1
|
Thanapasuk C, Tattiyapong P, Yamkasem J, Kitiyodom S, Setthawong P, Lertwanakarn T, Surachetpong W. Development and Efficacy of a Chitosan Nanoparticle-Based Immersion Vaccine Targeting Segment 4 of Tilapia Lake Virus. JOURNAL OF FISH DISEASES 2025; 48:e14106. [PMID: 40018974 DOI: 10.1111/jfd.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Tilapia lake virus disease (TiLVD), which is caused by tilapia lake virus (TiLV), has resulted in significant damage to global tilapia farming. TiLV is a negative-sense single-strand RNA virus consisting of 10 genome segments. To date, no commercial vaccine against TiLVD has been developed, and effective strategies to control and prevent TiLVD are lacking. In this study, we developed and tested a chitosan nanoparticle-based immersion recombinant protein targeting segment 4 (S4) of TiLV under both laboratory and field conditions. The open reading frame of S4 of TiLV was cloned into pET28a (+) and expressed by Escherichia coli BL21(DE3). The size of the nanoTiLV-S4 (CNS4) vaccine was 284 ± 9.2 nm, which is smaller than the pre-nanoencapsulation vaccine size of 2268 ± 41.8 nm. Transmission electron microscopy revealed that the nanoS4 particles had a round shape, uniform appearance and positive zeta potential of 17.7 ± 0.7 mV. Further analysis showed that the nanoS4 antigen was deposited on the fish gills and intestines and taken up into the epithelial cells within 30 min of immersion. Under laboratory infection using a cohabitation challenge model, the CNS4 vaccine demonstrated a relative percent survival (RPS) of 25%. In field conditions, the vaccine showed an RPS of 31.88% compared to the unvaccinated group. Overall, our study demonstrates that the new nanoTiLV-S4 vaccine can be absorbed by the fish epithelium and reduces mortality caused by TiLV. However, further optimisation and field trials are necessary to improve the efficacy of the CNS4 vaccine and to test it under various farm conditions.
Collapse
Affiliation(s)
- Chanasorn Thanapasuk
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Jidapa Yamkasem
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sirikorn Kitiyodom
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
2
|
Rahmani A, Parizadeh L, Baud M, Francois Y, Bazire A, Rodrigues S, Fleury Y, Cuny H, Debosse E, Cabon J, Louboutin L, Bellec L, Danion M, Morin T. Potential of Marine Strains of Pseudoalteromonas to Improve Resistance of Juvenile Sea Bass to Pathogens and Limit Biofilm Development. Probiotics Antimicrob Proteins 2025; 17:640-654. [PMID: 37851325 DOI: 10.1007/s12602-023-10180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The European sea bass (Dicentrarchus labrax), one of the most produced marine fish species in Europe, is acutely vulnerable to multiple infectious hazards. In this study, we investigated the potential probiotic effect of some marine Pseudoalteromonas bacterial strains against two major pathogens of this species, Vibrio harveyi and the nervous necrosis virus (NNV), and examined their antibiofilm effect. Impregnation phase was done by repeated immersion of juvenile's sea bass during 8 to 12 weeks in seawater containing the probiotic candidates at a concentration of 106 CFU/mL. Four candidates were tested: (1) a combination of two strains producing antimicrobial compounds, hCg-42 and hOe-125; (2) strain 3J6, with known antibiofilm properties; (3) strain RA15, from the same genus, but with no identified probiotic effect; and (4) a control group without probiotics. At the end of the impregnation phase, fish underwent an infection challenge with V. harveyi or with a pathogenic strain of NNV and mortality was monitored. For the V. harveyi challenge, improved survival rates of 10 and 25% were obtained for the RA15 and the mix hCg-42 + hOe-125-impregnated groups, respectively. For the NNV challenge, no significant benefic effect of the probiotics on infection kinetics or cumulative mortality was observed. At the end of the impregnation phase, the maximal thickness of biofilm was significantly lower in the 3J6, double strain, and RA15 groups, compared with the non-impregnated control group. This study highlights the interesting probiotic potential of marine bacteria to limit mortalities induced by bacterial pathogens as well as biofilm development.
