1
|
Gamal A, Abdel-Moneam DA, Morsi AS, Malak NML, Ali AM, Khalefa HS. In-vitro and in-vivo assessment of the bactericidal potential of peracetic acid and hydrogen peroxide disinfectants against A. hydrophila infection in Nile tilapia and their effect on water quality indices and fish stress biomarkers. Sci Rep 2024; 14:25715. [PMID: 39468161 PMCID: PMC11519942 DOI: 10.1038/s41598-024-76036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
This study aimed to assess the in vitro and in vivo disinfectant potential of peracetic acid (PAA) (1 mg/L) and hydrogen peroxide (H2O2) (20 mg/L) on the physicochemical and microbiological water quality parameters of fish aquaria, the microbial density of Nile tilapia muscular tissue, fish hepatic cortisol levels, and antioxidant biomarkers. In vitro, PAA and H2O2 reduced A. hydrophila colony viability by 5 log units after 30 and 5 min of contact time, respectively. PAA and H2O2 were added to aquaria water twice a week for the three-week experiment. Increased fish escape reflexes were observed only in the PAA group, which returned to normal within 10 min. No mortalities were reported in either the PAA or H2O2 groups. An in vivo experimental challenge with a pathogenic strain of A. hydrophila revealed a 20% reduction in mortality in the PAA group, with no mortalities in the H2O2 group. Cortisol levels and antioxidant markers were measured to assess the impact of PAA and H2O2 on fish health. Cortisol levels in the PAA and H2O2 groups were significantly higher than in the control group after disinfectant exposure, but they progressively returned to normal. A significant reduction in superoxide dismutase (SOD) and catalase (CAT) activity, along with considerably higher glutathione peroxidase (GPx) and malondialdehyde (MDA) enzymatic activity, was observed in the PAA and H2O2 groups compared to the control group. A substantial increase in total antioxidant capacity (TAC) was recorded in the PAA group. Physicochemical analyses revealed reduced pH and increased dissolved oxygen levels in the PAA and H2O2 groups. Microbiological analyses showed a significant reduction in bacterial density in water by 64% and 76% after 30 min of exposure to PAA and H2O2, respectively, with a non-significant increase in microbial count after bacterial challenge. Additionally, aerobic bacterial count, Aeromonas spp., and psychotropic bacterial count in fish muscle showed a significant reduction in the H2O2 group compared to the PAA and control groups before and after infection. The study concludes that regular application of PAA and H2O2 can temporarily reduce bacterial load in aquaria and fish muscle, regulate stress responses, and improve fish health by reducing A. hydrophila-induced infections and improving survival.
Collapse
Affiliation(s)
- Abdelrhman Gamal
- Department of Veterinary Hygiene and Management Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia A Abdel-Moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Asmaa Safwat Morsi
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Nermeen M L Malak
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Asmaa Metwally Ali
- Department of Veterinary Hygiene and Management Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hanan S Khalefa
- Department of Veterinary Hygiene and Management Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
2
|
Chen W, Mao L, Yan Q, Zhao L, Huang L, Zhang J, Qin Y. Comparative transcriptome analysis explored the molecular mechanisms of a luxR-type regulator regulating intracellular survival of Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2024; 47:e13949. [PMID: 38555527 DOI: 10.1111/jfd.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Aeromonas hydrophila is not a traditional intracellular bacterium. However, previous studies revealed that pathogenic A. hydrophila B11 could temporarily survive for at least 24 h in fish phagocytes, and the regulation of intracellular survival in bacteria was associated with regulators of the LuxR-type. The mechanisms of luxR08110 on the A. hydrophila's survival in macrophages were investigated using comprehensive transcriptome analysis and biological phenotype analysis in this study. The results showed that after luxR08110 was silenced, the intracellular survival ability of bacteria was significantly diminished. Comparative transcriptome analysis revealed that luxR08110 was a critical regulator of A. hydrophila, which regulated the expression of over 1200 genes, involving in bacterial flagellar assembly and chemotaxis, ribosome, sulphur metabolism, glycerolipid metabolism, and other mechanisms. Further studies confirmed that after the inhibition of expression of luxR08110, the motility, chemotaxis and adhesion of A. hydrophila significantly decreased. Moreover, compared with the wild-type strain, the survival rates of silencing strain were all considerably reduced under both H2O2 and low pH stress conditions. According to both transcriptome analysis and phenotypic tests, the luxR08110 of A. hydrophila could act as global regulator in bacteria intracellular survival. This regulator regulated intracellular survival of A. hydrophila mainly through two ways. One way is to regulate bacterial flagellar synthesis and further affects the motility, chemotaxis and adhesion of bacteria. The other way is to regulate sulphur and glycerolipid metabolisms, thus affecting bacterial energy production and the ability to resist environmental stress.
Collapse
Affiliation(s)
- Weiqin Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Group Co. Ltd, Fuqing, China
| | - Leilei Mao
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Group Co. Ltd, Fuqing, China
| | - Qingpi Yan
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Lingmin Zhao
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Lixing Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Jiaonan Zhang
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Group Co. Ltd, Fuqing, China
| | - Yingxue Qin
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
3
|
Rosa IA, Bianchini AE, Bressan CA, Ferrari FT, Ariotti K, Mori NC, Bandeira Junior G, Pinheiro CG, Pavanato MA, Cargnelutti JF, Baldisserotto B, Heinzmann BM. Redox profile of silver catfish challenged with Aeromonas hydrophila and treated with hexane extract of Hesperozygis ringens (Benth.) Epling through immersion bath. AN ACAD BRAS CIENC 2024; 96:e20230188. [PMID: 38597489 DOI: 10.1590/0001-3765202420230188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/19/2023] [Indexed: 04/11/2024] Open
Abstract
The growing increase in the fish farming sector has favored the establishment of bacterial outbreaks caused by Aeromonas hydrophila in several species. The hexane extract of Hesperozygis ringens (HEHR) (Lamiaceae) leaves increased the survival rate of silver catfish (Rhamdia quelen) experimentally infected by A. hydrophila. However, it is noteworthy that no reports have been found on the possible mechanisms of action of this extract in infected fish. This study aimed to evaluate the effect of the HEHR, administered through single immersion bath, on lipid peroxidation and antioxidant defenses in muscle and liver tissue of silver catfish challenged with A. hydrophila. The results showed that the oxidative status of silver catfish was altered, although oxidative stress was not triggered during the experiment. HEHR at 30 mg/L (HEHR30) was not characterized as a pro-oxidant agent in the presence of infection, unlike florfenicol and HEHR at 15 mg/L treatments in some cases. In short, HEHR30 provided an important increase in hepatic catalase activity, characterizing one of the possible mechanisms involved in the greater survival of fish experimentally infected by A. hydrophila. Additionally, HEHR30 did not induce lipid peroxidation, nor reduced antioxidant defenses of silver catfish infected or not by A. hydrophila.
Collapse
Affiliation(s)
- Isadora A Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Adriane E Bianchini
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Caroline A Bressan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Fabíola T Ferrari
- Universidade Federal de Santa Maria, Curso de Farmácia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Karine Ariotti
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Natacha C Mori
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade de Cruz Alta (UNICRUZ), Curso de Farmácia, Rodovia Municipal Jacob Della Mea, s/n, km 5,6, 98020-290 Cruz Alta, RS, Brazil
| | - Guerino Bandeira Junior
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Carlos G Pinheiro
- Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Maria Amália Pavanato
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Departamento de Fisiologia e Farmacologia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Juliana F Cargnelutti
- Universidade Federal de Santa Maria, Departamento de Medicina Veterinária Preventiva, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Departamento de Fisiologia e Farmacologia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Berta Maria Heinzmann
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Curso de Farmácia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Departamento de Farmácia Industrial, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Sripradite J, Thaotumpitak V, Atwill ER, Hinthong W, Jeamsripong S. Distribution of bacteria and antimicrobial resistance in retail Nile tilapia (Oreochromis spp.) as potential sources of foodborne illness. PLoS One 2024; 19:e0299987. [PMID: 38564611 PMCID: PMC10986973 DOI: 10.1371/journal.pone.0299987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
This study aimed to investigate AMR profiles of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from Nile tilapia (Oreochromis spp.) (n = 276) purchased from fresh markets and supermarkets in Bangkok, Thailand. A sample of tilapia was divided into three parts: fish intestine (n = 276), fish meat (n = 276), and liver and kidney (n = 276). The occurrence of A. hydrophila, Salmonella, and V. cholerae was 3.1%, 7.4%, and 8.5%, respectively. A high prevalence of these pathogenic bacteria was observed in fresh market tilapia compared to those from supermarkets (p < 0.05). The predominant Salmonella serovars were Paratyphi B (6.4%), followed by Escanaba (5.7%), and Saintpaul (5.7%). All isolates tested positive for the virulence genes of A. hydrophila (aero and hly), Salmonella (invA), and V. cholerae (hlyA). A. hydrophila (65.4%), Salmonella (31.2%), and V. cholerae (2.9%) showed multidrug resistant isolates. All A. hydrophila isolates (n = 26) exhibited resistant to ampicillin (100.0%) and florfenicol (100.0%), and often carried sul1 (53.8%) and tetA (50.0%). Salmonella isolates were primarily resistant to ampicillin (36.9%), with a high incidence of blaTEM (26.2%) and qnrS (25.5%). For V. cholerae isolates, resistance was observed against ampicillin (48.6%), and they commonly carried qnrS (24.3%) and tetA (22.9%). To identify mutations in the quinolone resistance determining regions (QRDRs), a single C248A point mutation of C248A (Ser-83-Tyr) in the gyrA region was identified in six out of seven isolates of Salmonella isolates. This study highlighted the presence of antimicrobial-resistant pathogenic bacteria in Nile tilapia at a selling point. It is important to rigorously implement strategies for AMR control and prevention.
Collapse
Affiliation(s)
- Jarukorn Sripradite
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Varangkana Thaotumpitak
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Woranich Hinthong
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Saharuetai Jeamsripong
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Hota S, Sugumar V, Alex A, Brahma N, Navya K. One Step Rapid Sensitive Method for the Diagnosis of Hemolysin Gene of Aeromonas hydrophila by Polymerase Chain Reaction. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1287-S1290. [PMID: 38882782 PMCID: PMC11174196 DOI: 10.4103/jpbs.jpbs_571_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/18/2024] Open
Abstract
Aeromonas hydrophila is a Gram-negative bacterium that has been linked to serious illnesses in both humans and animals. The presence of hemolysin, a virulence factor, is critical in the development of A. hydrophila-related illnesses. As a result, precise and timely detection of the hemolysin gene is critical for efficient diagnosis and prevention of many illnesses. The PCR is used in this study to detect the hemolysin gene of A. hydrophila in a novel, fast, and highly sensitive one-step technique. Specific primers were constructed to amplify a conserved area within the hemolysin gene to achieve both specificity as well as sensitivity. The PCR assay was rigorously optimized, taking temperature, primer concentration, and reaction time into account, in order to maximize the efficiency and reliability of this method. In conclusion, this method's simplicity, sensitivity, and specificity make it highly promising for regular diagnostic applications. Its application would allow for the early detection of A. hydrophila infections, allowing for more effective treatment and control methods.
Collapse
Affiliation(s)
- Sankirtha Hota
- Department of Biochemistry, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Vimal Sugumar
- Department of Biochemistry, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arockia Alex
- Department of Biochemistry, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Neha Brahma
- Department of Biochemistry, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kotra Navya
- Department of Biochemistry, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Attia ASA, Abou Elez RMM, El-Gazzar N, Elnahriry SS, Alfifi A, Al-Harthi HF, Alkhalifah DHM, Hozzein WN, Diab HM, Ibrahim D. Cross-sectional analysis of risk factors associated with Mugil cephalus in retail fish markets concerning methicillin-resistant Staphylococcus aureus and Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1348973. [PMID: 38371296 PMCID: PMC10869461 DOI: 10.3389/fcimb.2024.1348973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus (MRSA) are potent bacterial pathogens posing major hazards to human health via consuming fish harboring these pathogens or by cross-contamination beyond the contaminated environment. The aim of this study was to determine risk variables associated with the presence of certain pathogenic bacteria from Mugil cephalus fish in retail markets in Egypt. The virulence genes of A. hydrophila and S. aureus were also studied. Furthermore, the antibiotic sensitivity and multidrug resistance of the microorganisms were evaluated. Methods In a cross-sectional investigation, 370 samples were collected from mullet skin and muscle samples, washing water, fish handlers, knives, and chopping boards. Furthermore, fish handlers' public health implications were assessed via their response to a descriptive questionnaire. Results S. aureus and Aeromonas species dominated the investigated samples with percentages of 26.76% and 30.81%, respectively. Furthermore, A. hydrophila and MRSA were the predominant recovered bacterial pathogens among washing water and knives (53.85% and 46.66%, respectively). The virulence markers aerA and hlyA were found in 90.7% and 46.5% of A. hydrophila isolates, respectively. Moreover, the virulence genes nuc and mec were prevalent in 80% and 60% of S. aureus isolates, respectively. Antimicrobial susceptibility results revealed that all A. hydrophila isolates were resistant to amoxicillin and all MRSA isolates were resistant to amoxicillin and ampicillin. Remarkably, multiple drug resistance (MDR) patterns were detected in high proportions in A. hydrophila (88.37%) and MRSA (100%) isolates. The prevalence of Aeromonas spp. and S. aureus had a positive significant correlation with the frequency of handwashing and use of sanitizer in cleaning of instruments. MRSA showed the highest significant prevalence rate in the oldest age category. Conclusion The pathogenic bacteria recovered in this study were virulent and had a significant correlation with risk factors associated with improper fish handling. Furthermore, a high frequency of MDR was detected in these pathogenic bacteria, posing a significant risk to food safety and public health.
