indicate that the brain uptake of these small antibodies is still low, the number of studies reporting brain-penetrating sdAbs is increasing. In this review, we provide an overview of methods used to assess or evaluate brain penetration of sdAbs and discuss the pros and cons that could affect the identification of brain-penetrating sdAbs of therapeutic or diagnostic interest.
Collapse
|
9
|
Nafe R, Arendt CT, Hattingen E. Human prion diseases and the prion protein - what is the current state of knowledge? Transl Neurosci 2023; 14:20220315. [PMID: 37854584 PMCID: PMC10579786 DOI: 10.1515/tnsci-2022-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Prion diseases and the prion protein are only partially understood so far in many aspects. This explains the continued research on this topic, calling for an overview on the current state of knowledge. The main objective of the present review article is to provide a comprehensive up-to-date presentation of all major features of human prion diseases bridging the gap between basic research and clinical aspects. Starting with the prion protein, current insights concerning its physiological functions and the process of pathological conversion will be highlighted. Diagnostic, molecular, and clinical aspects of all human prion diseases will be discussed, including information concerning rare diseases like prion-associated amyloidoses and Huntington disease-like 1, as well as the question about a potential human threat due to the transmission of prions from prion diseases of other species such as chronic wasting disease. Finally, recent attempts to develop future therapeutic strategies will be addressed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Christophe T. Arendt
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| |
Collapse
|
10
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
11
|
Triller G, Garyfallos DA, Papavasiliou FN, Sklaviadis T, Stavropoulos P, Xanthopoulos K. Immunization with Genetically Modified Trypanosomes Provides Protection against Transmissible Spongiform Encephalopathies. Int J Mol Sci 2022; 23:ijms231810629. [PMID: 36142526 PMCID: PMC9503410 DOI: 10.3390/ijms231810629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Transmissible spongiform encephalopathies are incurable neurodegenerative diseases, associated with the conversion of the physiological prion protein to its disease-associated counterpart. Even though immunization against transmissible spongiform encephalopathies has shown great potential, immune tolerance effects impede the use of active immunization protocols for successful prophylaxis. In this study, we evaluate the use of trypanosomes as biological platforms for the presentation of a prion antigenic peptide to the host immune system. Using the engineered trypanosomes in an immunization protocol without the use of adjuvants led to the development of a humoral immune response against the prion protein in wild type mice, without the appearance of adverse reactions. The immune reaction elicited with this protocol displayed in vitro therapeutic potential and was further evaluated in a bioassay where immunized mice were partially protected in a representative murine model of prion diseases. Further studies are underway to better characterize the immune reaction and optimize the immunization protocol.
Collapse
Affiliation(s)
- Gianna Triller
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA
| | - Dimitrios A. Garyfallos
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - F. Nina Papavasiliou
- Division of Immune Diversity, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Pete Stavropoulos
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA
- Correspondence: (P.S.); (K.X.); Tel.: +30-2310-997-654 (Κ.Χ.)
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thermi, Greece
- Correspondence: (P.S.); (K.X.); Tel.: +30-2310-997-654 (Κ.Χ.)
| |
Collapse
|
12
|
Xu Y, Jiang X, Zhou Y, Ma M, Wang M, Ying B. Systematic Evolution of Ligands by Exponential Enrichment Technologies and Aptamer-Based Applications: Recent Progress and Challenges in Precision Medicine of Infectious Diseases. Front Bioeng Biotechnol 2021; 9:704077. [PMID: 34447741 PMCID: PMC8383106 DOI: 10.3389/fbioe.2021.704077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023] Open
Abstract
Infectious diseases are considered as a pressing challenge to global public health. Accurate and rapid diagnostics tools for early recognition of the pathogen, as well as individualized precision therapy are essential for controlling the spread of infectious diseases. Aptamers, which were screened by systematic evolution of ligands by exponential enrichment (SELEX), can bind to targets with high affinity and specificity so that have exciting potential in both diagnosis and treatment of infectious diseases. In this review, we provide a comprehensive overview of the latest development of SELEX technology and focus on the applications of aptamer-based technologies in infectious diseases, such as targeted drug-delivery, treatments and biosensors for diagnosing. The challenges and the future development in this field of clinical application will also be discussed.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Ma
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,The First People's Hospital of Shuangliu District, Chengdu/West China (Airport)Hospital Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Viral and Prion Infections Associated with Central Nervous System Syndromes in Brazil. Viruses 2021; 13:v13071370. [PMID: 34372576 PMCID: PMC8310075 DOI: 10.3390/v13071370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Virus-induced infections of the central nervous system (CNS) are among the most serious problems in public health and can be associated with high rates of morbidity and mortality, mainly in low- and middle-income countries, where these manifestations have been neglected. Typically, herpes simplex virus 1 and 2, varicella-zoster, and enterovirus are responsible for a high number of cases in immunocompetent hosts, whereas other herpesviruses (for example, cytomegalovirus) are the most common in immunocompromised individuals. Arboviruses have also been associated with outbreaks with a high burden of neurological disorders, such as the Zika virus epidemic in Brazil. There is a current lack of understanding in Brazil about the most common viruses involved in CNS infections. In this review, we briefly summarize the most recent studies and findings associated with the CNS, in addition to epidemiological data that provide extensive information on the circulation and diversity of the most common neuro-invasive viruses in Brazil. We also highlight important aspects of the prion-associated diseases. This review provides readers with better knowledge of virus-associated CNS infections. A deeper understanding of these infections will support the improvement of the current surveillance strategies to allow the timely monitoring of the emergence/re-emergence of neurotropic viruses.
