1
|
Khoshi MA, Keyvani-Ghamsari S, Khorsandi K. Gallic acid synergistically enhances the antibacterial activity of azithromycin in MRSA. Int Microbiol 2025; 28:829-836. [PMID: 39212836 DOI: 10.1007/s10123-024-00579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The rise of antibiotic resistance in existing pathogens has been identified as a major threat to global healthcare in the twenty-first century. This resistance has consequences such as increased cost and prolonged hospital stays, treatment failure, and ultimately increased risk of patient mortality. It is therefore imperative to develop strategies to combat drug resistance. Combined treatment of common antibiotics and natural compounds is one of the most effective methods against resistant bacterial infections. Gallic acid (GA) is a natural secondary metabolite abundantly found in plants and has significant medicinal effects in various aspects of health. In this research, the antibacterial effects of azithromycin (AZM) and GA alone and in combination with each other were investigated on planktonic and biofilm forms of methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa (P. aeruginosa). The results showed that the combination of AZM/GA had an additive effect against MSSA and P. aeruginosa and a synergistic effect against MRSA. In addition, combining these two agents significantly reduced the minimum biofilm inhibitory concentration (MBIC) of AZM and GA in the MRSA strain. Finally, the level of ROS generation in the effect of AZM plus GA was evaluated in the bacteria. Among the studied strains, ROS production was significantly increased in combination treatment compared to AZM alone in MRSA. The results show that the combination of AZM and GA has a significant effect against MRSA and can be considered as an effective treatment option.
Collapse
Affiliation(s)
| | | | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Ribeiro J, Silva V, Igrejas G, Barros L, Heleno SA, Reis FS, Poeta P. Phenolic Compounds from Pyrus communis Residues: Mechanisms of Antibacterial Action and Therapeutic Applications. Antibiotics (Basel) 2025; 14:280. [PMID: 40149091 PMCID: PMC11939275 DOI: 10.3390/antibiotics14030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The food industry produces substantial amounts of fruit byproducts, which are often discarded despite their high content of bioactive compounds with potential therapeutic applications. Pyrus communis (pear) residues, which are particularly rich in phenolic compounds, represent a valuable yet underutilized resource. These byproducts have demonstrated significant antioxidant and antibacterial properties, suggesting their potential for medical and pharmaceutical applications. This review aims to provide a comprehensive analysis of the phenolic profile of P. communis byproducts, emphasizing their antioxidant and antibacterial mechanisms and their prospective use in combating oxidative stress and antibacterial resistance. METHODS A comprehensive review of the key phenolic compounds from P. communis residues was conducted using ScienceDirect and Google Scholar databases (from 2014 to 2024). Studies assessing antioxidant and antibacterial activities were reviewed, with a focus on their mechanisms of action against Gram-positive and Gram-negative bacterial pathogens. RESULTS A minimum of 14 distinct phenolic compounds were identified among P. communis residues. However, chlorogenic acid and catechin were identified as the primary contributors to the antioxidant activity of P. communis residues. Hydroquinone and chlorogenic acid exhibited strong antibacterial effects through membrane disruption, enzyme inhibition, and metabolic interference. Despite this potential, hydroquinone's cytotoxicity and regulatory concerns limit its direct pharmaceutical application. CONCLUSIONS While P. communis phenolics show promise as natural antibacterial agents, future research should address bioavailability, extraction standardization, and safe formulation strategies. Investigating their synergy with conventional antibiotics and improving stability for cosmetic applications are key steps toward their practical use. In vivo and clinical studies are crucial to validating their therapeutic potential and ensuring regulatory approval.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), La SusTEC, Instituto Politécnico de Bragança (IPB), 5300-253 Bragança, Portugal; (L.B.); (S.A.H.); (F.S.R.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Yang S, Su P, Li L, Liu S, Wang Y. Advances and mechanisms of traditional Chinese medicine and its active ingredients against antibiotic-resistant Escherichia coli infections. J Pharm Anal 2025; 15:101117. [PMID: 40026356 PMCID: PMC11871446 DOI: 10.1016/j.jpha.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 03/05/2025] Open
Abstract
In clinical practice, antibiotics have historically been utilized for the treatment of pathogenic bacteria. However, the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach. In 2022, Escherichia coli, a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence, emerged as the predominant pathogenic bacterium in China. The rapid emergence of antibiotic-resistant E. coli strains has rendered antibiotics insufficient to fight E. coli infections. Traditional Chinese medicine (TCM) has made remarkable contributions to the health of Chinese people for thousands of years, and its significant therapeutic effects have been proven in clinical practice. In this paper, we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E. coli infections. First of all, this review introduces the classification, antibiotic resistance characteristics and mechanisms of E. coli. Then, the TCM formulas and extracts are listed along with their active ingredients against E. coli, including extraction solution, minimum inhibitory concentration (MIC), and the antibacterial mechanisms. In addition, there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E. coli infections, and we provide a summary of this evidence and its underlying mechanisms. In conclusion, we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E. coli infections. We hold the opinion that TCM will play an important role in global health, pharmaceutical development, and livestock farming in the future.