Collapse
Affiliation(s)
- Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Shimaa S. Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Alfifi
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Helal F. Al-Harthi
- Department of Biology, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hassan Mohmoud Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Ibrahim D, I Abdel Rahman MM, M Abd El-Ghany A, A A Hassanen E, A Al-Jabr O, A Abd El-Wahab R, Zayed S, Abd El Khalek Salem M, Nabil El Tahawy S, Youssef W, A Tolba H, E Dawod R, Taha R, H Arisha A, T Y Kishawy A. Chlorella vulgaris extract conjugated magnetic iron nanoparticles in nile tilapia (Oreochromis niloticus): Growth promoting, immunostimulant and antioxidant role and combating against the synergistic infection with Ichthyophthirius multifiliis and Aeromonashydrophila. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109352. [PMID: 38171430 DOI: 10.1016/j.fsi.2023.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Nile tilapia reared under intensive conditions was more susceptible for Ichthyophthirius multifilii (I. multifiliis) infection eliciting higher mortality, lower productive rate and further bacterial coinfection with Aeromonas hydrophila (A. hydrophila). The higher potency of magnetic field of iron oxide nanoparticles (NPs) can kill pathogens through inhibiting their viability. Herein, coating of Chlorella vulgaris extract (ChVE) with magnetic iron oxide NPs (Mag iron NPs) can create an external magnetic field that facilitates their release inside the targeted tissues. Thus, the current study is focused on application of new functionalized properties of Mag iron NPs in combination with ChVE and their efficacy to alleviate I. multifiliis and subsequent infection with A. hydrophila in Nile tilapia. Four hundred fingerlings were divided into: control group (with no additives), three groups fed control diet supplemented with ChVE, Mag iron NPs and ChVE@Mag iron NPs for 90 days. At the end of feeding trial fish were challenged with I. multifiliis and at 9 days post challenge was coinfected by A. hydrophila. A remarkable higher growth rate and an improved feed conversion ratio were detected in group fed ChVE@Mag iron-NPs. The maximum expression of antioxidant enzymes in skin and gills tissues (GSH-Px, CAT, and SOD) which came in parallel with higher serum activities of these enzymes was identified in groups received ChVE@Mag iron-NPs. Furthermore, group fed a combination of ChVE and Mag iron-NPs showed a boosted immune response (higher lysozyme, IgM, ACH50, and MPO) prior to challenge with I. multifiliis. In contrast, fish fed ChVE@Mag iron-NPs supplemented diet had lower infection (decreased by 62%) and mortality rates (decreased by 84%), as well as less visible white spots (decreased by 92 % at 12 dpi) on the body surfaces and mucous score. Interestingly, post I. multifiliis the excessive inflammatory response in gill and skin tissues was subsided by feeding on ChVE@Mag iron-NPs as proved by down regulation of IL-1β, TNFα, COX-2 and iNOS and upregulation of IL-10, and IgM, IgT and Muc-2 genes. Notably, group exposed to I. multifiliis-showed higher mortality when exposed to Aeromonas hydrophilia (increased by 43 %) while group fed ChVE@Mag iron-NPs exhibited lower morality (2%). Moreover, the bacterial loads of A. hydrophilia in fish infected by I. multifiliis and fed control diet were higher than those received dietary supplement of ChVE, Mag iron-NPs and the most reduced load was obtained in group fed ChVE@Mag iron-NPs at 7 dpi. In conclusion, ChVE@Mag iron-NPs fed fish had stronger immune barrier and antioxidant functions of skin and gills, and better survival following I. multifiliis and A. hydrophilia infection.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | | | - Amany M Abd El-Ghany
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Eman A A Hassanen
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Omar A Al-Jabr
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Reham A Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), 246 Dokki, Giza 12618, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), 246 Dokki, Giza 12618, Egypt
| | - Mona Abd El Khalek Salem
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Agriculture Research Center, Mansoura, Egypt
| | - Shimaa Nabil El Tahawy
- Department of Clinical Pathology, Zagazig Branch, Animal Health Research Institute, Agriculture Research Center, Zagazig 44516, Egypt
| | - Wessam Youssef
- Biotechnology Department, Animal Health Research Institute (AHRI), 246 Dokki, Giza 12618, Egypt
| | - Heba A Tolba
- Department of Fish Health and Management, Central Laboratory of Aquaculture Research (CLAR), AboHamad, Agriculture Research Center (ARC), Egypt
| | - Rehab E Dawod
- Department of Bacteriology, Animal Health Institute, Damietta Branch, Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Rahma Taha
- Department of Zoology, Animal Immunology and Physiology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
8
|
Adah DA, Saidu L, Oniye SJ, Adah AS, Daoudu OB, Ola-Fadunsin SD. Molecular characterization and antibiotics resistance of Aeromonas species isolated from farmed African catfish Clarias gariepinus Burchell, 1822. BMC Vet Res 2024; 20:16. [PMID: 38184574 PMCID: PMC10771007 DOI: 10.1186/s12917-023-03860-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Aeromonas species are one of the most important etiologies of diseases in fish farms, leading to clinical manifestation and mortality and are associated with public health risks. This study aimed to investigate the prevalence, phenotypic and molecular characteristics of Aeromonas species isolated from farmed Clarias gariepinus using 16 S rRNA sequencing. Additionally, their antibiogram and multiple antibiotic resistance index were determined using a disc diffusion test. RESULTS A total of 230 Aeromonas strains were isolated from Clarias gariepinus with 40.9% obtained from diseased fish, and 25% isolated from apparently healthy ones. Five different species including Aeromonas caviae, Aeromonas veronii, Aeromonas hydrophila, Aeromonas dhakensis and Aeromonas enteropelogenes were fully identified and genetically characterized. Based on the available literature, this is the first report of Aeromonas enteropelogenes from the study area. The phylogenetic analysis showed genetic heterogeneity and distance within the species and the reference strains. The multiple resistant Aeromonas species were susceptible to ciprofloxacin, gentamycin, and florfenicol. The Aeromonas species' multiple antibiotic resistance index values varied between 0.20 and 0.80 and were isolated from the farms where antibiotics were intensively used. CONCLUSIONS The diversity of multidrug-resistant Aeromonas species isolated from fish farms is a major threat to fish production giving us more understanding of epidemiology and the multidrug Aeromonas species with a MAR index of greater than 0.2 were isolated from farms where antibiotic use was widespread. As a result, a considerably increased danger of multiple antibiotic resistance spreading to the fish culture environment may impact aquaculture production. Hence there is a need for appropriate and monitored drug usage.
Collapse
Affiliation(s)
- Deborah Arimie Adah
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria.
| | - Lawal Saidu
- Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
| | - Sonnie Joshua Oniye
- Department of Biological Science, National Open University of Nigeria, Abuja, Nigeria
| | - Adakole Sylvanus Adah
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Oluwafemi Babatunde Daoudu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Shola David Ola-Fadunsin
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
9
|
Magouz FI, Moustafa EM, Abo-Remela EM, Halawa MR, Barakaat PM, Omar AA. Summer mortality syndrome bacterial pathogens in farmed Nile tilapia ( Oreochromis niloticus). Open Vet J 2024; 14:53-69. [PMID: 38633195 PMCID: PMC11018447 DOI: 10.5455/ovj.2024.v14.i1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background The high summer mortality in many fish farms, which had detrimental economic and social implications, was a serious challenge that the fish industry had to deal with. Aim With an examination of the most effective antibiotic, the ongoing research was intended to shed light on the identification of the main bacterial pathogens associated with the summer mortality syndrome in the diseased farmed Nile tilapia. Methods Six hundred dead Nile tilapia samples that had suffered from summer mortality were collected from several fish farms between May and October of 2022. The gathered fish displayed hemorrhagic areas on the skin, scale detachment, fin degeneration, erosions, skin ulcers, and corneal opacity with unilateral and/or bilateral exophthalmia. The most prominent internal appearance was swelling of the internal organs with sanguineous ascetic fluid. Results There were 225 bacterial isolates found. Six species were identified through phenotypic and biochemical analysis; they were Aeromonas, Vibrio, Streptococcus, Pseudomonas, Enterococcus, and Edwardsiella spp., in descending percentage, respectively. Aeromonas spp., Vibrio spp., and Streptococcus spp. were the three most frequent isolated bacterial pathogens. The identification of Aeromonas hydrophila, Vibrio spp., and Streptococcus iniae, the three most common bacterial isolates, was confirmed by molecular analysis by polymerase chain reaction. Most of the tested strains were found to be responsive to Ciprofloxacin (CIP), Gentamicin (CN), and Chloramphenicol (C) but resistant to Amoxicillin (AMX), according to an antibiotic sensitivity test. Conclusion The three most dangerous common bacterial infections discovered during mass-farmed tilapia summer mortality are A. hydrophil a, Vibrio sp., and S. iniae. This makes it clear that high water temperatures may raise the possibility of bacterial infections, which could cause widespread tilapia mortality and substantial financial losses. Therefore, it is crucial to maintain a beneficial fish culture, environment, and husbandry practices to enhance the tilapia-rearing environment and lessen the virulence of the disease. Isolated bacterial strains showed low levels of resistance to AMX but were vulnerable to CIP, CN, and C.
Collapse
Affiliation(s)
- Fawzy I. Magouz
- Fish Nutrition, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Eman Moustafa Moustafa
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Etab M. Abo-Remela
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- Biology Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | - Marwa R. Halawa
- Central Diagnostic and Research Laboratory, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Passant M. Barakaat
- Fish Nutrition, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Amira A. Omar
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
10
|
Al-Rasheed AA, Garba B, Handool KO, Al-Jashamy KA, Odhah MNA, Dirie NI, Daud HM. An in-vivo experimental evaluation of the efficacy of fish-derived antimicrobial peptides against multidrug-resistant Pseudomonas aeruginosa. Pan Afr Med J 2023; 46:112. [PMID: 38465008 PMCID: PMC10924623 DOI: 10.11604/pamj.2023.46.112.38578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/16/2023] [Indexed: 03/12/2024] Open
Abstract
Introduction due to the fact that antimicrobial peptides antimicrobial peptides (AMPs) from climbing perch have not been fully explored for their antimicrobial potency, this investigation was undertaken to explore that possibility. Methods antimicrobial peptides (AMPs) from the mucous secretion of climbing perch were obtained and an in-vivo analysis was conducted using mice. Results the results showed inhibitory effects on multidrug-resistant multidrug-resistant Pseudomonas aeruginosa with reduced mortality from 100% among the non-treated group to 25%. Similarly, the level of serum transaminase enzymes (AST and ALT), creatinine levels, and pro-inflammatory cytokines (TNF-α and IL-6) were all found to be higher in the non-treatment group compared to the AMP-treatment group. Also, extensive tissue damage in the lung, liver, and spleen of the non-treated control group mice was observed based on the histopathological lesions recorded. As expected, AMPs from climbing perch significantly alleviated multidrug-resistant P. aeruginosa infection in-vivo and produced enhanced therapeutic efficacy superior to the ciprofloxacin treatment. Conclusion this study provides insight into the potential antimicrobial activity of fish innate immune system-derived peptides that could serve as a candidate for the substitute of antibiotics.
Collapse
Affiliation(s)
- Agharid Ali Al-Rasheed
- Department of Microbiology, Faculty of Veterinary Medicine, Tikrit University, Tikrit, Iraq
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Bashiru Garba
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | | | - Karim Alwan Al-Jashamy
- Department of Radiology and Sonar Technology, Bilad Alrafidain University College, Baghdad, Iraq
| | - Mohamed Naji Ahmed Odhah
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Najib Isse Dirie
- Department of Urology, Dr. Sumait Hospital, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu, Somalia
| | - Hassan Mohd Daud
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
11
|
Abdella B, Abozahra NA, Shokrak NM, Mohamed RA, El-Helow ER. Whole spectrum of Aeromonas hydrophila virulence determinants and the identification of novel SNPs using comparative pathogenomics. Sci Rep 2023; 13:7712. [PMID: 37173388 PMCID: PMC10182093 DOI: 10.1038/s41598-023-34887-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Aeromonas hydrophila is a ubiquitous fish pathogen and an opportunistic human pathogen. It is mostly found in aquatic habitats, but it has also been isolated from food and bottled mineral waters. It causes hemorrhagic septicemia, ulcerative disease, and motile Aeromonas septicemia (MAS) in fish and other aquatic animals. Moreover, it might cause gastroenteritis, wound infections, and septicemia in humans. Different variables influence A. hydrophila virulence, including the virulence genes expressed, host susceptibility, and environmental stresses. The identification of virulence factors for a bacterial pathogen will help in the development of preventive and control measures. 95 Aeromonas spp. genomes were examined in the current study, and 53 strains were determined to be valid A. hydrophila. These genomes were examined for pan- and core-genomes using a comparative genomics technique. A. hydrophila has an open pan-genome with 18,306 total genes and 1620 genes in its core-genome. In the pan-genome, 312 virulence genes have been detected. The effector delivery system category had the largest number of virulence genes (87), followed by immunological modulation and motility genes (69 and 46, respectively). This provides new insight into the pathogenicity of A. hydrophila. In the pan-genome, a few distinctive single-nucleotide polymorphisms (SNPs) have been identified in four genes, namely: D-glycero-beta-D-manno-heptose-1,7-bisphosphate 7-phosphatase, chemoreceptor glutamine deamidase, Spermidine N (1)-acetyltransferase, and maleylpyruvate isomerase, which are present in all A. hydrophila genomes, which make them molecular marker candidates for precise identification of A. hydrophila. Therefore, for precise diagnostic and discrimination results, we suggest these genes be considered when designing primers and probes for sequencing, multiplex-PCR, or real-time PCR.