Collapse
|
14
|
Eiden M, Gedvilaite A, Leidel F, Ulrich RG, Groschup MH. Vaccination with Prion Peptide-Displaying Polyomavirus-Like Particles Prolongs Incubation Time in Scrapie-Infected Mice. Viruses 2021; 13:v13050811. [PMID: 33946367 PMCID: PMC8147134 DOI: 10.3390/v13050811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
Prion diseases like scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt–Jakob disease (CJD) in humans are fatal neurodegenerative diseases characterized by the conformational conversion of the normal, mainly α-helical cellular prion protein (PrPC) into the abnormal β-sheet rich infectious isoform PrPSc. Various therapeutic or prophylactic approaches have been conducted, but no approved therapeutic treatment is available so far. Immunisation against prions is hampered by the self-tolerance to PrPC in mammalian species. One strategy to avoid this tolerance is presenting PrP variants in virus-like particles (VLPs). Therefore, we vaccinated C57/BL6 mice with nine prion peptide variants presented by hamster polyomavirus capsid protein VP1/VP2-derived VLPs. Mice were subsequently challenged intraperitoneally with the murine RML prion strain. Importantly, one group exhibited significantly increased mean survival time of 240 days post-inoculation compared with 202 days of the control group. These data show that immunisation with VLPs presenting PrP peptides may represent a promising strategy for an effective vaccination against transmissible spongiform encephalitis agents.
Collapse
Affiliation(s)
- Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
- Correspondence:
| | - Alma Gedvilaite
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania;
| | - Fabienne Leidel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
- Task Force Animal Diseases, Darmstadt Regional Administrative Council, Luisenplatz 2, 64283 Darmstadt, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.L.); (R.G.U.); (M.H.G.)
| |
Collapse
|
15
|
Boutajangout A, Zhang W, Kim J, Abdali WA, Prelli F, Wisniewski T. Passive Immunization With a Novel Monoclonal Anti-PrP Antibody TW1 in an Alzheimer's Mouse Model With Tau Pathology. Front Aging Neurosci 2021; 13:640677. [PMID: 33716717 PMCID: PMC7947695 DOI: 10.3389/fnagi.2021.640677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Neurofibrillary tangles (NFTs) are a major pathologic hallmark of Alzheimer’s disease (AD). Several studies have shown that amyloid β oligomers (Aβo) and tau oligomers mediate their toxicity, in part, via binding to cellular prion protein (PrPC) and that some anti-PrP antibodies can block this interaction. We have generated a novel monoclonal anti-PrP antibody (TW1) and assessed the efficacy of passive immunization with it in a mouse model of AD with extensive tau pathology: hTau/PS1 transgenic (Tg) mice. These mice were injected intraperitoneally once a week with TW1 starting at 5 months of age. Behavior was assessed at 8 months of age and brain tissue was subsequently harvested for analysis of treatment efficacy at 9 months. Mice treated with TW1 did not show any significant difference in sensorimotor testing including traverse beam, rotarod, and locomotor activity compared to controls. Significant cognitive benefits were observed with the novel object recognition test (ORT) in the immunized mice (two-tailed, t-test p = 0.0019). Immunized mice also showed cognitive benefits on the closed field symmetrical maze (day 1 two-tailed t-test p = 0.0001; day 2 two-tailed t-test p = 0.0015; day 3 two-tailed t-test p = 0.0002). Reduction of tau pathology was observed with PHF-1 immunohistochemistry in the piriform cortex by 60% (two-tailed t-test p = 0.01) and in the dentate gyrus by 50% (two-tailed t-test p = 0.02) in animals treated with TW1 compared to controls. There were no significant differences in astrogliosis or microgliosis observed between treated and control mice. As assessed by Western blots using PHF-1, the TW1 therapy reduced phosphorylated tau pathology (two-tailed t-test p = 0.03) and improved the ratio of pathological soluble tau to tubulin (PHF1/tubulin; two-tailed t-test p = 0.0006). Reduction of tau pathology also was observed using the CP13 antibody (two-tailed t-test p = 0.0007). These results indicate that passive immunization with the TW1 antibody can significantly decrease tau pathology as assessed by immunohistochemical and biochemical methods, resulting in improved cognitive function in a tau transgenic mouse model of AD.