Collapse
Affiliation(s)
- Shuo Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
4
|
Flores-Maldonado O, Dávila-Aviña J, González GM, Becerril-García MA, Ríos-López AL. Antibacterial activity of gallic acid and methyl gallate against emerging non-fermenting bacilli. Folia Microbiol (Praha) 2025; 70:127-135. [PMID: 38904883 DOI: 10.1007/s12223-024-01182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Burkholderia cenocepacia are considered emerging pathogens classified as a public health problem due to extensive antimicrobial resistance. Therefore, the discovery of new therapeutic strategies has become crucial. This study aimed to evaluate the antimicrobial activity of gallic acid and methyl gallate against non-fermenting bacteria. The study included five clinical isolates of Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Burkholderia cenocepacia. The minimum inhibitory concentrations of gallic acid and methyl gallate were determined by the broth microdilution method. Growth curves, metabolic activity, and biofilm formation of each bacterial strain in the presence or absence of phenolic compounds were performed. Finally, the therapeutic efficacy of the compounds was evaluated using an in vivo model. Gallic acid and methyl gallate showed antibacterial activity against bacterial strains in a concentration range of 64 to 256 µg/mL, both compounds reduced bacterial growth and metabolic activity of the strains, even at subinhibitory concentrations. Only, methyl gallate exhibited activity to inhibit the formation of bacterial biofilms. Moreover, gallic acid and methyl gallate increased larval survival by up to 60% compared to 30% survival of untreated larvae in a bacterial infection model in Galleria mellonella. Our results highlight the potential of gallic acid and methyl gallate as therapeutic alternatives for infections by emerging non-fermentative bacteria.
Collapse
Affiliation(s)
- Orlando Flores-Maldonado
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr, José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Jorge Dávila-Aviña
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Gloria M González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr, José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Miguel A Becerril-García
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr, José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Ana L Ríos-López
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr, José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico.
| |
Collapse
|
5
|
Lima EMF, de Almeida FA, Pinto UM. Exploring the antivirulence potential of phenolic compounds to inhibit quorum sensing in Pseudomonas aeruginosa. World J Microbiol Biotechnol 2025; 41:32. [PMID: 39794611 DOI: 10.1007/s11274-025-04255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Bacteria coordinate gene expression in a cell density-dependent manner in a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are QS-regulated phenotypes that can interfere in human health. Due to this importance, there is great interest in inhibiting QS, comprising an anti-virulence strategy. This work aimed to evaluate the effect of selected phenolic compounds on the inhibition of QS-regulated phenotypes in Pseudomonas aeruginosa PAO1, using concentrations that do not interfere in bacterial growth. This is one of the main premises for studying the effect of compounds on QS. Firstly, an in-silico study with the LasR and RhlR proteins of P. aeruginosa by molecular docking of 82 phenolic compounds was performed. Then, a screening with 13 selected phenolic compounds was performed, using biosensor strains P. aeruginosa lasB-gfp and P. aeruginosa rhlA-gfp, which emit fluorescence when the QS system is activated. From this assay, eight compounds were selected and evaluated for inhibition of pyocyanin, rhamnolipids, proteases, elastase, and motility. The compounds variably inhibited the evaluated virulence factors. The greatest inhibitions were observed for swarming motility, achieving inhibition rates of up to 50% for baicalein (500 µM) and curcumin (50 µM). Notably, curcumin showed satisfactory inhibition for all phenotypes even at lower concentrations (12.5 to 50 µM) compared to the other compounds (125 to 500 µM). Four compounds - rosmarinic acid, baicalein, curcumin, and resveratrol - were finally tested against biofilm formation observed by optical microscopy. This study demonstrated that phenolic compounds exhibit strong in silico binding to P. aeruginosa LasR and RhlR proteins and variably inhibit QS-regulated phenotypes in vitro. Although no biofilm inhibition was observed, future studies combining compounds and exploring molecular mechanisms are recommended. These findings highlight the biotechnological potential of phenolic compounds for future applications in the food, clinical, and pharmaceutical fields.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Felipe Alves de Almeida
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Lima EMF, Bueris V, Germano LG, Sircili MP, Pinto UM. Synergistic effect of the combination of phenolic compounds and tobramycin on the inhibition of Pseudomonas aeruginosa biofilm. Microb Pathog 2024; 197:107079. [PMID: 39454803 DOI: 10.1016/j.micpath.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Bacteria coordinate gene expression in a cell density-dependent manner using a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are examples of QS-regulated phenotypes that can interfere with food quality and safety. Due to the importance of these phenotypes, the inhibition of bacterial communication as an anti-virulence strategy is of great interest. This work aimed to evaluate the effect of phenolic compounds on the inhibition of biofilm formation by Pseudomonas aeruginosa PAO1, using concentrations that do not interfere in bacterial growth. The synergistic effect of rosmarinic acid, baicalein, curcumin and resveratrol with tobramycin and between the phenolics themselves was evaluated. The tested combinations proved to be a good strategy for reducing the dose of antibiotics used in treatments and obtaining satisfactory results against P. aeruginosa biofilms. The combination of the four compounds at the highest concentration (500 μM) completely inhibited biofilm formation. The obtained results contribute to understanding the effect of phenolic compounds on QS inhibition, which may help to define the mechanism of inhibition, in addition to expanding the biotechnological potential of these compounds for future applications in the food, pharmaceutical and medical fields.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Vanessa Bueris
- Microbiology Department, Institute of Biological Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Tiwana G, Cock IE, Cheesman MJ. Combinations of Terminalia bellirica (Gaertn.) Roxb. and Terminalia chebula Retz. Extracts with Selected Antibiotics Against Antibiotic-Resistant Bacteria: Bioactivity and Phytochemistry. Antibiotics (Basel) 2024; 13:994. [PMID: 39452260 PMCID: PMC11504310 DOI: 10.3390/antibiotics13100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has arisen due to antibiotic overuse and misuse. Antibiotic resistance renders standard treatments less effective, making it difficult to control some infections, thereby increasing morbidity and mortality. Medicinal plants are attracting increased interest as antibiotics lose efficacy. This study evaluates the antibacterial activity of solvent extracts prepared using Terminalia bellirica and Terminalia chebula fruit against six bacterial pathogens using disc diffusion and broth microdilution assays. The aqueous and methanol extracts of T. bellirica and T. chebula showed substantial zones of inhibition (ZOIs) against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). The activity against those bacteria was strong, with minimum inhibitory concentrations (MIC) ranging from 94 µg/mL to 392 µg/mL. Additionally, the T. bellirica methanolic extract showed noteworthy antibacterial activity against Escherichia coli and an extended spectrum β-lactamase (ESBL) E. coli strain (MIC values of 755 µg/mL for both). The aqueous T. bellirica and T. chebula extracts also inhibited Klebsiella pneumoniae growth (MIC values of 784 µg/mL and 556 µg/mL, respectively). The corresponding methanolic extracts also inhibited ESBL K. pneumoniae growth (MIC values of 755 µg/mL and 1509 µg/mL, respectively). Eighteen additive interactions were observed when extracts were combined with reference antibiotics. Strong antagonism occurred when any of the extracts were mixed with polymyxin B. Liquid chromatography-mass spectroscopy (LC-MS) analysis of the extracts revealed several interesting flavonoids and tannins, including 6-galloylglucose, 1,2,6-trigalloyl-β-D-glucopyranose, 6-O-[(2E)-3-phenyl-2-propenoyl]-1-O-(3,4,5-trihydroxybenzoyl)-β-D-glucopyranose, propyl gallate, methyl gallate, sanguiin H4, hamamelitannin, pyrogallol, gallic acid, ellagic acid, chebulic acid, and chebuloside II. All extracts were nontoxic in brine shrimp assays. This lack of toxicity, combined with their antibacterial activities, suggests that these plant species may be promising sources of antibacterial compound(s) that warrant further study.