Collapse
Affiliation(s)
- Bahaa Abdella
- Aquaculture Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Nourhan A Abozahra
- Aquaculture Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Nermeen M Shokrak
- Aquaculture Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Radi A Mohamed
- Aquaculture Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ehab R El-Helow
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
12
|
Thaotumpitak V, Sripradite J, Atwill ER, Jeamsripong S. Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. PeerJ 2023; 11:e14896. [PMID: 36855429 PMCID: PMC9968459 DOI: 10.7717/peerj.14896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Background Tilapia is a primary aquaculture fish in Thailand, but little is known about the occurrence of antimicrobial resistance (AMR) in Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae colonizing healthy tilapia intended for human consumption and the co-occurrence of these AMR bacteria in the cultivation water. Methods This study determined the phenotype and genotype of AMR, extended-spectrum β-lactamase (ESBL) production, and virulence factors of A. hydrophila, Salmonella spp., and V. cholerae isolated from hybrid red tilapia and cultivation water in Thailand. Standard culture methods such as USFDA's BAM or ISO procedures were used for the original isolation, with all isolates confirmed by biochemical tests, serotyping, and species-specific gene detection based on PCR. Results A total of 278 isolates consisting of 15 A. hydrophila, 188 Salmonella spp., and 75 V. cholerae isolates were retrieved from a previous study. All isolates of A. hydrophila and Salmonella isolates were resistance to at least one antimicrobial, with 26.7% and 72.3% of the isolates being multidrug resistant (MDR), respectively. All A. hydrophila isolates were resistant to ampicillin (100%), followed by oxytetracycline (26.7%), tetracycline (26.7%), trimethoprim (26.7%), and oxolinic acid (20.0%). The predominant resistance genes in A. hydrophila were mcr-3 (20.0%), followed by 13.3% of isolates having floR, qnrS, sul1, sul2, and dfrA1. Salmonella isolates also exhibited a high prevalence of resistance to ampicillin (79.3%), oxolinic acid (75.5%), oxytetracycline (71.8%), chloramphenicol (62.8%), and florfenicol (55.3%). The most common resistance genes in these Salmonella isolates were qnrS (65.4%), tetA (64.9%), bla TEM (63.8%), and floR (55.9%). All V. cholerae isolates were susceptible to all antimicrobials tested, while the most common resistance gene was sul1 (12.0%). One isolate of A. hydrophila was positive for int1, while all isolates of Salmonella and V. cholerae isolates were negative for integrons and int SXT. None of the bacterial isolates in this study were producing ESBL. The occurrence of mcr-3 (20.0%) in these isolates from tilapia aquaculture may signify a serious occupational and consumer health risk given that colistin is a last resort antimicrobial for treatment of Gram-negative bacteria infections. Conclusions Findings from this study on AMR bacteria in hybrid red tilapia suggest that aquaculture as practiced in Thailand can select for ubiquitous AMR pathogens, mobile genetic elements, and an emerging reservoir of mcr and colistin-resistant bacteria. Resistant and pathogenic bacteria, such as resistance to ampicillin and tetracycline, or MDR Salmonella circulating in aquaculture, together highlight the public health concerns and foodborne risks of zoonotic pathogens in humans from cultured freshwater fish.
Collapse
Affiliation(s)
- Varangkana Thaotumpitak
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jarukorn Sripradite
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, United States of America
| | - Saharuetai Jeamsripong
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Das S, Pradhan C, Pillai D. Dietary coriander (Coriandrum sativum L) oil improves antioxidant and anti-inflammatory activity, innate immune responses and resistance to Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 132:108486. [PMID: 36513321 DOI: 10.1016/j.fsi.2022.108486] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The use of essential oils (EOs) as a natural alternative to antibiotics for disease prevention strategies is gaining much interest in recent decade. Coriander (Coriandrum sativum L.) essential oil is rich in bioactive compounds like linalool and geranyl acetate which have antioxidant, anti-inflammatory and antimicrobial activities. The present work was proposed to evaluate the inclusion levels of coriander oil in tilapia feed to enhance tilapia health and resistance to bacterial infection. Five iso-nitrogenous and iso-lipidic feeds were prepared with graded levels of coriander oil (0, 0.5, 1, 1.5 and 2%). The fish were then fed with the five experimental diet twice daily for a period of 60 days in triplicate. Haemoglobin, mean corpuscular volume, mean cell haemoglobin increased significantly in the coriander oil treated groups. The thrombocyte count was more in 2% inclusion level. The superoxide dismutase activity increased significantly in all the treated groups. The feeds with 1.5 and 2% coriander oil showed increased respiratory burst and myeloperoxidase activities while lysozyme and antiprotease activities were significantly higher in 1, 1.5 and 2% dietary treatments compared to control. The survival increased in dose dependent manner post challenge with an intraperitoneal injection of Aeromonas hydrophila at a LD50 dose of 5 × 106 cfu mL-1. The feed containing 1, 1.5 and 2% of coriander oil showed 89, 100 and 100% survival respectively compared to 39% in control diet. The expression level of IgM and IL-8 increased significantly post challenge with A. hydrophila in coriander oil fed groups. The expressions of TNFα, IL-1β, TGFβ and HSP 70 genes, however, decreased significantly in the treated groups compared to control. Histopathological examination of spleen showed large melano-macrophage centers in control and 0.5% coriander fed group with signs of necrosis and vacuolation post A. hydrophila infection, whereas 1, 1.5 and 2% treated groups showed normal architecture of spleen. From the above observations it can be concluded that coriander oil with 1% incorporation in feed improves tilapia health and resistance to bacterial infection.
Collapse
Affiliation(s)
- Sweta Das
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Chiranjiv Pradhan
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.
| |
Collapse
|
14
|
Song K, Yu Z, Zu X, Huang L, Fu D, Yao J, Hu Z, Xue Y. Microfluidic Chip for Detection of Drug Resistance at the Single-cell Level. MICROMACHINES 2022; 14:46. [PMID: 36677107 PMCID: PMC9861505 DOI: 10.3390/mi14010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Drug-resistant bacterial strains seriously threaten human health. Rapid screening of antibiotics is urgently required to improve clinical treatment. Conventional methods of antimicrobial susceptibility testing rely on turbidimetry that is evident only after several days of incubation. The lengthy time of the assay can delay clinical treatment. Here, we proposed a single-cell level rapid system based on a microfluidic chip. The detection period of 30 min to 2 h was significantly shorter than the conventional turbidity-based method. To promote detection efficiency, 16 independent channels were designed, permitting the simultaneous screening of 16 drugs in the microfluidic chip. Prepositioning of drugs in the chip permitted prolonged transportation and storage. This may allow for the widespread use of the novel system, particularly in the regions where medical facilities are scarce. The growth curves were reported rapidly through a custom code in Matlab after tracking and photographing the bacteria during microscopy examination. The capability of the proposed system was validated by antimicrobial susceptibility testing trials with standard strains. The system provides a potentially useful detection tool for drug-resistant bacteria.
Collapse
Affiliation(s)
- Kena Song
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhangqing Yu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei Huang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Dongliao Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jingru Yao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
15
|
Ibrahim D, Abd El-Hamid MI, Al-Zaban MI, ElHady M, El-Azzouny MM, ElFeky TM, Al Sadik GM, Samy OM, Hamed TA, Albalwe FM, Alenezi MA, Omar AE. Impacts of Fortifying Nile Tilapia ( Oreochromis niloticus) Diet with Different Strains of Microalgae on Its Performance, Fillet Quality and Disease Resistance to Aeromonas hydrophila Considering the Interplay between Antioxidant and Inflammatory Response. Antioxidants (Basel) 2022; 11:2181. [PMID: 36358553 PMCID: PMC9686914 DOI: 10.3390/antiox11112181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 09/06/2023] Open
Abstract
The oxidative stress facing fish during intensive production brings about diseases and mortalities that negatively influence their performance. Along with that, the increased awareness of omega-3 polyunsaturated fatty acids (omega-3-PUFAs) health benefits has been triggered the introduction of alternative additives in aqua feed that cause not only modulation in fish immune response but also fortification of their fillet. In this context, the role of microalgae mix (NSS) containing Nannochloropsis oculate and Schizochytrium and Spirulina species, which were enriched with bioactive molecules, especially EPA and DHA, was assessed on Nile tilapia's performance, fillet antioxidant stability, immune response, and disease resistance. Varying levels of NSS (0.75, 1.5, and 3%) were added to Nile tilapia's diet for 12 weeks and then a challenge of fish with virulent Aeromonas hydrophila (A. hydrophila) was carried out. Results showed that groups fed NSS, especially at higher levels, showed an improved WG and FCR, which corresponded with enhanced digestive enzymes' activities. Higher T-AOC was detected in muscle tissues of NSS3.0% fed fish with remarkable reduction in ROS, H2O2, and MDA contents, which came in parallel with upregulation of GSH-Px, CAT, and SOD genes. Notably, the contents of EPA and DHA in fillet were significantly increased with increasing the NSS levels. The mean log10 counts of pathogenic Vibrio and Staphylococcus species were reduced, and conversely, the populations of beneficial Lactobacillus and Bacillus species were increased more eminent after supplementation of NSS3.0% and NSS1.5%. Moreover, regulation of the immune response (lysozyme, IgM, ACH50, NO, and MPO), upregulation of IL-10, TGF-β, and IgM, and downregulation of IL-1β, TNF-α, HSP70,and COX-2 were observed following dietary higher NSS levels. After challenge, reduction in A. hydrophila counts was more prominent, especially in NSS3.0% supplemented group. Taken together, the current study encourages the incorporation of such microalgae mix in Nile tilapia's diet for targeting maximum performance, superior fillet quality, and protection against A. hydrophila.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mayasar I. Al-Zaban
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed ElHady
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mona M. El-Azzouny
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44511, Egypt
| | - Tamer Mohamed ElFeky
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansura Lab, Agriculture Research Center (ARC), Mansura 35516, Egypt
| | - Gehan M. Al Sadik
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44511, Egypt
| | - Omima M. Samy
- Department of Pathology and Clinical Pathology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44511, Egypt
| | - Thoria A. Hamed
- Department of Biochemistry, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44511, Egypt
| | - Fauzeya Mateq Albalwe
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | | | - Anaam E. Omar
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
16
|
Algammal AM, Ibrahim RA, Alfifi KJ, Ghabban H, Alghamdi S, Kabrah A, Khafagy AR, Abou-Elela GM, Abu-Elala NM, Donadu MG, El-Tarabili RM. A First Report of Molecular Typing, Virulence Traits, and Phenotypic and Genotypic Resistance Patterns of Newly Emerging XDR and MDR Aeromonas veronii in Mugil seheli. Pathogens 2022; 11:1262. [PMID: 36365013 PMCID: PMC9695981 DOI: 10.3390/pathogens11111262] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Aeromonas veronii is associated with substantial economic losses in the fish industry and with food-borne illness in humans. This study aimed to determine the prevalence, antibiogram profiles, sequence analysis, virulence and antimicrobial resistance genes, and pathogenicity of A. veronii recovered from Mugil seheli. A total of 80 fish were randomly gathered from various private farms in Suez Province, Egypt. Subsequently, samples were subjected to clinical, post-mortem, and bacteriological examinations. The retrieved isolates were tested for sequence analysis, antibiogram profile, pathogenicity, and PCR detection of virulence and resistance genes. The prevalence of A. veronii in the examined M. seheli was 22.5 % (18/80). The phylogenetic analyses revealed that the tested A. veronii strains shared high genetic similarity with other A. veronii strains from India, UK, and China. Using PCR it was revealed that the retrieved A. veronii isolates harbored the aerA, alt, ser, ompAII, act, ahp, and nuc virulence genes with prevalence of 100%, 82.9%, 61.7%, 55.3%, 44.7%, 36.17%, and 29.8%, respectively. Our findings revealed that 29.8% (14/47) of the retrieved A. veronii strains were XDR to nine antimicrobial classes and carried blaTEM, blaCTX-M, blaSHV,tetA, aadA1, and sul1 resistance genes. Likewise, 19.1% (9/47) of the obtained A. veronii strains were MDR to eight classes and possessed blaTEM, blaCTX-M, blaSHV,tetA, aadA1, and sul1 genes. The pathogenicity testing indicated that the mortality rates positively correlated with the prevalence of virulence-determinant genes. To our knowledge, this is the first report to reveal the occurrence of XDR and MDR A. veronii in M. seheli, an emergence that represents a risk to public health. Emerging XDR and MDR A. veronii in M. seheli frequently harbored aerA, alt, ser, ompAII, and act virulence genes, and blaTEM, sul1, tetA, blaCTX-M, blaSHV, and aadA1 resistance genes.