Collapse
Affiliation(s)
- Allal Boutajangout
- Center for Cognitive Neurology, New York University Langone Health, New York, NY, United States.,Department of Neurology, New York University Langone Health, New York, NY, United States.,Department of Pathology, New York University Langone Health, New York, NY, United States.,Department of Physiology and Neuroscience, New York University Langone Health, New York, NY, United States
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education) Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Justin Kim
- Center for Cognitive Neurology, New York University Langone Health, New York, NY, United States.,Department of Neurology, New York University Langone Health, New York, NY, United States
| | - Wed Ali Abdali
- Center for Cognitive Neurology, New York University Langone Health, New York, NY, United States.,Department of Neurology, New York University Langone Health, New York, NY, United States
| | - Frances Prelli
- Center for Cognitive Neurology, New York University Langone Health, New York, NY, United States.,Department of Neurology, New York University Langone Health, New York, NY, United States
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University Langone Health, New York, NY, United States.,Department of Neurology, New York University Langone Health, New York, NY, United States.,Department of Pathology, New York University Langone Health, New York, NY, United States.,Department of Psychiatry, New York University Langone Health, New York, NY, United States
| |
Collapse
|
16
|
Khan A, Jahan S, Imtiyaz Z, Alshahrani S, Antar Makeen H, Mohammed Alshehri B, Kumar A, Arafah A, Rehman MU. Neuroprotection: Targeting Multiple Pathways by Naturally Occurring Phytochemicals. Biomedicines 2020; 8:E284. [PMID: 32806490 PMCID: PMC7459826 DOI: 10.3390/biomedicines8080284] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
With the increase in the expectancy of the life span of humans, neurodegenerative diseases (NDs) have imposed a considerable burden on the family, society, and nation. In defiance of the breakthroughs in the knowledge of the pathogenesis and underlying mechanisms of various NDs, very little success has been achieved in developing effective therapies. This review draws a bead on the availability of the nutraceuticals to date for various NDs (Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, vascular cognitive impairment, Prion disease, Spinocerebellar ataxia, Spinal muscular atrophy, Frontotemporal dementia, and Pick's disease) focusing on their various mechanisms of action in various in vivo and in vitro models of NDs. This review is distinctive in its compilation to critically review preclinical and clinical studies of the maximum phytochemicals in amelioration and prevention of almost all kinds of neurodegenerative diseases and address their possible mechanism of action. PubMed, Embase, and Cochrane Library searches were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical updates. The results from preclinical studies demonstrate the efficacious effects of the phytochemicals in various NDs while clinical reports showing mixed results with promise for phytochemical use as an adjunct to the conventional treatment in various NDs. These studies together suggest that phytochemicals can significantly act upon different mechanisms of disease such as oxidative stress, inflammation, apoptotic pathways, and gene regulation. However, further clinical studies are needed that should include the appropriate biomarkers of NDs and the effect of phytochemicals on them as well as targeting the appropriate population.
Collapse
Affiliation(s)
- Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sadaf Jahan
- Medical Laboratories Department, College of Applied Medical Sciences, Majmaah University, Majmaah 15341, Saudi Arabia; (S.J.); (B.M.A.)
| | - Zuha Imtiyaz
- Clinical Drug Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Bader Mohammed Alshehri
- Medical Laboratories Department, College of Applied Medical Sciences, Majmaah University, Majmaah 15341, Saudi Arabia; (S.J.); (B.M.A.)
| | - Ajay Kumar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, India;
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.U.R.)
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.U.R.)
| |
Collapse
|