Collapse
Affiliation(s)
- Gagan Tiwana
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| | - Ian Edwin Cock
- School of Environment and Science, Nathan Campus, Griffith University, Brisbane 4111, Australia;
| | - Matthew James Cheesman
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| |
Collapse
|
8
|
Angelini P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:746. [PMID: 39200046 PMCID: PMC11350763 DOI: 10.3390/antibiotics13080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Antibiotic resistance emerged shortly after the discovery of the first antibiotic and has remained a critical public health issue ever since. Managing antibiotic resistance in clinical settings continues to be challenging, particularly with the rise of superbugs, or bacteria resistant to multiple antibiotics, known as multidrug-resistant (MDR) bacteria. This rapid development of resistance has compelled researchers to continuously seek new antimicrobial agents to curb resistance, despite a shrinking pipeline of new drugs. Recently, the focus of antimicrobial discovery has shifted to plants, fungi, lichens, endophytes, and various marine sources, such as seaweeds, corals, and other microorganisms, due to their promising properties. For this review, an extensive search was conducted across multiple scientific databases, including PubMed, Elsevier, ResearchGate, Scopus, and Google Scholar, encompassing publications from 1929 to 2024. This review provides a concise overview of the mechanisms employed by bacteria to develop antibiotic resistance, followed by an in-depth exploration of plant secondary metabolites as a potential solution to MDR pathogens. In recent years, the interest in plant-based medicines has surged, driven by their advantageous properties. However, additional research is essential to fully understand the mechanisms of action and verify the safety of antimicrobial phytochemicals. Future prospects for enhancing the use of plant secondary metabolites in combating antibiotic-resistant pathogens will also be discussed.
Collapse
Affiliation(s)
- Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
9
|
Todorov SD, Alves VF, Popov I, Weeks R, Pinto UM, Petrov N, Ivanova IV, Chikindas ML. Antimicrobial Compounds in Wine. Probiotics Antimicrob Proteins 2024; 16:763-783. [PMID: 37855943 DOI: 10.1007/s12602-023-10177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Ipsum vinum est potestas et possession (wine itself is power and possession). Wine is a complex system that triggers multisensory cognitive stimuli. Wine and its consumption are thoroughly intertwined with the development of human society. The beverage was appreciated in many ancient mythologies and plays an essential part in Christianity and rituals to this day. Wine has been said to enlighten and inspire artists and has even been prohibited by law and some religions, but has nevertheless played a role in human civilizations since the beginning. Winemaking is also a prospering and economically important industry and a longtime symbol of status and luxury. In winemaking, the formation of the final product is influenced by several factors that contribute to the chemical and sensory complexity often associated with quality vintages. Factors such as terroir, climatic conditions, variety of the grape, all aspects of the winemaking process to the smallest details, including metabolic processes carried out by yeast and malolactic bacteria, and the conditions for the maturation and storage of the final product, up to, and even beyond the point of deciding to open the bottle and enjoy the wine. In conjunction with the empiric and scientific process of winemaking, different molecules with antibacterial activity can be identified in wine during the production process, and several of them are clearly present in the final product. Some of these antibacterial components are phytochemicals, such as flavonoids and phenolic compounds, that may be delivered to the final product (wine) as a part of the grape, a variety of potential additive compounds, or from the oak barrels or clay amphoras used during the maturation process. Others are produced by yeasts and malolactic bacteria and play a role not only in the moderation of the fermentation process but contributing to the microbiological safety and beneficial properties spectra of the final product. Lactic acid bacteria, responsible for conducting malolactic fermentation, contribute to the final balance of the wine but are also directly involved in the production of different compounds exhibiting antibacterial activity. Some examples of these compounds include bacteriocins (antibacterial peptides), diacetyl, organic acids, reuterin, hydrogen peroxide, and carbon dioxide. Major aspects of these different beneficial metabolites are the subject of discussion in this review with the aim of highlighting their beneficial functions.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- CISAS- Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347, Viana do Castelo, Portugal.