Collapse
Affiliation(s)
- Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Reham A. Ibrahim
- National Institute of Oceanography and Fisheries, Cairo 11516, Egypt
| | - Khyreyah J. Alfifi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed Kabrah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed R. Khafagy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Nermeen M. Abu-Elala
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Faculty of Veterinary Medicine, King Salman International University, El Tor 46612, Egypt
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Reham M. El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
17
|
Impact of Omega-3 Fatty Acids Nano-Formulation on Growth, Antioxidant Potential, Fillet Quality, Immunity, Autophagy-Related Genes and Aeromonas hydrophila Resistance in Nile Tilapia (Oreochromis niloticus). Antioxidants (Basel) 2022; 11:antiox11081523. [PMID: 36009242 PMCID: PMC9405413 DOI: 10.3390/antiox11081523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/02/2023] Open
Abstract
In modern aquaculture, enriching Nile tilapia’s diet with omega-3 poly-unsaturated fatty acids (PUFAs) not only plays an important role in its general health but also fortifies its fillet with omega-3-PUFAs. However, the major challenge affecting their delivery is their high instability due to oxidative deterioration. Thus, the prospective incorporation of omega-3-PUFAs into nanocarriers can enhance their stability and bioactivity. In this regard, the effect of reformulated omega-3-NPs was investigated on Nile tilapia’s performance, flesh antioxidant stability, immunity, and disease resistance. Four fish groups supplemented with omega-3-PUFAs-loaded nanoparticles (omega-3 NPs) at levels of 0, 1, 2, and 3 g/kg diet and at the end of feeding trial fish challenged with Aeromonas hydrophila. Fish performance (weight gain and feed conversion) was improved in groups supplemented with omega-3-NPs (2 and 3 g/kg diet). The deposition of omega-3-PUFAs in fish flesh elevated with increasing dietary omega-3-NPs. Simultaneously the oxidative markers (H2O2, MDA, and reactive oxygen species) in fish flesh were reduced, especially with higher omega-3-NPs. Post-challenge, downregulation of IL-1β, IL-6, IL-8, TNF-α, and caspase-1 were noticed after dietary supplementation of omega-3-NPs. Moreover, mRNA expression of autophagy-related genes was upregulated while the mTOR gene was downregulated with higher omega-3 NPs levels. Lower expression of A. hydrophila ahyI and ahyR genes were detected with omega-3 NPs supplementation. In conclusion, omega-3-NPs application can fortify tilapia flesh with omega-3-PUFAs and augment its performance, immunity, and disease resistance against Aeromonas hydrophila.
Collapse
|
18
|
Mapipa Q, Digban TO, Nwodo UU. Antibiogram and detection of virulence genes among Klebsiella pneumoniae isolates from rustic hospital drains. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
EFSA Panel on Animal Health and Welfare (AHAW), Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MA, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Dewulf J, Guardabassi L, Hilbert F, Mader R, Romalde JL, Smith P, Baldinelli F, Kohnle L, Alvarez J. Assessment of animal diseases caused by bacteria resistant to antimicrobials: kept fish species. EFSA J 2022; 20:e07076. [PMID: 35136422 PMCID: PMC8808658 DOI: 10.2903/j.efsa.2022.7076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this Opinion, the antimicrobial-resistant bacteria responsible for transmissible diseases that constitute a threat to the health of certain kept fish species have been assessed. Atlantic salmon (Salmo salar), carp (Cyprinus spp.), rainbow trout (Oncorhynchus mykiss), sea bream (Sparus aurata) and tilapia (Oreochromis spp.), selected as representative of the most important fish species and production systems that are commercially reared in fresh and saltwater farms, were the focus of this assessment. The assessment was performed following a methodology based on information collected by an extensive literature review and expert judgement. Details of the methodology used for this assessment are explained in a separate Opinion. The global state of play of antimicrobial resistance in Aeromonas hydrophila, Aeromonas salmonicida, Flavobacterium psychrophilum and Flavobacterium columnare is provided. Among these bacteria, none was identified as being among the most relevant antimicrobial-resistant bacteria in the assessed kept fish species in the EU due to the very limited scientific evidence available.
Collapse
|
20
|
Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Antibiotics (Basel) 2022; 11:antibiotics11020163. [PMID: 35203766 PMCID: PMC8868336 DOI: 10.3390/antibiotics11020163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host’s immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.
Collapse
|
21
|
Baliga P, Goolappa PT, Shekar M, Kallappa GS. Cloning, Characterization, and Antibacterial Properties of Endolysin LysE Against Planktonic Cells and Biofilms of Aeromonas hydrophila. Probiotics Antimicrob Proteins 2022; 15:646-654. [PMID: 34993932 DOI: 10.1007/s12602-021-09880-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Multidrug-resistant bacteria are emerging as a major global threat to public health. Bacteriophages are an important source of antimicrobial enzymes and could be developed as an alternative antibiotic candidate. This study investigates the antibacterial capacity of the endolysin LysE against Aeromonas hydrophila. The endolysin LysE gene was cloned and expressed in Escherichia coli BL21 (DE3) cells. Purified recombinant LysE protein was tested for its antimicrobial activity against A. hydrophila. The study reveals that recombinant LysE protein was highly effective against Gram-negative bacteria when combined with antimicrobials that alter the permeability of the outer membrane. Specifically, the enzyme had the highest muralytic activity at pH 4, and maintained over 50% of the activity at pH 10. Moreover, endolysin displayed more than 50% activity even after 30 min of incubation at 100 °C. Also, endolysin LysE resulted in one log reduction in CFU/mL in 30 min and demonstrated antibiofilm capabilities when combined with EDTA. Interestingly, checkerboard assay showed its synergistic effects in combination with lower concentrations of colistin against A. hydrophila. Additionally, in vitro tests with Channa striatus kidney (CSK) cell lines do not show cytotoxic effects. Taken together, these findings suggest that LysE can be employed with outer membrane permeabilizers to expand the arsenal repertoire against Gram-negative bacteria in the aquaculture, food, and medical industries.
Collapse
Affiliation(s)
- Pallavi Baliga
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002, India
| | - Puneeth Thadooru Goolappa
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002, India
| | - Malathi Shekar
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002, India
| | - Girisha Shivani Kallappa
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002, India
| |
Collapse
|
22
|
Tooba L, Shahzad A, Zahid M, Muhammad R, Anam I, Abdur R, Mohammed AA, Mater HM. Molecular characterization of Aeromonas hydrophila isolates from diseased fishes in district Kasur, Punjab, Pakistan. BRAZ J BIOL 2022; 84:e254816. [DOI: 10.1590/1519-6984.254816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
Abstract Pakistan is an agricultural country and fisheries play a very important role in the economic development of the country. Different diseases are prevalent in Pakistani fish but information related to the causative agents is not well-known. Keeping in view the significance of bacterial pathogens as the causative agents of multiple fish diseases, the present study was conducted for identification, characterization and analysis of virulence genes of Aeromonas spp. isolated from diseased fishes. A total of fifty fish samples having multiple clinical indications were collected from different fish farms of district Kasur, Punjab Pakistan. For isolation of Aeromonas spp. samples were enriched and inoculated on Aeromonas isolation medium. Isolates were identified and characterized by different biochemical tests, Analytical Profile Index (API) 20E kit and Polymerase Chain Reaction (PCR) assays. All isolates were screened for three putative virulence genes including aerolysin (aer), haemolysin (hyl) and heat labile cytotonic enterotoxin (alt). Seven isolates of Aeromonas (A.) hydrophila were retrieved and identified based on API 20E. These isolates were further confirmed as A. hydrophila on the basis of PCR assays. Three isolates were detected positive for the presence of virulence genes (alt and hyl). Whereas aerolysin (aer) gene was not present in any of A. hydrophila isolates. The present study confirmed A. hydrophila as the causative agent of epizootic ulcerative syndrome and motile Aeromonas septicemia in fish farms of district Kasur, Punjab Pakistan. Moreover, detection of two virulence genes (alt and hyl) in A. hydrophila isolates is a threat for fish consumers of study area.
Collapse
Affiliation(s)
- L. Tooba
- University of Veterinary and Animal Sciences, Pakistan
| | - A. Shahzad
- University of Veterinary and Animal Sciences, Pakistan
| | - M. Zahid
- University of Azad Jammu and Kashmir, Pakistan
| | - R. Muhammad
- University of Veterinary and Animal Sciences, Pakistan
| | - I. Anam
- University of Veterinary and Animal Sciences, Pakistan
| | | | | | | |
Collapse
|
23
|
Abdeta A, Bitew A, Fentaw S, Tsige E, Assefa D, Lejisa T, Kefyalew Y, Tigabu E, Evans M. Phenotypic characterization of carbapenem non-susceptible gram-negative bacilli isolated from clinical specimens. PLoS One 2021; 16:e0256556. [PMID: 34855767 PMCID: PMC8638961 DOI: 10.1371/journal.pone.0256556] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023] Open
Abstract
Background Multidrug resistant, extremely drug-resistant, pan-drug resistant, carbapenem-resistant, and carbapenemase-producing gram-negative bacteria are becoming more common in health care settings and are posing a growing threat to public health. Objective The study was aimed to detect and phenotypically characterize carbapenem no- susceptible gram-negative bacilli at the Ethiopian Public Health Institute. Materials and methods A prospective cross-sectional study was conducted from June 30, 2019, to May 30, 2020, at the national reference laboratory of the Ethiopian Public Health Institute. Clinical samples were collected, inoculated, and incubated for each sample in accordance with standard protocol. Antimicrobial susceptibility testing was conducted using Kirby-Bauer disk diffusion method. Identification was done using the traditional biochemical method. Multidrug-resistant and extensively drug-resistant isolates were classified using a standardized definition established by the European Centre for Disease Prevention and Control and the United States Centers for Disease Prevention and Control. Gram-negative organisms with reduced susceptibility to carbapenem antibiotics were considered candidate carbapenemase producers and subjected to modified carbapenem inactivation and simplified carbapenem inactivation methods. Meropenem with EDTA was used to differentiate metallo-β-lactamase (MBL) from serine carbapenemase. Meropenem (MRP)/meropenem + phenylboronic acid (MBO) were used to differentiate Klebsiella pneumoniae carbapenemase (KPC) from other serine carbapenemase producing gram-negative organisms. Results A total of 1,337 clinical specimens were analyzed, of which 429 gram-negative bacterial isolates were recovered. Out of 429 isolates, 319, 74, and 36 were Enterobacterales, Acinetobacter species, and Pseudomonas aeruginosa respectively. In our study, the prevalence of multidrug-resistant, extensively drug-resistant, carbapenemase-producing, and carbapenem nonsusceptible gram-negative bacilli were 45.2%, 7.7%, 5.4%, and 15.4% respectively. Out of 429 isolates, 66 demonstrated reduced susceptibility to the antibiotics meropenem and imipenem. These isolates were tested for carbapenemase production of which 34.8% (23/66) were carbapenemase producers. Out of 23 carbapenemase positive gram-negative bacteria, ten (10) and thirteen (13) were metallo-beta-lactamase and serine carbapenemase respectively. Three of 13 serine carbapenemase positive organisms were Klebsiella pneumoniae carbapenemase. Conclusion This study revealed an alarming level of antimicrobial resistance (AMR), with a high prevalence of multidrug-resistant (MDR) and extremely drug-resistant, carbapenemase-producing gram-negative bacteria, particularly among intensive care unit patients at the health facility level. These findings point to a scenario in which clinical management of infected patients becomes increasingly difficult and necessitates the use of “last-resort” antimicrobials likely exacerbating the magnitude of the global AMR crisis. This mandates robust AMR monitoring and an infection prevention and control program.