| | - Virginia Farias Alves
- Faculdade de Farmácia, Universidade Federal de Goiás (UFG), 74605-170, Goiânia, GO, Brazil
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Olimpijskij av., 1, 354340, Federal Territory Sirius, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Nikolay Petrov
- Laboratory of Virology, New Bulgarian University, Montevideo str. 21, 1618, Sofia, Bulgaria
| | - Iskra Vitanova Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8, Bul. Dragan Tzankov, 1164, Sofia, Bulgaria
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| |
Collapse
|
10
|
El Sadda RR, Eissa MS, Elafndi RK, Moawed EA, El-Zahed MM, Saad HR. Synthesis and biological evaluation of titanium dioxide/thiopolyurethane composite: anticancer and antibacterial effects. BMC Chem 2024; 18:35. [PMID: 38368376 PMCID: PMC10874576 DOI: 10.1186/s13065-024-01138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Nanocomposites incorporating titanium dioxide (TiO2) have a significant potential for various industrial and medical applications. These nanocomposites exhibit selectivity as antimicrobial and anticancer agents. Antimicrobial activity is crucial for medical uses, including applications in food processing, packaging, and surgical instruments. Additionally, these nanocomposites exhibit selectivity as anticancer agents. A stable nanocomposite as a new anticancer and antibacterial chemical was prepared by coupling titanium dioxide nanoparticles with a polyurethane foam matrix through the thiourea group. The titanium dioxide/thiopolyurethane nanocomposite (TPU/TiO2) was synthesized from low-cost Ilmenite ore and commercial polyurethane foam. EDX analysis was used to determine the elemental composition of the titanium dioxide (TiO2) matrix. TiO2NPs were synthesized and were characterized using TEM, XRD, IR, and UV-Vis spectra. TiO2NPs and TPU foam formed a novel composite. The MTT assay assessed Cisplatin and HepG-2 and MCF-7 cytotoxicity in vitro. Its IC50 values for HepG-2 and MCF-7 were 122.99 ± 4.07 and 201.86 ± 6.82 µg/mL, respectively. The TPU/TiO2 exhibits concentration-dependent cytotoxicity against MCF-7 and HepG-2 cells in vitro. The selective index was measured against both cell lines; it showed its safety against healthy cells. Agar well-diffusion exhibited good inhibition zones against Escherichia coli (12 mm), Bacillus cereus (10 mm), and Aspergillus niger (19 mm). TEM of TPU/TiO2-treated bacteria showed ultrastructure changes, including plasma membrane detachment from the cell wall, which caused lysis and bacterial death. TPU/TiO2 can treat cancer and inhibit microbes in dentures and other items. Also, TPU/TiO2 inhibits E. coli, B. cereus, and A. niger microbial strains.
Collapse
Affiliation(s)
- Rana R El Sadda
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt.
| | - Mai S Eissa
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Rokaya K Elafndi
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Elhossein A Moawed
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Mohamed M El-Zahed
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Hoda R Saad
- Geology Department, Faulty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
11
|
Keyvani‐Ghamsari S, Rahimi M, Khorsandi K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci Nutr 2023; 11:5856-5872. [PMID: 37823155 PMCID: PMC10563697 DOI: 10.1002/fsn3.3615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023] Open
Abstract
Drug resistance to antibacterial and anticancer drugs is one of the most important global problems in the treatment field that is constantly expanding and hinders the recovery and survival of patients. Therefore, it is necessary to identify compounds that have antibacterial and anticancer properties or increase the effectiveness of existing drugs. One of these approaches is using natural compounds that have few side effects and are effective. Gallic acid (GA) has been identified as one of the most important plant polyphenols that health-promoting effects in various aspects such as bacterial and viral infections, cancer, inflammatory, neuropsychological, gastrointestinal, and metabolic disease. Various studies have shown that GA inhibits bacterial growth by altering membrane structure, and bacterial metabolism, and inhibits biofilm formation. Also, GA inhibits cancer cell growth by targeting different signaling pathways in apoptosis, increasing reactive oxygen species (ROS) production, targeting the cell cycle, and inhibiting oncogenes and matrix metalloproteinases (MMPs) expression. Due to the powerful function of GA against bacteria and cancer cells. In this review, we describe the latest findings in the field of the sources and chemical properties of GA, its pharmacological properties and bioavailability, the antibacterial and anticancer activities of GA, and its derivatives alone, in combination with other drugs and in the form of nanoformulation. This review can be a comprehensive perspective for scientists to use medicinal compounds containing GA in future research and expand its clinical applications.
Collapse
Affiliation(s)
- Saeedeh Keyvani‐Ghamsari
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Maryam Rahimi
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research CenterYara Institute, ACECRTehranIran
| |
Collapse
|
12
|
Lv J, Liu G, Ju Y, Huang H, Sun Y. AADB: A Manually Collected Database for Combinations of Antibiotics With Adjuvants. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2827-2836. [PMID: 37279138 DOI: 10.1109/tcbb.2023.3283221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antimicrobial resistance is a global public health concern. The lack of innovations in antibiotic development has led to renewed interest in antibiotic adjuvants. However, there is no database to collect antibiotic adjuvants. Herein, we build a comprehensive database named Antibiotic Adjuvant DataBase (AADB) by manually collecting relevant literature. Specifically, AADB includes 3,035 combinations of antibiotics with adjuvants, covering 83 antibiotics, 226 adjuvants, and 325 bacterial strains. AADB provides user-friendly interfaces for searching and downloading. Users can easily obtain these datasets for further analysis. In addition, we also collected related datasets (e.g., chemogenomic and metabolomic data) and proposed a computational strategy to dissect these datasets. As a test case, we identified 10 candidates for minocycline, and 6 of 10 candidates are the known adjuvants that synergize with minocycline to inhibit the growth of E. coli BW25113. We hope that AADB can help users to identify effective antibiotic adjuvants. AADB is freely available at http://www.acdb.plus/AADB.
Collapse
|
13
|
Lima EMF, Winans SC, Pinto UM. Quorum sensing interference by phenolic compounds - A matter of bacterial misunderstanding. Heliyon 2023; 9:e17657. [PMID: 37449109 PMCID: PMC10336516 DOI: 10.1016/j.heliyon.2023.e17657] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/15/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Over the past decade, numerous publications have emerged in the literature focusing on the inhibition of quorum sensing (QS) by plant extracts and phenolic compounds. However, there is still a scarcity of studies that delve into the specific mechanisms by which these compounds inhibit QS. Thus, our question is whether phenolic compounds can inhibit QS in a specific or indirect manner and to elucidate the underlying mechanisms involved. This study is focused on the most studied QS system, namely, autoinducer type 1 (AI-1), represented by N-acyl-homoserine lactone (AHL) signals and the AHL-mediated QS responses. Here, we analyzed the recent literature in order to understand how phenolic compounds act at the cellular level, at sub-inhibitory concentrations, and evaluated by which QS inhibition mechanisms they may act. The biotechnological application of QS inhibitors holds promising prospects for the pharmaceutical and food industries, serving as adjunct therapies and in the prevention of biofilms on various surfaces.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Stephen C. Winans
- Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Li Z, Wu H, Liu J, Hao H, Bi J, Hou H, Zhang G. Synergistic effects of benzyl isothiocyanate and resveratrol against Listeria monocytogenes and their application in chicken meat preservation. Food Chem 2023; 419:135984. [PMID: 37044056 DOI: 10.1016/j.foodchem.2023.135984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
This study aimed to investigate the synergistic effects of benzyl isothiocyanate (BITC) and resveratrol (RS) on Listeria monocytogenes and their application in chicken meat preservation. BITC combined with RS (BR) significantly enhanced the antimicrobial activity and inhibited the growth of Listeria monocytogenes within 24 h compared to individual treatment, as well as suppressing bacterial swimming and swarming motility, reducing biofilm formation by 56.4%, increasing cell membrane disruption, and inducing intracellular ROS surges. Synergistic effects were associated with the inhibition of biofilm formation, cell membrane destruction, and ROS production. Biofilm removal facilitated the direct antimicrobial action of BR. RS disrupted cell membrane permeability, allowing more BITC into the cells, resulting in increased intracellular antibacterial levels, cell membrane hyperpolarization, and rapid ROS accumulation. Furthermore, BR visibly slowed the microbial growth in chicken flesh stored at 25 °C and 4 °C. Therefore, BR is expected to be a new strategy for food preservation.
Collapse
Affiliation(s)
- Zhaolun Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hongyan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian 116034, China.
| |
Collapse
|
15
|
Lima EMF, Almeida FAD, Sircili MP, Bueris V, Pinto UM. N-acetylcysteine (NAC) attenuates quorum sensing regulated phenotypes in Pseudomonas aeruginosa PAO1. Heliyon 2023; 9:e14152. [PMID: 36923901 PMCID: PMC10009464 DOI: 10.1016/j.heliyon.2023.e14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
The expression of many virulence genes in bacteria is regulated by quorum sensing (QS), and the inhibition of this mechanism has been intensely investigated. N-acetylcysteine (NAC) has good antibacterial activity and is able to interfere with biofilm-related respiratory infections, but little is known whether this compound has an effect on bacterial QS communication. This work aimed to evaluate the potential of NAC as a QS inhibitor (QSI) in Pseudomonas aeruginosa PAO1 through in silico and in vitro analyses, as well as in combination with the antibiotic tobramycin. Initially, a molecular docking analysis was performed between the QS regulatory proteins, LasR and RhlR, of P. aeruginosa with NAC, 3-oxo-C12-HSL, C4-HSL, and furanone C30. The NAC sub-inhibitory concentration was determined by growth curves. Then, we performed in vitro tests using the QS reporter strains P. aeruginosa lasB-gfp and rhlA-gfp, as well as the expression of QS-related phenotypes. Finally, the synergistic effect of NAC with the antibiotic tobramycin was calculated by fractional inhibitory concentrations index (FICi) and investigated against bacterial growth, pigment production, and biofilm formation. In the molecular docking study, NAC bound to LasR and RhlR proteins in a similar manner to the AHL cognate, suggesting that it may be able to bind to QS receptor proteins in vivo. In the biosensor assay, the GFP signal was turned down in the presence of NAC at 1000, 500, 250, and 125 μM for lasB-gfp and rhlA-gfp (p < 0.05), suggesting a QS inhibitory effect. Pyocyanin and rhamnolipids decreased (p < 0.05) up to 34 and 37%, respectively, in the presence of NAC at 125 μM. Swarming and swimming motilities were inhibited (p < 0.05) by NAC at 250 to 10000 μM. Additionally, 2500 and 10000 μM of NAC reduced biofilm formation. NAC-tobramycin combination showed synergistic effect with FICi of 0.8, and the best combination was 2500-1.07 μM, inhibiting biofilm formation up to 60%, besides reducing pyocyanin and pyoverdine production. Confocal microscopy images revealed a stronger, dense, and compact biofilm of P. aeruginosa PAO1 control, while the biofilm treated with NAC-tobramycin became thinner and more dispersed. Overall, NAC at low concentrations showed promising anti-QS properties against P. aeruginosa PAO1, adding to its already known effect as an antibacterial and antibiofilm agent.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo, SP, Brazil
| | - Felipe Alves de Almeida
- Instituto de Laticínios Cândido Tostes (ILCT), Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Juiz de Fora, MG, Brazil
| | | | - Vanessa Bueris
- Microbiology Department, Institute of Biomedical Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
16
|
Alkyl Gallates as Potential Antibiofilm Agents: A Review. Molecules 2023; 28:molecules28041751. [PMID: 36838739 PMCID: PMC9959617 DOI: 10.3390/molecules28041751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Biofilms, which consist of microorganisms embedded in a polymer-rich matrix, contribute to a variety of infections and increase antimicrobial resistance. Thus, there is a constant need to develop new chemotherapeutic agents to combat biofilms. This review article focuses on the use of alkyl gallates, gallic acid and its esters (methyl, ethyl, propyl, butyl, hexyl, octyl, and dodecyl gallate), most of which are found in plants, to inhibit biofilm formation. The studies under review reveal that alkyl gallates have the capacity to prevent biofilm development and eradicate mature biofilms through mechanisms that suppress the synthesis of the extracellular polymeric matrix, inhibit quorum-sensing signaling, and alter the microbial cell membrane. The effects are stronger the greater the length of the alkyl chain. Moreover, the alkyl gallates' preventive activity against biofilm formation occurs at doses below the minimum inhibitory concentration. More importantly, combining alkyl gallates with antimicrobials or blue-light irradiation produces a synergistic effect on the inhibition of biofilm formation that can be used to treat infections and overcome microbial resistance.