Collapse
Affiliation(s)
- Abera Abdeta
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- * E-mail:
| | - Adane Bitew
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Surafel Fentaw
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Estifanos Tsige
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Dawit Assefa
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Tadesse Lejisa
- National Clinical Chemistry Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yordanos Kefyalew
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Eyasu Tigabu
- Global One Health initiative, The Ohio State University, East African Regional Office, Addis Ababa, Ethiopia
| | - Martin Evans
- Laboratory Director and Microbiology Consultant, New York, New York, United States of America
| |
Collapse
|
24
|
Ibrahim D, Kishawy ATY, Khater SI, Khalifa E, Ismail TA, Mohammed HA, Elnahriry SS, Tolba HA, Sherief WRIA, Farag MFM, El-Hamid MIA. Interactive effects of dietary quercetin nanoparticles on growth, flesh antioxidant capacity and transcription of cytokines and Aeromonas hydrophila quorum sensing orchestrating genes in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 119:478-489. [PMID: 34699975 DOI: 10.1016/j.fsi.2021.10.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Recently, the concept of incorporating natural products into nanocarriers has been intended to promote fish growth and health via modulating their stability and bioavailability. In this concern, the potential role of reformulated quercetin into nanocarriers was examined, for the first time, on Nile tilapia's performance and immunity, flesh quality and antioxidant indices and disease resistance. Five hundred fish assigned into five experimental groups with formulated diets containing quercetin nanoparticles (QT-NPs) at levels of 0, 100, 200, 300 and 400 mg/kg were challenged with Aeromonas hydrophila (A. hydrophila) after 12 weeks feeding trial. Fish final body weight gain and feed efficiency were significantly maximized in groups enriched with 300 and 400 mg/kg of QT-NPs. Significant reduction in total saturated fatty acids and an elevation in polyunsaturated fatty acids' contents were noticed in fish fed higher QT-NPs doses. The levels of Hydrogen peroxide, reactive oxygen species and malondialdehyde, the markers of meat antioxidant capacity, were reduced by higher inclusion levels of QT-NPs. Accordingly, serum activities and transcriptional levels of GSH-Px, CAT and SOD genes were increased with elevated QT-NPs levels. Immune responses mediated by upregulation of IL-10 and TGF-β and downregulation of IL-1β, IL-8 and TNF-α mRNA levels were found to be positively affected by QT-NPs. Dietary QT-NPs downregulated the expression of ahyI and ahyR quorum sensing genes conferring protection against A. hydrophila challenge. This study concluded that supplementation of quercetin in encapsulated nanoparticles could improve its efficacy making it as a compelling approach to improve fish performance and as a promising drug candidate against A. hydrophila virulence.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Haiam A Mohammed
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Shimaa S Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menofia, 32897, Egypt
| | - Heba A Tolba
- Department of Fish Health and Management, Central Laboratory of Aquaculture Research (CLAR), AboHamad, Egypt, Agriculture Research Center (ARC), Egypt
| | - Wafaa R I A Sherief
- Department of Animal Wealth Development, Animal Breeding and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed F M Farag
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
25
|
Wise AL, LaFrentz BR, Kelly AM, Khoo LH, Xu T, Liles MR, Bruce TJ. A Review of Bacterial Co-Infections in Farmed Catfish: Components, Diagnostics, and Treatment Directions. Animals (Basel) 2021; 11:ani11113240. [PMID: 34827972 PMCID: PMC8614398 DOI: 10.3390/ani11113240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Catfish aquaculture is a prominent agricultural sector for foodfish production in the Southern United States. Catfish producers often experience high-level mortality events due to bacterial pathogens. In many instances, co-infections caused by multiple bacterial fish pathogens are isolated during diagnostic cases. These bacterial–bacterial interactions may alter the infection dynamics, and many of these mechanisms and interactions remain unclear. Furthermore, these co-infections may complicate disease management plans and treatment strategies. The current review provides an overview of the prevalent bacterial pathogens in catfish culture and previously reported instances of co-infections in catfish and other production fish species. Abstract Catfish production is a major aquaculture industry in the United States and is the largest sector of food fish production. As producers aim to optimize production yields, diseases caused by bacterial pathogens are responsible for high pond mortality rates and economic losses. The major bacterial pathogens responsible are Edwardsiella ictaluri, Aeromonas spp., and Flavobacterium columnare. Given the outdoor pond culture environments and ubiquitous nature of these aquatic pathogens, there have been many reports of co-infective bacterial infections within this aquaculture sector. Co-infections may be responsible for altering disease infection mechanics, increasing mortality rates, and creating difficulties for disease management plans. Furthermore, proper diagnoses of primary and secondary pathogens are essential in ensuring the correct treatment approaches for antimicrobials and chemical applications. A thorough understanding of the interactions and infectivity dynamics for these warm water bacterial pathogens will allow for the adoption of new prevention and control methods, particularly in vaccine development. This review aims to provide an overview of co-infective pathogens in catfish culture and present diagnostic case data from Mississippi and Alabama to define prevalence for these multiple-species infections better.
Collapse
Affiliation(s)
- Allison L. Wise
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
| | - Benjamin R. LaFrentz
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL 36832, USA;
| | - Anita M. Kelly
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
| | - Lester H. Khoo
- Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS 38776, USA;
| | - Tingbi Xu
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA; (T.X.); (M.R.L.)
| | - Mark R. Liles
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA; (T.X.); (M.R.L.)
| | - Timothy J. Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
- Correspondence:
| |
Collapse
|
26
|
Addis T, Mekonnen Y, Ayenew Z, Fentaw S, Biazin H. Bacterial uropathogens and burden of antimicrobial resistance pattern in urine specimens referred to Ethiopian Public Health Institute. PLoS One 2021; 16:e0259602. [PMID: 34767605 PMCID: PMC8589166 DOI: 10.1371/journal.pone.0259602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are the leading causes of morbidity in the general population, and is the second most common infectious disease after respiratory infections. Appropriate antibiotic therapy is essential to achieving good therapeutic results. Therefore, the purpose of this study was to investigate the profile of pathogens cultured from urinary tract infections and to determine their resistance profiles to commonly prescribed antibiotics. METHOD A cross-sectional study was carried out at the National Referral Laboratory of the Ethiopian Institute of Public Health from January 2017 to December 2018. All positive cultures were characterized by colony morphology, Gram stain, and standard biochemical tests. The antimicrobial susceptibility test of the isolate was performed using the Kirby- Bauer disk diffusion test on Muller-Hinton agar. In addition, bacterial identification, antimicrobial susceptibility testing and phenotypic detection of MDR were performed with VITEK 2 Compact according to the manufacturer's instructions. RESULT Out of 1012 cultured urine specimens, 325 (32.1%) was showed significant bacteriuria. The overall prevalence of UTIs was 325(32.1%) and the highest prevalence rate was obtained from 21-30 years age group 73(22.5%). Among UTIs patients, 583(57.6%) were females and 429(42.4%) were males. The UTIs of 179 (55%) women is relatively higher than that of men 146 (45%). Among 325 isolates, Gram-negative bacteria (GNB) appeared more frequently 252 (51.7%) than Gram-positive bacteria 63 (19.4%). In GNB, E. coli 168(66.7%), Klebsiella species 32(12.7%), and Enterobacter species 13 (5.2%) were dominated isolates whereas in GPB accounted for coagulase-negative staphylococcus (CoNS) 33(52.4%), Enterococcus species 16(25.4%), and Staphylococcus aureus 10(15.9%). Major of the isolates showed high levels of antibiotic resistance to commonly prescribed antimicrobials. Imipenem, Amikacin, and Nitrofurantoin were the most sensitive antibiotics for Gram-negative isolates while Nitrofurantoin, clindamycin, and Gentamycin were effective against gram-positive uropathogens. Overall, 156/256(60.9%), 56/256(22.4%), 10/256(4%) of gram-negative isolates were MDR, XDR, and PDR respectively while among the GPB isolates, 34/63(53.1%), 10/63(15.8%), and 1/63(1.6%) were MDR, XDR, and PDR isolates respectively. Among the tested bacterial strains, 190/319 (59.5%) were MDR, 66/319 (20.7%) strains were XDR, and 11/319 (3.45%) were PDR isolated. CONCLUSION The prevalence of urinary tract infection was high, and Gram-negative organisms were the most common causes of UTIs in this study. It was found that the resistance to commonly used antibiotics is very high. Early detection and close monitoring of MDR, XDR, or even PDR bacterial strains must be started by all clinical microbiology laboratories to reduce the menace of antimicrobial resistance that is now a global problem.
Collapse
Affiliation(s)
- Tesfa Addis
- Department of Clinical bacteriology and Mycology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Mekonnen
- Department of Clinical bacteriology and Mycology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Zeleke Ayenew
- Department of Clinical bacteriology and Mycology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Surafel Fentaw
- Department of Clinical bacteriology and Mycology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Habtamu Biazin
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
27
|
Oberlé K, Bouju-Albert A, Helsens N, Pangga G, Prevost H, Magras C, Calvez S. No evidence for a relationship between farm or transformation process locations and antibiotic resistance patterns of Pseudomonas population associated with rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 2021; 132:1738-1750. [PMID: 34719087 PMCID: PMC9299046 DOI: 10.1111/jam.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
Abstract
AIMS Study the relationship between antibiotic resistance patterns of Pseudomonas isolated from farmed rainbow trout fillets and farm or transformation process locations. METHODS AND RESULTS Pseudomonas strains were isolated from rainbow trout sampled in two differently located farms and filleted in laboratory or in a processing factory. One hundred and twenty-five isolates were confirmed as belonging to Pseudomonas using CFC selective media, Gram staining, oxidase test and quantitative polymerase chain reaction methods. Fifty-one isolates from separate fish fillets were further identified using MALDI-TOF mass spectrometry, and the minimal inhibitory concentrations (MIC) of 11 antibiotics were also determined by microdilution method. Most of the isolates belonged to the Pseudomonas fluorescens group (94.1%), and no relationship was established between antibiotic resistance patterns and sampling locations (farms or filleting areas). Multiple resistance isolates with high MIC values (from 64 µg ml-1 to more than 1024 µg ml-1 ) were identified. CONCLUSIONS Antibiotic resistance patterns found in Pseudomonas isolates were not influenced by farms or transformation process locations. Seven isolates were found highly resistant to four different antibiotic classes. SIGNIFICANCE AND IMPACT OF THE STUDY This study does not provide evidence of a relationship between farm or transformation process locations on antibiotic resistance patterns of Pseudomonas population.
Collapse
Affiliation(s)
| | | | - Nicolas Helsens
- INRAE, Oniris, BIOEPAR, Nantes, France.,INRAE, Oniris, SECALIM, Nantes, France
| | | | | | | | | |
Collapse
|
28
|
Rajaei M, Moosavy MH, Gharajalar SN, Khatibi SA. Antibiotic resistance in the pathogenic foodborne bacteria isolated from raw kebab and hamburger: phenotypic and genotypic study. BMC Microbiol 2021; 21:272. [PMID: 34615465 PMCID: PMC8495966 DOI: 10.1186/s12866-021-02326-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background In recent years, interest in the consumption of ready-to-eat (RTE) food products has been increased in many countries. However, RTE products particularly those prepared by meat may be potential vehicles of antibiotic-resistance foodborne pathogens. Considering kebab and hamburger are the most popular RTE meat products in Iran, this study aimed to investigate the prevalence and antimicrobial resistance of common foodborne pathogens (Escherichia coli, Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes) in raw kebab and hamburger samples collected from fast-food centers and restaurants. Therefore, total bacterial count (TBC), as well as the prevalence rates and antibiogram patterns of foodborne pathogens in the samples were investigated. Also, the presence of antibiotic-resistance genes (blaSHV, blaTEM,blaZ, and mecA) was studied in the isolates by PCR. Results The mean value of TBC in raw kebab and hamburger samples was 6.72 ± 0.68 log CFU/g and 6.64 ± 0.66 log CFU/g, respectively. E. coli had the highest prevalence rate among the investigated pathogenic bacteria in kebab (70%) and hamburger samples (48%). Salmonella spp., L. monocytogenes, and S. aureus were also recovered from 58, 50, and 36% of kebab samples, respectively. The contamination of hamburger samples was detected to S. aureus (22%), L. monocytogenes (22%), and Salmonella spp. (10%). In the antimicrobial susceptibility tests, all isolates exhibited high rates of antibiotic resistance, particularly against amoxicillin, penicillin, and cefalexin (79.66–100%). The blaTEM was the most common resistant gene in the isolates of E. coli (52.54%) and Salmonella spp. (44.11%). Fourteen isolates (23.72%) of E. coli and 10 isolates (29.41%) of Salmonella spp. were positive for blaSHV. Also, 16 isolates (55.17%) of S. aureus and 10 isolates (27.27%) of L. monocytogenes were positive for mecA gene. Conclusions The findings of this study showed that raw kebab and hamburger are potential carriers of antibiotic-resistance pathogenic bacteria, which can be a serious threat to public health. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02326-8.
Collapse
Affiliation(s)
- Maryam Rajaei
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mir-Hassan Moosavy
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Sahar Nouri Gharajalar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Seyed Amin Khatibi
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
29
|
High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae fecal carriage among children under five years in Addis Ababa, Ethiopia. PLoS One 2021; 16:e0258117. [PMID: 34597328 PMCID: PMC8486131 DOI: 10.1371/journal.pone.0258117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
Background Extended-spectrum beta-lactamase (ESBL) producing bacteria present an ever-growing burden in the hospital and community settings. Data on the prevalence of ESBL fecal carriage remain scarce in Ethiopia. Therefore, this study aimed to determine the prevalence of ESBL producing Escherichia coli and Klebsiella pneumoniae fecal carriage among children under five years in Addis Ababa, Ethiopia. Methods A facility-based cross-sectional study was conducted from April to May 2017. A total of 269 fecal/rectal swab samples were cultured on MacConkey agar. All positive cultures were characterized by colony morphology, Gram stain, and standard biochemical tests. Further, bacteria identification, antimicrobial susceptibility testing, and phenotypic detection of ESBL production were performed using VITEK 2 Compact as per the instruction of the manufacturer. Socio-demographic and risk factors data were collected using questionnaires. Data were entered by EPI INFO version 7.2.1.0 and analyzed by SPSS version 20. Results The overall prevalence of ESBL-producing E. coli and K. pneumoniae was 17.1% (46/269; 95% CI: 12.9%–22.7%). A total of 47 isolates were ESBL-positive, of which, 83.0% were E. coli and 17.0% were K. pneumoniae. ESBL producing E. coli and K. pneumoniae isolates were also showed high levels of MDR (93.6%) and high rates of co-resistance to aminoglycosides, fluoroquinolones, and trimethoprim-sulfamethoxazole. However, all isolates were carbapenem susceptible. In the risk factors analysis, Children’s mothers who had lower educational level (primary school) (OR: 2.472, 95% CI: 1.323–4.618, P = 0.0062) and children who used tap water for drinking (OR: 1.714, 95% CI: 1.001–3.659, P = 0.048) were found to be significantly associated with higher ESBL fecal carriage. Conclusions In this study, the high prevalence rate of ESBL producing E. coli and K. pneumoniae fecal carriage and high level of multidrug resistance among ESBL producing E. coli and K. pneumoniae were demonstrated. This suggested that the necessity of routine screening of ESBL is crucial for the early detection and appropriate antibiotics selection for infection caused by ESBL producing pathogens.
Collapse
|
30
|
Saleh A, Elkenany R, Younis G. Virulent and Multiple Antimicrobial Resistance Aeromonas hydrophila Isolated from Diseased Nile Tilapia Fish (Oreochromis niloticus) in Egypt with Sequencing of Some Virulence-Associated Genes. Biocontrol Sci 2021; 26:167-176. [PMID: 34556619 DOI: 10.4265/bio.26.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Aeromonas hydrophila is a major waterborne pathogen, which induces various diseases in freshwater fish with the capability for zoonotic potential. This study was applied to investigate the prevalence of A. hydrophila in diseased Nile tilapia fish, genetic characterization of the virulence encoding genes (act, aerA, alt, and ast genes), and antibiotic susceptibility. Out of the 500 diseased Nile tilapia fish samples, 70% (350/500) Aeromonas species were isolated. From which 53.4% (187/350) of Aeromonas hydrophila strains were identified. A. hydrophila was detected in kidneys, followed by liver, spleen, intestine, and gills. The results of virulotyping displayed the presence of act, and aerA genes in a high percentage of 40%, followed by alt gene (30%), but ast gene was not detected (0%) in A. hydrophila strains. Based on DNA sequence analysis of three virulence associated-genes (act, aerA, and alt genes), the phylogenetic tree showed the genetic relationship with related species. Finally, the antibiotic susceptibility tests revealed high resistance toward chloramphenicol (67.4%), followed by amikacin (51.9%) and gentamicin (47.1%), whereas a high sensitivity was exhibited toward meropenem (90.9%), followed by ciprofloxacin (84.2%), amoxicillin-clavulanic acid (73.3%) and trimethoprim-sulfamethoxazole (64.2%). The multidrug-resistant A. hydrophila strains were observed in 69.0% of strains with six resistance patterns.
Collapse
Affiliation(s)
- Amany Saleh
- Veterinarian, Department of Public Health and Meat Inspection, Talkha Veterinary Administration
| | - Rasha Elkenany
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University
| | - Gamal Younis
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University
| |
Collapse
|
31
|
Algammal AM, Hashem HR, Al-Otaibi AS, Alfifi KJ, El-Dawody EM, Mahrous E, Hetta HF, El-Kholy AW, Ramadan H, El-Tarabili RM. Emerging MDR-Mycobacterium avium subsp. avium in house-reared domestic birds as the first report in Egypt. BMC Microbiol 2021; 21:237. [PMID: 34445951 PMCID: PMC8393820 DOI: 10.1186/s12866-021-02287-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022] Open
Abstract
Background Avian tuberculosis is a chronic and zoonotic disease that affects a wide variety of birds, mammals, and humans. This study aimed to estimate the frequency of Mycobacterium avium subsp. avium in some domestic birds based on molecular diagnosis, antibiogram profile, and PCR-based detection of inhA, rpoB, rpsL, and otrB antibiotic resistance-related genes. Methods A total of 120 fecal samples were collected from small flocks of house-reared domestic birds at Ismailia Governorate, Egypt. The collected samples were processed and subjected to the bacteriological examination. The antimicrobial susceptibility testing of the recovered isolates was performed using the broth microdilution method for the detection of minimum inhibitory concentrations (MICs). The genetic detection of the IS901confirmatory gene, inhA, rpoB, rpsL, and otrB genes was carried out using PCR. Results The frequency of M. avium subsp. avium was 4.1% (5/120); 10% (4/40) in ducks, and 2.5% (1/10) in geese. The identification of the recovered isolates was confirmed using PCR, where all the tested isolates were positive for IS901confirmatory gene. The results of the broth microdilution method revealed that most of the recovered isolates exhibited multidrug resistance (MDR) to isoniazid, rifampicin, streptomycin, oxytetracycline, and doxycycline, and harbored the inhA, rpoB, rpsL, and otrB genes. Conclusion In brief, to the best of our knowledge this is the first report that emphasized the emergence of avian tuberculosis in house-reared domestic birds in Egypt. The emergence of MDR- M. avium subsp. avium is considered a public health threat. Emerging MDR-M. avium subsp. avium in domestic birds are commonly harbored the IS901, inhA, rpoB, rpsL, and otrB genes. Azithromycin and clofazimine revealed a promising in-vitro antibacterial activity against M. avium subsp. avium.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Hany R Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Amenah S Al-Otaibi
- Biology Department, College of Sciences, Tabuk University, Tabuk, 71491, Saudi Arabia
| | - Khyreyah J Alfifi
- Biology Department, College of Sciences, Tabuk University, Tabuk, 71491, Saudi Arabia
| | | | - Eman Mahrous
- Animal Health Research Institute, Dokki, Giza, 12618, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515, Egypt
| | - Ali W El-Kholy
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
32
|
Lu M, Parel JM, Miller D. Interactions between staphylococcal enterotoxins A and D and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among Staphylococcus aureus ocular isolates. PLoS One 2021; 16:e0254519. [PMID: 34320020 PMCID: PMC8318242 DOI: 10.1371/journal.pone.0254519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) S. aureus strains are well recognized as posing substantial problems in treating ocular infections. S. aureus has a vast array of virulence factors, including superantigens and enterotoxins. Their interactions and ability to signal antibiotics resistance have not been explored. OBJECTIVES To predict the relationship between superantigens and methicillin and multidrug resistance among S. aureus ocular isolates. METHODS We used a DNA microarray to characterize the enterotoxin and superantigen gene profiles of 98 S. aureus isolates collected from common ocular sources. The outcomes contained phenotypic and genotypic expressions of MRSA. We also included the MDR status as an outcome, categorized as resistance to three or more drugs, including oxacillin, penicillin, erythromycin, clindamycin, moxifloxacin, tetracycline, trimethoprim-sulfamethoxazole and gentamicin. We identified gene profiles that predicted each outcome through a classification analysis utilizing Random Forest machine learning techniques. FINDINGS Our machine learning models predicted the outcomes accurately utilizing 67 enterotoxin and superantigen genes. Strong correlates predicting the genotypic expression of MRSA were enterotoxins A, D, J and R and superantigen-like proteins 1, 3, 7 and 10. Among these virulence factors, enterotoxin D and superantigen-like proteins 1, 5 and 10 were also significantly informative for predicting both MDR and MRSA in terms of phenotypic expression. Strong interactions were identified including enterotoxins A (entA) interacting with superantigen-like protein 1 (set6-var1_11), and enterotoxin D (entD) interacting with superantigen-like protein 5 (ssl05/set3_probe 1): MRSA and MDR S. aureus are associated with the presence of both entA and set6-var1_11, or both entD and ssl05/set3_probe 1, while the absence of these genes in pairs indicates non-multidrug-resistant and methicillin-susceptible S. aureus. CONCLUSIONS MRSA and MDR S. aureus show a different spectrum of ocular pathology than their non-resistant counterparts. When assessing the role of enterotoxins in predicting antibiotics resistance, it is critical to consider both main effects and interactions.
Collapse
Affiliation(s)
- Min Lu
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Jean-Marie Parel
- Department of Ophthalmology, Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Darlene Miller
- Department of Ophthalmology, Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hoseinzadeh F, Ghaemi M, Sharifiyazdi H, Hachesoo BA. Class 1 integron causes vulnerability to formaldehyde in Escherichia coli. Arch Microbiol 2021; 203:4509-4515. [PMID: 34148112 DOI: 10.1007/s00203-021-02445-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
In this study, the relationships of integron 1 element, formaldehyde dehydrogenase, and orfF genes with the level of formaldehyde resistance of isolated E. coli were investigated. E. coli bacteria were isolated from apparently healthy and colibacillosis-affected broilers of Fars Province, Iran. Formaldehyde resistance level and the presence of genetic markers were measured using MIC, and PCR tests, respectively. The prevalence of integron 1 element, orfF, and formaldehyde dehydrogenase genes in E. coli isolates were 61%, 8%, and 94%, respectively. In addition, according to our cut off definition, 15% and 85% of isolates were resistant and sensitive to formaldehyde, respectively. None of the genes had a statistically significant relationship with the formaldehyde resistance; however, the isolates containing integron 1 were significantly more sensitive to formaldehyde in the MIC test than those without integron 1. Integron 1 gene cassette could carry some bacterial surface proteins and porins with different roles in bacterial cells. Formaldehyde could also interfere with the protein functions by alkylating and cross-linking, and this compound would affect bacterial cell surface proteins in advance. Through an increase in the cell surface proteins, the presence of integron 1 gene cassette might make E. coli more sensitive to formaldehyde. As integron 1 was always involved in increasing bacterial resistance to antibiotics and disinfectants such as QACs, this is the first report of bacterial induction of sensitivity to a disinfectant through integron 1. Finally, integron 1 does not always add an advantage to E. coli bacteria, and it could be assumed as a cause of vulnerability to formaldehyde.
Collapse
Affiliation(s)
- Farzad Hoseinzadeh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehran Ghaemi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Hassan Sharifiyazdi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Bahman Abdi Hachesoo
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
34
|
Zaher HA, Nofal MI, Hendam BM, Elshaer MM, Alothaim AS, Eraqi MM. Prevalence and Antibiogram of Vibrio parahaemolyticus and Aeromonas hydrophila in the Flesh of Nile Tilapia, with Special Reference to Their Virulence Genes Detected Using Multiplex PCR Technique. Antibiotics (Basel) 2021; 10:654. [PMID: 34070815 PMCID: PMC8229650 DOI: 10.3390/antibiotics10060654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 01/25/2023] Open
Abstract
Vibrio parahaemolyticus and Aeromonas hydrophila are major public health problems and the main cause of bacterial disease in Nile tilapia (Oreochromis niloticus). This study was conducted to determine the prevalence, antibiotic resistance and some virulence genes of both V. parahaemolyticus and A. hydrophila isolates from Nile tilapia. From Manzala Farm at Dakahlia governorate, 250 freshwater fish samples were collected. The confirmed bacterial isolates from the examined Nile tilapia samples in the study were 24.8% (62/250) for V. parahaemolyticus and 19.2% (48/250) for A. hydrophila. multiplex PCR, revealing that the tlh gene was found in 46.7% (29/62) of V. parahaemolyticus isolates, while the tdh and trh virulence genes were found in 17.2% (5/29). Meanwhile, 39.5% (19/48) of A. hydrophila isolates had the 16s rRNA gene and 10.5% (2/19) had the aerA and ahh1 virulence genes. The Multiple Antibiotic Resistance indices of V. parahaemolyticus and A. hydrophila were 0.587 and 0.586, respectively. In conclusion, alternative non-antibiotic control strategies for bacterial infections in farmed fish should be promoted to avoid multidrug-resistant bacteria. Therefore, it is suggested that farmers should be skilled in basic fish health control and that molecular detection methods are more rapid and cost-effective than bacteriological methods.
Collapse
Affiliation(s)
- Hanan A. Zaher
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamad I. Nofal
- General Authority of Fish Resources and Development (GAFRD), Manzala Fish Farm, Manzala 35642, Egypt;
| | - Basma M. Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Moustafa M. Elshaer
- Department of Microbiology at Specialized Medical Hospital, Mansoura University, Mansoura 35516, Egypt;
| | - Abdulaziz S. Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mostafa M. Eraqi
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
- Microbiology and Immunology Department, Veterinary Research Division, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
35
|
Algammal AM, Hashem HR, Alfifi KJ, Hetta HF, Sheraba NS, Ramadan H, El-Tarabili RM. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci Rep 2021; 11:9476. [PMID: 33947875 PMCID: PMC8096940 DOI: 10.1038/s41598-021-88861-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 02/02/2023] Open
Abstract
Proteus mirabilis is a common opportunistic pathogen causing severe illness in humans and animals. To determine the prevalence, antibiogram, biofilm-formation, screening of virulence, and antimicrobial resistance genes in P. mirabilis isolates from ducks; 240 samples were obtained from apparently healthy and diseased ducks from private farms in Port-Said Province, Egypt. The collected samples were examined bacteriologically, and then the recovered isolates were tested for atpD gene sequencing, antimicrobial susceptibility, biofilm-formation, PCR detection of virulence, and antimicrobial resistance genes. The prevalence of P. mirabilis in the examined samples was 14.6% (35/240). The identification of the recovered isolates was confirmed by the atpD gene sequencing, where the tested isolates shared a common ancestor. Besides, 94.3% of P. mirabilis isolates were biofilm producers. The recovered isolates were resistant to penicillins, sulfonamides, β-Lactam-β-lactamase-inhibitor-combinations, tetracyclines, cephalosporins, macrolides, and quinolones. Using PCR, the retrieved strains harbored atpD, ureC, rsbA, and zapA virulence genes with a prevalence of 100%, 100%, 94.3%, and 91.4%, respectively. Moreover, 31.4% (11/35) of the recovered strains were XDR to 8 antimicrobial classes that harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Besides, 22.8% (8/35) of the tested strains were MDR to 3 antimicrobial classes and possessed blaTEM, tetA, and sul1genes. Furthermore, 17.1% (6/35) of the tested strains were MDR to 7 antimicrobial classes and harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Alarmingly, three strains were carbapenem-resistant that exhibited PDR to all the tested 10 antimicrobial classes and shared blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Of them, two strains harbored the blaNDM-1 gene, and one strain carried the blaKPC gene. In brief, to the best of our knowledge, this is the first study demonstrating the emergence of XDR and MDR-P.mirabilis in ducks. Norfloxacin exhibited promising antibacterial activity against the recovered XDR and MDR-P. mirabilis. The emergence of PDR, XDR, and MDR-strains constitutes a threat alarm that indicates the complicated treatment of the infections caused by these superbugs.