Collapse
|
17
|
Sousa M, Afonso AC, Teixeira LS, Borges A, Saavedra MJ, Simões LC, Simões M. Hydrocinnamic Acid and Perillyl Alcohol Potentiate the Action of Antibiotics against Escherichia coli. Antibiotics (Basel) 2023; 12:antibiotics12020360. [PMID: 36830271 PMCID: PMC9952493 DOI: 10.3390/antibiotics12020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The treatment of bacterial infections has been troubled by the increased resistance to antibiotics, instigating the search for new antimicrobial therapies. Phytochemicals have demonstrated broad-spectrum and effective antibacterial effects as well as antibiotic resistance-modifying activity. In this study, perillyl alcohol and hydrocinnamic acid were characterized for their antimicrobial action against Escherichia coli. Furthermore, dual and triple combinations of these molecules with the antibiotics chloramphenicol and amoxicillin were investigated for the first time. Perillyl alcohol had a minimum inhibitory concentration (MIC) of 256 µg/mL and a minimum bactericidal concentration (MBC) of 512 µg/mL. Hydrocinnamic acid had a MIC of 2048 µg/mL and an MBC > 2048 µg/mL. Checkerboard and time-kill assays demonstrated synergism or additive effects for the dual combinations chloramphenicol/perillyl alcohol, chloramphenicol/hydrocinnamic acid, and amoxicillin/hydrocinnamic acid at low concentrations of both molecules. Combenefit analysis showed synergism for various concentrations of amoxicillin with each phytochemical. Combinations of chloramphenicol with perillyl alcohol and hydrocinnamic acid revealed synergism mainly at low concentrations of antibiotics (up to 2 μg/mL of chloramphenicol with perillyl alcohol; 0.5 μg/mL of chloramphenicol with hydrocinnamic acid). The results highlight the potential of combinatorial therapies for microbial growth control, where phytochemicals can play an important role as potentiators or resistance-modifying agents.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ana Cristina Afonso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CEB, LABBELS—Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lília Soares Teixeira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Maria José Saavedra
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Lúcia Chaves Simões
- CEB, LABBELS—Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
18
|
Jiang S, Zhang S, Jiang X, Tian S. Analysis of the chemical composition and biological activity of secondary residues of Turkish Gall treated by semi-bionic technology. BIORESOUR BIOPROCESS 2023; 10:5. [PMID: 38647792 PMCID: PMC10991440 DOI: 10.1186/s40643-023-00624-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023] Open
Abstract
In order to meet the contemporary concept of sustainable development, the reuse of biological waste has also been emphasized. Lots of papers nowadays study the extraction of primary residues. The disposal of secondary residues is often neglected. The chemical composition and biological activity of secondary residues of Turkish Gall (SRTG) were researched in this paper. We selected five methods to extract the SRTG, and the extraction conditions were water, hydrochloric acid buffer (pH = 2), artificial gastric juice (pH = 2), phosphate buffer (pH = 6.8), and artificial intestinal solution (pH = 6.8). The changes of phenolic components were determined by spectrophotometry and high-performance liquid chromatography. The acid-base environment did not affect total polyphenols contents and gallic acid ethyl ester contents in SRTG. But it affected the gallic acid contents in SRTG. The contents of gallic acid in the hydrochloric acid buffer extraction groups were 1.63 times that of the water extraction group. The SRTG were extracted by hydrochloric acid buffer also had better inhibition on Escherichia coli and Staphylococcus aureus. In addition, SRTG showed positive effects on 1,1-Diphenyl-2-picrylhydrazyl Free, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), ·OH radicals, and Ferric ion reducing antioxidant power. Some active components of SRTG can be effectively released through the digestion of simulated gastric juices in vitro. The change of active ingredients affects the antibacterial and antioxidant capacity. The results provide data support for the conversion of secondary residues into products, such as feed additives. The SRTG has certain contributes to the value of the circular economy.
Collapse
Affiliation(s)
- Shan Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Shangde North Road, Shuimogou District, Urumqi, 830054, China
| | - Sha Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Shangde North Road, Shuimogou District, Urumqi, 830054, China
| | - Xiangdong Jiang
- The Fifth Clinical Medical College, Xinjiang Medical University, Shangde North Road, Shuimogou District, Urumqi, 830054, China
| | - Shuge Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Shangde North Road, Shuimogou District, Urumqi, 830054, China.