Collapse
Affiliation(s)
- Abdelazeem M. Algammal
- grid.33003.330000 0000 9889 5690Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| | - Hany R. Hashem
- grid.411170.20000 0004 0412 4537Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514 Egypt
| | - Khyreyah J. Alfifi
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Science, Tabuk University, Tabuk, 7149 Saudi Arabia
| | - Helal F. Hetta
- grid.252487.e0000 0000 8632 679XDepartment of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515 Egypt
| | - Norhan S. Sheraba
- grid.463319.aVACSERA, the Holding Company for Biological Products and Vaccines, Giza, 12511 Egypt
| | - Hazem Ramadan
- grid.10251.370000000103426662Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Reham M. El-Tarabili
- grid.33003.330000 0000 9889 5690Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| |
Collapse
|
36
|
Hassan FAM, Kishawy ATY, Moustafa A, Roushdy EM. Growth performance, tissue precipitation, metallothionein and cytokine transcript expression and economics in response to different dietary zinc sources in growing rabbits. J Anim Physiol Anim Nutr (Berl) 2021; 105:965-974. [PMID: 33871882 DOI: 10.1111/jpn.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
The impact of different dietary zinc sources on the growth, serum metabolites, tissue zinc content, economics and relative expression of cytokine and metallothionein genes was evaluated in this study. A total of 120 35-day-old male New Zealand White (NZW) rabbits were randomly distributed into four dietary experimental groups with 10 replicates per group and 3 animals per replicate. The control group was fed basal diet with a Zn-free vitamin-mineral premix; the other three groups received control basal diet supplemented with 50 mg/kg level with zinc oxide (ZnO; as inorganic source), Zn-methionine (Zn-Met; as organic source) and zinc oxide nanoparticles (nano-ZnO). The results indicated that Zn-Met and nano-ZnO groups significantly improved body weight, daily weight gain (DWG), feed conversion ratio (FCR) and nutrient digestibility, as well as decreased mortality, compared to ZnO and control groups. Zn-Met and nano-ZnO significantly reduced serum total cholesterol but did not affect serum proteins and liver function. Nano-ZnO supplemented group also recorded the highest value of serum alkaline phosphatase (ALP), insulin-like growth factor (IGF-1) and lysozymes compared to other groups. Nano-ZnO supplementation had increased hepatic Zn and Cu content and decreased faecal Zn content. Also nano-ZnO group recorded higher expression levels of genes encoding for metallothionein I and metallothionein II, interleukin-2 and interferon-γ in the liver of rabbits. The findings of this study demonstrated zinc nanoparticles, and organic zinc supplementation had improved growth performance and health status of growing rabbits than inorganic zinc oxide.
Collapse
Affiliation(s)
- Fardos A M Hassan
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Elshimaa M Roushdy
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
37
|
Pakbin B, Didban A, Monfared YK, Mahmoudi R, Peymani A, Modabber MR. Antibiotic susceptibility and genetic relatedness of Shigella species isolated from food and human stool samples in Qazvin, Iran. BMC Res Notes 2021; 14:144. [PMID: 33865447 PMCID: PMC8052664 DOI: 10.1186/s13104-021-05554-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/02/2021] [Indexed: 01/25/2023] Open
Abstract
Objective The aim of this study was to investigate the genetic relatedness and antimicrobial resistance among Shigella species isolated from food and stool samples. Using cross sectional study method, Shigella spp. were isolated from food and clinical samples using culture-based, biochemical and serological methods. Antimicrobial susceptibility and genetic relatedness among the isolates were evaluated using disk diffusion and RAPD-PCR methods respectively. Results The prevalence of Shigella spp. were 4.84 and 7.7% in food and stool samples respectively. All food isolates were Sh. sonnei. 91.42% of the Shigella stool isolates were Sh. sonnei. 62.5% of food isolates were resistant to tetracycline. 46.8, 50 and 65.8% of clinical isolates were resistant to imipenem, amikacin and azithromycin respectively. 50 and 85.7% of the food and clinical isolates respectively were MDR. Dendrogram generated by RAPD-PCR showed that the isolates from food and stool samples were categorized in a same group. Close genetic relatedness between MDR Shigella isolates from food and clinical samples indicate that foods can be considered as one of the main vehicles for transmission of MDR Shigella to human causing acute diseases. Survey of MDR Shigella among food and clinical samples is strongly suggested to be implemented.
Collapse
Affiliation(s)
- Babak Pakbin
- Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Bahonar Blvd., P.O. Box: 34185-754, Qazvin, Iran.,Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdollah Didban
- Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Bahonar Blvd., P.O. Box: 34185-754, Qazvin, Iran.
| | | | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Reza Modabber
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
38
|
Hassan MA, Abd Allah NA, Mabrok M. Inevitable impact of some environmental stressors on the frequency and pathogenicity of marine vibriosis. AQUACULTURE 2021; 536:736447. [DOI: 10.1016/j.aquaculture.2021.736447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
39
|
Khater DF, Lela RA, El-Diasty M, Moustafa SA, Wareth G. Detection of harmful foodborne pathogens in food samples at the points of sale by MALDT-TOF MS in Egypt. BMC Res Notes 2021; 14:112. [PMID: 33757586 PMCID: PMC7988902 DOI: 10.1186/s13104-021-05533-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Microbes can contaminate foodstuffs resulting in foodborne illnesses. Investigating microbial hazards in foods at the point of sale with rapid tools is required to avoid foodborne illness outbreaks. The current study aimed to identify the microbial hazards in food samples collected from retail shops at sale points using MALDI-TOF MS. RESULTS Food samples were collected from stores and supermarkets in four Delta cities (Tanta, Kutour, Kafr-Elzayat and Benha). Analysis of 178 samples of fish, meat and dairy products revealed 20 different bacterial species. 44.76% of isolates were identified as E. coli, 17.44% were identified as Enterobacter spp., and E. cloacae was predominant. 12.2% were identified as Citrobacter spp., and C. braakii was predominant, and 8.7% were identified as Klebsiella spp., and K. pneumoniae was predominant. Moreover, eight Proteus mirabilis, six Morganella morganii, five Staphylococcus hominis, three Serratia marcescens, two Pseudomonas aeruginosa, one Salmonella typhimurium and one Enterococcus faecalis were detected. Foodstuffs not only be contaminated during production and processing but also during storage and transport. Identification of harmful human pathogens in foodstuffs is alarming and consider threatening to public health. Identification of microbiological hazards in foods using MALDI-TOF MS provides an efficient tool for identifying foodborne pathogens.
Collapse
Affiliation(s)
- Dalia F Khater
- Department of Food Hygiene, Animal Health Research Institute, Tanta Laboratory, Tanta, Egypt
| | - Radwa A Lela
- Department of Food Hygiene, Animal Health Research Institute, Tanta Laboratory, Tanta, Egypt
| | - Mohamed El-Diasty
- Animal Health Research Institute, Mansoura Provincial Laboratory, Mansoura, Egypt
| | - Shawky A Moustafa
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt
| | - Gamal Wareth
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt. .,Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany.
| |
Collapse
|
40
|
Kareem SM, Al-Kadmy IMS, Kazaal SS, Mohammed Ali AN, Aziz SN, Makharita RR, Algammal AM, Al-Rejaie S, Behl T, Batiha GES, El-Mokhtar MA, Hetta HF. Detection of gyrA and parC Mutations and Prevalence of Plasmid-Mediated Quinolone Resistance Genes in Klebsiella pneumoniae. Infect Drug Resist 2021; 14:555-563. [PMID: 33603418 PMCID: PMC7886241 DOI: 10.2147/idr.s275852] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background and Aim Recently, the extensive use of quinolones led to increased resistance to these antimicrobial agents, with different rates according to the organism and the geographical region. The aim of this study was to detect the resistance rate of Klebsiella pneumoniae Iraqi isolates toward quinolone antimicrobial agents, to determine genetic mutations in gyrA and parC, to screen for efflux-pump activity, and to screen the presence of plasmid-mediated quinolone resistance (PMQR) genes. Methods Forty-three K. pneumoniae isolates were confirmed phenotypically and genotypically by Vitek 2 system and species specific primers by PCR using the targeting rpo gene followed by sequencing. Antibiotic susceptibility test was carried out using disc diffusion method. Quinolone resistant isolates were subjected to ciprofloxacin MIC testing, and cartwheel method to screen for efflux pump activity. The presence of the plasmid mediated quinolone resistance genes qepA, qnrB, qnrS, and aac(6)Ib was tested by PCR. Sequencing of gyrA and parC was performed. Results We observed a high rate of resistance to ceftriaxone, gentamicin ciprofloxacin, and levofloxacin. Low rate of resistance was detected against amikacin and azithromycin. Ciprofloxacin MIC results revealed that 96.1% of the isolates had MICs >256 µg/mL, 83.4% had MICs >512 µg/mL while 34.6% had MIC >1024 µg/mL. Testing of isolates against ciprofloxacin mixed with EtBr at various concentrations resulted in decreased resistant. Sequencing results showed that Ser83Leu was the most common mutation in gyrA that was observed in all quinolone resistant isolates, followed by Asp87Asn. Ser80Ile mutation in parC was observed in 77.7% of the tested isolates. The prevalence of PMQR genes was 92.5% aac (6)-Ib, 51.8% qnrB, 40.7% qepA, and 37% qnrS. Conclusion Quinolone resistance is common in K. pneumoniae isolates in Baghdad. The frequent mutation in gyrA and parC, and the presence of PMQR genes is alarming.
Collapse
Affiliation(s)
- Sawsan Mohammed Kareem
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Israa M S Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq.,Faculty of Science & Engineering, School of Engineering, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Saba S Kazaal
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Alaa N Mohammed Ali
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Sarah Naji Aziz
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Rabab R Makharita
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
41
|
Nam J, Alam ST, Kang K, Choi J, Seo MH. Anti-staphylococcal activity of a cyclic lipopeptide, C 15 -bacillomycin D, produced by Bacillus velezensis NST6. J Appl Microbiol 2020; 131:93-104. [PMID: 33211361 DOI: 10.1111/jam.14936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to assess antibacterial activity of a novel Bacillus velezensis strain NST6, and further identify its active compound against pathogenic Staphylococcus strains for clinical therapeutic applications. METHODS AND RESULTS In this study, a novel B. velezensis strain NST6 harbouring strong antimicrobial activity against human pathogenic bacteria was isolated from a soil sample. The solvent extract of the strain exhibited strong antibacterial activity against Gram-positive and Gram-negative bacteria in disc diffusion assay and measurement of minimal inhibitory concentration and bactericidal concentration, of which it showed notable efficacy to Staphylococcus species including Staphylococcus epidermidis, Staphylococcus aureus and methicillin-resistant S. aureus. Strong antibacterial effect against pathogenic S. aureus and low toxicity of the bacterial extract were further validated in Caenorhabditis elegans model. Moreover, by antibacterial activity-guided fractionation using RP-HPLC and LC-MS, we defined C15 -bacillomycin D as the anti-staphylococcal compound produced by the strain. CONCLUSION The primary anti-staphylococcal compound from B. velezensis NST6 was identified as a cyclic lipopeptide, C15 -bacillomycin D, which proved its potential to treat Staphylococcus strains in vitro and in vivo experiments with insignificant level of toxicity. SIGNIFICANCE AND IMPACT OF THE STUDY We provide an alternative treatment option to Staphylococcus infections by investigating the specific anti-staphylococcal activity of C15 -bacillomycin D produced by a B. velezensis strain.