| |
Collapse
|
19
|
Ali MS, Lee EB, Lim SK, Suk K, Park SC. Isolation and Identification of Limosilactobacillus reuteri PSC102 and Evaluation of Its Potential Probiotic, Antioxidant, and Antibacterial Properties. Antioxidants (Basel) 2023; 12:238. [PMID: 36829797 PMCID: PMC9952246 DOI: 10.3390/antiox12020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
We isolated and characterized Limosilactobacillus reuteri PSC102 and evaluated its probiotic, antioxidant, and antibacterial properties. We preliminarily isolated 154 candidates from pig feces and analyzed their Gram nature, morphology, and lactic acid production ability. Based on the results, we selected eight isolates and tested their ability to produce digestive enzymes. Finally, we identified one isolate using 16S rRNA gene sequencing, namely, L. reuteri PSC102. We tested its probiotic properties in vitro, including extracellular enzyme activities, low pH and bile salt tolerance, autoaggregation and coaggregation abilities, adhesion to Caco-2 cells, antibiotic susceptibility, and hemolytic and gelatinase activities. Antioxidant activity was determined using 1-diphenyl-2-picrylhydrazyl and 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging and reducing power assays. The antibacterial activity of this strain and its culture supernatant against enterotoxigenic Escherichia coli were evaluated using a time-kill assay and disk diffusion method, respectively. L. reuteri PSC102 exhibited tolerance toward low pH and bile salt and did not produce harmful enzymes or possess hemolytic and gelatinase activities. Its intact cells and cell-free extract exhibited potential antioxidant activities, and significantly inhibited the growth of enterotoxigenic E. coli. Our results demonstrate that L. reuteri PSC102 is a potential probiotic candidate for developing functional feed.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
20
|
Abbas MA, Lee EB, Boby N, Biruhanu BT, Park SC. A pharmacodynamic investigation to assess the synergism of orbifloxacin and propyl gallate against Escherichia coli. Front Pharmacol 2022; 13:989395. [PMID: 36188537 PMCID: PMC9521280 DOI: 10.3389/fphar.2022.989395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Escherichia coli (E. coli) infections are becoming increasingly difficult to treat, as antibiotic-resistant variants proliferate. Studies on novel methods to combat the spread of resistance and improve the performance of current antibiotics are vital. We aimed to boost the efficacy of the antibiotic orbifloxacin (ORB) against E. coli by combining it with a phenolic component, propyl gallate (PG). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ORB against the E. coli KVCC 1423 resistant strain were 128 μg/ml and 256 μg/ml, respectively. However, the MIC of ORB for the remaining E. coli strains was 0.5 μg/ml–2 μg/ml. For the combination of PG and ORB, the lowest fractional inhibitory concentration (FIC) index was less than 0.5, and the combination decreased the MIC of both drugs by 74%. The time-kill assay revealed the killing properties of both the drugs and the pharmacodynamic model (PD model) confirmed the strong killing properties of the combination as compared to the individual activities of the drugs. The ratio between MIC and mutant prevention concentration of ORB against E. coli 1400306 and 1,423 were 1:32 and 1:8, respectively. The combination of ORB and PG showed strong biofilm eradication and inhibited the motility of bacteria. The cell viability of the combination was > 80%. Therefore, we believe that ORB and PG in combination could be a possible antibacterial candidate that could minimize resistance and improve antibiotic potential.
Collapse
Affiliation(s)
- Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Cardiovascular Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Gyeongsangbuk-do, South Korea
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Cardiovascular Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Gyeongsangbuk-do, South Korea
| | - Naila Boby
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Cardiovascular Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Gyeongsangbuk-do, South Korea
| | - Biruk Tesfaye Biruhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Cardiovascular Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Gyeongsangbuk-do, South Korea
- *Correspondence: Biruk Tesfaye Biruhanu, ; Seung-Chun Park,
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Cardiovascular Institute, College of Veterinary Medicine, Kyungpook National University, Daegu, Gyeongsangbuk-do, South Korea
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Gyeongsangbuk-do, South Korea
- *Correspondence: Biruk Tesfaye Biruhanu, ; Seung-Chun Park,
| |
Collapse
|
21
|
Liu Y, Gao J, Wang N, Li X, Fang N, Zhuang X. Diffusible signal factor enhances the saline-alkaline resistance and rhizosphere colonization of Stenotrophomonas rhizophila by coordinating optimal metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155403. [PMID: 35469877 DOI: 10.1016/j.scitotenv.2022.155403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Quorum sensing (QS) regulates various physiological processes in a cell density-dependent mode via cell-cell communication. Stenotrophomonas rhizophila DSM14405T having the diffusible signal factor (DSF)-QS system, is a plant growth-promoting rhizobacteria (PGPR) that enables host plants to tolerate saline-alkaline stress. However, the regulatory mechanism of DSF-QS in S. rhizophila is not fully understood. In this study, we used S. rhizophila DSM14405T wild-type (WT) and an incompetent DSF production rpfF-knockout mutant to explore the regulatory role of QS in S. rhizophila growth, stress responses, biofilm formation, and colonization under saline-alkaline stress. We found that a lack of DSF-QS reduces the tolerance of S. rhizosphere ΔrpfF to saline-alkaline stress, with a nearly 25-fold reduction in the ΔrpfF population compared with WT at 24 h under stress. Transcriptome analysis revealed that QS helps S. rhizophila WT respond to saline-alkaline stress by enhancing metabolism associated with the cell wall and membrane, oxidative stress response, cell adhesion, secretion systems, efflux pumps, and TonB systems. These metabolic systems enhance penetration defense, Na+ efflux, iron uptake, and reactive oxygen species scavenging. Additionally, the absence of DSF-QS causes overexpression of biofilm-associated genes under the regulation of sigma 54 and other transcriptional regulators. However, greater biofilm formation capacity confers no advantage on S. rhizosphere ΔrpfF in rhizosphere colonization. Altogether, our results show the importance of QS in PGPR growth and colonization; QS gives PGPR a collective adaptive advantage in harsh natural environments.