Collapse
Affiliation(s)
- J Nam
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - S T Alam
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - K Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - J Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - M-H Seo
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| |
Collapse
|
42
|
Hetta HF, Kh Meshaal A, Algammal AM, Yahia R, Makharita RR, Marraiki N, Shah MA, Hassan HAM, Batiha GES. In-vitro Antimicrobial Activity of Essential Oils and Spices Powder of some Medicinal Plants Against Bacillus Species Isolated from Raw and Processed Meat. Infect Drug Resist 2020; 13:4367-4378. [PMID: 33304102 PMCID: PMC7723237 DOI: 10.2147/idr.s277295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/11/2020] [Indexed: 11/23/2022] Open
Abstract
Background and Aim Bacillus species are widely distributed microorganisms in nature that are responsible for outbreaks of food poisoning and a common cause of food spoilage. This study aimed to isolate and identify foodborne Bacillus species from meat and to determine the antimicrobial activities of commercial essential oils and spices powder extracted from certain medicinal plants. Methods Sixty meat samples were collected in Assiut city and subdivided into raw meat and processed meat. Bacillus spp were isolated and identified according to their cultural characters, biochemical reactions, serological typing, and 16S rRNA gene sequencing. The antibacterial activity of essential oils and spices powder was measured by using well-diffusion and microbial count techniques. Results The prevalence of Bacillus spp. in the examined raw meat samples and processed meat samples was 13.34%, and 26.67%, respectively. There was a marked decrease in the total Bacillus species count after treatment of minced beef with essential oils and spices powder compared to the untreated one. Black seed oil was the most potent antibacterial essential oil among the tested oils present in this study. Conclusion Essential oils and spices powder of certain medicinal plants (cumin: Cuminum cyminum, black seeds: Nigella sativa, cloves: Syzygium aromaicum, cinnamon: Cinnamomum zeylanicum, and Marjoram: Origanum majorana) have a potential in vitro antimicrobial activity against Bacillus spp. Furthermore, Nigella sativa oil exhibited the most potent antibacterial activity against Bacillus spp.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt
| | - Ahmed Kh Meshaal
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Rabab R Makharita
- Biology Department, Faculty of Science and Arts Khulais, University of Jeddah, Jeddah, 21959, Saudi Arabia.,Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Hebat-Allah M Hassan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
43
|
Elayaraja S, Mabrok M, Algammal A, Sabitha E, Rajeswari MV, Zágoršek K, Ye Z, Zhu S, Rodkhum C. Potential influence of jaggery-based biofloc technology at different C:N ratios on water quality, growth performance, innate immunity, immune-related genes expression profiles, and disease resistance against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 107:118-128. [PMID: 32961293 DOI: 10.1016/j.fsi.2020.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Biofloc technology is increasingly becoming the most promising aquaculture tool especially in places where water is scarce and the land is very expensive. The dynamics of water quality, as well as plankton and microbial abundance, are collectively necessary for successful fish farming. The prospective use of jaggery as a potential carbon source and its influence on water quality, growth performance, innate immunity, serum bactericidal capacity, and disease resistance to Aeromonas hydrophila was investigated in Oreochromis niloticus. A completely randomized design was used in triplicates, where the control group was reared in a water system with no carbon source, while T1, T2, and T3 groups were raised in biofloc systems at C:N ratios of C:N12, C:N15, and C:N20, respectively. Water specimens were collected daily and fortnightly, while blood, serum, and head kidneys were collected at 75 days of experimental period for further analysis. TAN, nitrite, and ammonia values were considerably reduced, while the TSS values elevated significantly in all treated groups compared to the control. Jaggery-based biofloc system (JB-BFT) has a pronounced effect on hematological and growth performance parameters rather than control. Similarly, serum antioxidants, lysozyme, protease, antiprotease and bactericidal capacity were significantly increased (p < 0.05) in the treated groups in a dose-dependent manner. LYZ, TNF-α, and IL-1β genes were upregulated in proportion to C:N ratios with the highest fold in C:N20. Furthermore, fish treated with JB-BFT presented lower cumulative mortalities and better relative levels of production (RLP) after experimental challenge with A. hydrophila compared to control. In conclusion, JB-BFT has a robust influence on Nile tilapia (O. niloticus) innate immunity through favorable innovation of various immune-cells and enzymes as well as upregulating the expression levels of immune-related genes. This study offers jaggery as a new carbon source with unique properties that satisfy all considerations of biofloc technology in an eco-friendly manner.
Collapse
Affiliation(s)
- Sivaramasamy Elayaraja
- College of Biosystems Engineering and Food Sciences, Zhejiang University, Hangzhou, China; Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Technical University of Liberec, Liberec, Czech Republic.
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Abdelazeem Algammal
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Elayaraja Sabitha
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Kamil Zágoršek
- Technical University of Liberec, Liberec, Czech Republic
| | - Zhangying Ye
- College of Biosystems Engineering and Food Sciences, Zhejiang University, Hangzhou, China
| | - Songming Zhu
- College of Biosystems Engineering and Food Sciences, Zhejiang University, Hangzhou, China.
| | - Channarong Rodkhum
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
44
|
Algammal AM, Hetta HF, Batiha GE, Hozzein WN, El Kazzaz WM, Hashem HR, Tawfik AM, El-Tarabili RM. Virulence-determinants and antibiotic-resistance genes of MDR-E. coli isolated from secondary infections following FMD-outbreak in cattle. Sci Rep 2020; 10:19779. [PMID: 33188216 PMCID: PMC7666185 DOI: 10.1038/s41598-020-75914-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023] Open
Abstract
This study aimed to evaluate the prevalence, multidrug-resistance traits, PCR-detection of virulence, and antibiotic-resistance genes of E. coli isolated from secondary infections following FMD-outbreak in cattle. A total of 160 random samples were gathered from private dairy farms in Damietta Province, Egypt. The specimens were subjected to bacteriological examination, serotyping, congo-red binding assay, antibiogram-testing, and PCR-monitoring of virulence-determinant genes (tsh, phoA, hly, eaeA, sta, and lt) as well as the antibiotic-resistance genes (blaTEM, blaKPC, and blaCTX). The prevalence of E. coli was 30% (n = 48) distributed in 8 serogroups (40/48, 83.3%), while 8 isolates (8/48, 16.6%) were untypable. Besides, 83.3% of the examined isolates were positive for CR-binding. The tested strains harbored the virulence genes phoA, hly, tsh, eaeA, sta, and lt with a prevalence of 100% and 50%, 45.8%, 25%, 8.4%, and 6.2%, respectively. Furthermore, 50% of the recovered strains were multidrug-resistant (MDR) to penicillins, cephalosporins, and carbapenems, and are harboring the blaTEM, blaCTX, and blaKPC genes. Moreover, 25% of the examined strains are resistant to penicillins, and cephalosporins, and are harboring the blaTEM and blaCTX genes. To the best of our knowledge, this is the first report concerning the E. coli secondary bacterial infections following the FMD-outbreak. The emergence of MDR strains is considered a public health threat and indicates complicated treatment and bad prognosis of infections caused by such strains. Colistin sulfate and levofloxacin have a promising in vitro activity against MDR-E. coli.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515, Egypt.,Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0595, USA
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Waleed M El Kazzaz
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Hany R Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Badr University in Cairo, Cairo, 11829, Egypt
| | - Ayat M Tawfik
- Public Health and Community Medicine Department, Faculty of Medicine, Port-Said University, Port-Said, 42526, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
45
|
Makharita RR, El-Kholy I, Hetta HF, Abdelaziz MH, Hagagy FI, Ahmed AA, Algammal AM. Antibiogram and Genetic Characterization of Carbapenem-Resistant Gram-Negative Pathogens Incriminated in Healthcare-Associated Infections. Infect Drug Resist 2020; 13:3991-4002. [PMID: 33177849 PMCID: PMC7649219 DOI: 10.2147/idr.s276975] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Carbapenems are considered the most efficient antibiotic used in the treatment of nosocomial infections. Carbapenem-resistant Gram-negative rods are becoming a serious hazard in hospitals threatening public health. The aim of the current study was to investigate the prevalence of carbapenem-resistant Gram-negative pathogens incriminated in healthcare-associated infections, along with antimicrobial resistance profiles, carbapenemase and metallo-β-lactamase production, and their molecular characterization. Methods A total of 186 clinical specimens were collected from 133 patients at various hospitals in Cairo, Egypt. The obtained specimens were subjected to bacteriological examination, antimicrobial susceptibility testing, detection of carbapenemase production using the modified Hodge test (MHT), the metallo-β-lactamase production using the EDTA combined disc test (CDT), and PCR-based detection of the bla KPC and bla GES resistance genes. The identification of the highly resistant retrieved isolates was then confirmed by 16S rRNA gene sequencing. Results The most common isolated Gram-negative species was Klebsiella pneumoniae (40.9%), followed by Acinetobacter baumannii (18.8%), Pseudomonas aeruginosa (17.3%), Escherichia coli (15.4%), Enterobacter aerogenes (5.3%), and Proteus mirabilis (2.4%). The prevalence of carbapenem-resistant isolates was 36.1% (n=75). However, 86.5% of the recovered clinical isolates were susceptible to colistin. The MHT revealed that 33.6% (n=70) of the tested strains were positive for carbapenemase production, while the CDT showed that 33.17% (n=69) of the examined strains were metallo-β-lactamase producers. The PCR revealed that 98.6% (74/75) of the tested strains possessed the bla KPC gene; moreover, 97.3% (73/75) of the examined strains harbored the bla GES gene. Conclusion This study displayed the emergence of carbapenem-resistant Gram-negative pathogens incriminated in healthcare-associated infections. The accurate identification of carbapenem-resistant bacterial pathogens is pivotal for the treatment of patients, in addition to propelling appropriate contamination control measures to restrain the fast spread of such pathogens. Colistin showed a potent in vitro antimicrobial activity against the carbapenem-resistant strains.
Collapse
Affiliation(s)
- Rabab R Makharita
- Biology Department, Faculty of Science and Arts, University of Jeddah, Khulais, Jeddah, Saudi Arabia.,Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Iman El-Kholy
- Ain Shams Specialized Hospital, Faculty of Medicine, Ain Shams University, Cairo 11556, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt.,Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Moahmed H Abdelaziz
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Fatma I Hagagy
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amera A Ahmed
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.,Ministry of National Guard, Health Affairs, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
46
|
Algammal AM, Mabrok M, Sivaramasamy E, Youssef FM, Atwa MH, El-Kholy AW, Hetta HF, Hozzein WN. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and bla TEM, bla CTX-M, and tetA antibiotic-resistance genes. Sci Rep 2020; 10:15961. [PMID: 32994450 PMCID: PMC7524749 DOI: 10.1038/s41598-020-72264-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the prevalence, antibiogram of Pseudomonasaeruginosa (P.aeruginosa), and the distribution of virulence genes (oprL,exoS, phzM, and toxA) and the antibiotic-resistance genes (blaTEM, tetA, and blaCTX-M). A total of 285 fish (165 Oreochromisniloticus and 120 Clariasgariepinus) were collected randomly from private fish farms in Ismailia Governorate, Egypt. The collected specimens were examined bacteriologically. P. aeruginosa was isolated from 90 examined fish (31.57%), and the liver was the most prominent infected organ. The antibiogram of the isolated strains was determined using a disc diffusion method, where the tested strains exhibited multi-drug resistance (MDR) to amoxicillin, cefotaxime, tetracycline, and gentamicin. The PCR results revealed that all the examined strains harbored (oprL and toxA) virulence genes, while only 22.2% were positive for the phzM gene. On the contrary, none of the tested strains were positive for the exoS gene. Concerning the distribution of the antibiotic resistance genes, the examined strains harbored blaTEM, blaCTX-M, and tetA genes with a total prevalence of 83.3%, 77.7%, and 75.6%, respectively. Experimentally infected fish with P.aeruginosa displayed high mortalities in direct proportion to the encoded virulence genes and showed similar signs of septicemia found in the naturally infected one. In conclusion, P.aeruginosa is a major pathogen of O.niloticus and C.gariepinus.oprL and toxA genes are the most predominant virulence genes associated with P.aeruginosa infection. The blaCTX-M,blaTEM, and tetA genes are the main antibiotic-resistance genes that induce resistance patterns to cefotaxime, amoxicillin, and tetracycline, highlighting MDR P.aeruginosa strains of potential public health concern.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.,Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Elayaraja Sivaramasamy
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Fatma M Youssef
- Department of Clinical Pathology, Ismailia Branch, Animal Health Research Institute, Ismailia, 41522, Egypt
| | - Mona H Atwa
- Department of Clinical Pathology, Ismailia Branch, Animal Health Research Institute, Ismailia, 41522, Egypt
| | - Ali W El-Kholy
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515, Egypt.,Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0595, USA
| | - Wael N Hozzein
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
47
|
Algammal AM, Hetta HF, Elkelish A, Alkhalifah DHH, Hozzein WN, Batiha GES, El Nahhas N, Mabrok MA. Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infect Drug Resist 2020; 13:3255-3265. [PMID: 33061472 PMCID: PMC7519829 DOI: 10.2147/idr.s272733] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major human pathogen and a historically emergent zoonotic pathogen with public health and veterinary importance. In humans, MRSA commonly causes severe infectious diseases, including food poisoning, pyogenic endocarditis, suppurative pneumonia, otitis media, osteomyelitis, and pyogenic infections of the skin, soft tissues. In the horse, MRSA could cause a localized purulent infection and botryomycosis; in cattle and ewe, localized pyogenic infection and severe acute mastitis with marked toxemia; in sheep, abscess disease resembles caseous lymphadenitis caused by anaerobic strains; in dogs and cats, pustular dermatitis and food poisoning; in pig, exudative epidermatitis “greasy pig disease; in birds, MRSA causes bumble-foot. The methicillin resistance could be determined by PCR-based detection of the mecA gene as well as resistance to cefoxitin. In Egypt, MRSA is one of the important occasions of subclinical and clinical bovine mastitis, and the prevalence of MRSA varies by geographical region. In this review, we are trying to illustrate variable data about the host susceptibility, diseases, epidemiology, virulence factors, antibiotic resistance, treatment, and control of MRSA infection.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt.,Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Dalal Hussien H Alkhalifah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11451, Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Nihal El Nahhas
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Mahmoud A Mabrok
- Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.,Fish Infectious Diseases Research Unit (FID RU), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|