Collapse
Affiliation(s)
- Ying Liu
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Sciences, Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jie Gao
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Wang
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Li
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Fang
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of International Rivers and Eco-security, Yunan University, Kunming 650500, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environment Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
22
|
Antibacterial Effect of Phenolic Acids Derived from Rice Straw and in Combination with Antibiotics Against Escherichia coli. Appl Biochem Biotechnol 2022; 194:2931-2945. [PMID: 35298768 DOI: 10.1007/s12010-021-03650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 11/02/2022]
Abstract
Many studies have demonstrated that natural plant extracts have inhibitory effects on microorganisms. The purpose of this study was to investigate the inhibitory effect of phenolic acids from rice straw (PAs) on Escherichia coli and their synergistic effect in combination with antibiotics. PAs can inhibit the growth of E. coli effectively by inducing the formation of H2O2; PA-treated cells had a tenfold greater intracellular H2O2 concentration than the control group. The synergistic effect caused by the interaction of PAs and antibiotics on inhibiting the growth of E. coli was significant. This effect may be caused by a PA-induced change in the permeability of E. coli cell membrane. The treatment with PAs made the extracellular K+ concentration reached 15 mg/L within 30 min, while the K+ concentration in the control group was very low and did not change significantly over time. Similarly to the extracellular K+, the extracellular protein concentration exceeded 150 mg/L in the PA treatment group, while it remained very low in the control group. Due to the increased cell permeability, more antibiotics can enter the cell. Hence, this study may provide a novel method of improving the safe use of antibiotics.
Collapse
|
23
|
Kovács D, Palkovicsné Pézsa N, Jerzsele Á, Süth M, Farkas O. Protective Effects of Grape Seed Oligomeric Proanthocyanidins in IPEC-J2–Escherichia coli/Salmonella Typhimurium Co-Culture. Antibiotics (Basel) 2022; 11:antibiotics11010110. [PMID: 35052987 PMCID: PMC8773002 DOI: 10.3390/antibiotics11010110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Intestinal epithelium provides the largest barrier protecting mammalian species from harmful external factors; however, it can be severely compromised by the presence of bacteria in the gastrointestinal (GI) tract. Antibiotics have been widely used for the prevention and treatment of GI bacterial infections, leading to antimicrobial resistance in human and veterinary medicine alike. In order to decrease antibiotic usage, natural substances, such as flavonoids, are investigated to be used as antibiotic alternatives. Proanthocyanidins (PAs) are potential candidates for this purpose owing to their various beneficial effects in humans and animals. In this study, protective effects of grape seed oligomeric proanthocyanidins (GSOPs) were tested in IPEC-J2 porcine intestinal epithelial cells infected with Escherichia coli and Salmonella enterica ser. Typhimurium of swine origin. GSOPs were able to alleviate oxidative stress, inflammation and barrier integrity disruption inflicted by bacteria in the co-culture. Furthermore, GSOPs could decrease the adhesion of both bacteria to IPEC-J2 cells. Based on these observations, GSOPs seem to be promising candidates for the prevention and treatment of gastrointestinal bacterial infections.
Collapse
|
24
|
Identified Seaweed Compound Diphenylmethane Serves as an Efflux Pump Inhibitor in Drug-Resistant Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10111378. [PMID: 34827316 PMCID: PMC8614644 DOI: 10.3390/antibiotics10111378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Drug efflux pumps are one of the major elements used by antibiotic-resistant bacteria. Efflux pump inhibitors (EPIs) are potential therapeutic agents for adjunctive therapy, which can restore the activity of antibiotics that are no longer effective against pathogens. This study evaluated the seaweed compound diphenylmethane (DPM) for its EPI activity. The IC50 and modulation results showed that DPM has no antibacterial activity but can potentiate the activity of antibiotics against drug-resistant E. coli. Time-kill studies reported that a combination of DPM and erythromycin exhibited greater inhibitory activity against drug-resistant Escherichia coli. Dye accumulation and dye efflux studies using Hoechst 33342 and ethidium bromide showed that the addition of DPM significantly increased dye accumulation and reduced dye efflux in drug-resistant E. coli, suggesting its interference with dye translocation by an efflux pump. Using MALDI-TOF, it was observed that the addition of DPM could continuously reduce antibiotic efflux in drug-resistant E. coli. Additionally, DPM did not seem to damage the E. coli membranes, and the cell toxicity test showed that it features mild human-cell toxicity. In conclusion, these findings showed that DPM could serve as a potential EPI for drug-resistant E. coli.
Collapse
|
25
|
Synergistic Activity of Equol and Meropenem against Carbapenem-Resistant Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10020161. [PMID: 33562526 PMCID: PMC7914716 DOI: 10.3390/antibiotics10020161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence of carbapenem-resistant Enterobacterales (CRE) seriously limits treatment options for bacterial infections. Combined drugs are an effective strategy to treat these resistant strains. This study aimed to evaluate the synergistic effect of equol and meropenem against carbapenem-resistant Escherichia coli. First, this study investigated the antibacterial activity of carbapenems on clinically isolated E. coli strains by analyzing the minimum inhibitory concentrations (MICs). The E. coli strains were all resistant to carbapenem antibiotics. Therefore, we confirmed the cause of carbapenem resistance by detecting blaKPC and blaOXA-48 among the carbapenemase genes using polymerase chain reaction (PCR) analysis. Checkerboard and time-kill analyses confirmed that equol restored the susceptibility of carbapenem-resistant E. coli to meropenem. Also, the transcription levels of specific carbapenemase genes in E. coli were significantly suppressed by equol. The study also evaluated the anti-virulence effects of equol on bacterial biofilm and motility through phenotypic and genotypic analyses. In conclusion, our results revealed that equol had a synergistic effect with meropenem on carbapenem-resistant E. coli. Therefore, this study suggests that equol is a promising antibiotic adjuvant that prevents the expression of carbapenemases and virulence factors in carbapenem-resistant E. coli.
Collapse
|