Collapse
Affiliation(s)
- A Rahmani
- Virology, Immunology and Ecotoxicology of Fish Unit, ANSES, Ploufragan-Plouzané-Niort Laboratory, National Reference Laboratory for Regulated Fish Diseases, National Research Infrastructure Emerg'In, 29280, Plouzané, France
| | - L Parizadeh
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 29000, Quimper, France
- Laboratoire LIttoral ENvironnement et Sociétés (LIENSs), UMR 7266, CNRS - La Rochelle Université, 17000, La Rochelle, France
| | - M Baud
- Virology, Immunology and Ecotoxicology of Fish Unit, ANSES, Ploufragan-Plouzané-Niort Laboratory, National Reference Laboratory for Regulated Fish Diseases, National Research Infrastructure Emerg'In, 29280, Plouzané, France
| | - Y Francois
- SYSAAF, Station LPGP/INRAE, Campus de Beaulieu, 35042, Rennes, France
| | - A Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100, Lorient, France
| | - S Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100, Lorient, France
| | - Y Fleury
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 29000, Quimper, France
| | - H Cuny
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 29000, Quimper, France
| | - E Debosse
- Virology, Immunology and Ecotoxicology of Fish Unit, ANSES, Ploufragan-Plouzané-Niort Laboratory, National Reference Laboratory for Regulated Fish Diseases, National Research Infrastructure Emerg'In, 29280, Plouzané, France
| | - J Cabon
- Virology, Immunology and Ecotoxicology of Fish Unit, ANSES, Ploufragan-Plouzané-Niort Laboratory, National Reference Laboratory for Regulated Fish Diseases, National Research Infrastructure Emerg'In, 29280, Plouzané, France
| | - L Louboutin
- Virology, Immunology and Ecotoxicology of Fish Unit, ANSES, Ploufragan-Plouzané-Niort Laboratory, National Reference Laboratory for Regulated Fish Diseases, National Research Infrastructure Emerg'In, 29280, Plouzané, France
| | - L Bellec
- UMR 5805, Université de Bordeaux, CNRS, Bordeaux INP, EPOC, 33600, Pessac, France
| | - M Danion
- Virology, Immunology and Ecotoxicology of Fish Unit, ANSES, Ploufragan-Plouzané-Niort Laboratory, National Reference Laboratory for Regulated Fish Diseases, National Research Infrastructure Emerg'In, 29280, Plouzané, France
| | - T Morin
- Virology, Immunology and Ecotoxicology of Fish Unit, ANSES, Ploufragan-Plouzané-Niort Laboratory, National Reference Laboratory for Regulated Fish Diseases, National Research Infrastructure Emerg'In, 29280, Plouzané, France.
| |
Collapse
|
3
|
Mohamad A, Yamkasem J, Paimeeka S, Khemthong M, Lertwanakarn T, Setthawong P, Nuez-Ortin WG, Isern Subich MM, Surachetpong W. Efficacy of Feed Additives on Immune Modulation and Disease Resistance in Tilapia in Coinfection Model with Tilapia Lake Virus and Aeromonas hydrophila. BIOLOGY 2024; 13:938. [PMID: 39596893 PMCID: PMC11591586 DOI: 10.3390/biology13110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Coinfections by multiple pathogens, including viruses and bacteria, have severely impacted tilapia aquaculture globally. This study evaluated the impacts of dietary supplementation on red hybrid tilapia (Oreochromis spp.) coinfected with Tilapia lake virus (TiLV) and Aeromonas hydrophila. Fish were divided into three groups: a control group on a normal diet, and two experimental groups received diets supplemented with strategy A, an organic acid blend combined with a lyso-phospholipid-based digestive enhancer, and strategy B, an organic acid blend combined with natural immunostimulants and nutrients. Following exposure to both pathogens, the fish supplemented with strategies A and B showed lower cumulative mortality rates of 50.0% and 41.7%, respectively, compared to 76.3% in the control group. Notably, fish fed with strategy B-supplemented diet displayed a stronger immune response, with a lower expression of il-8, mx, and rsad2, and showed less pathological changes in the liver, spleen, and intestines, suggesting enhanced resistance to coinfection. In contrast, fish receiving strategy A did not exhibit significant changes in the immune-related gene expression or pathogen load, but demonstrate less pathological alterations, indicating intestinal protection. These findings highlight the potential of feed additives, particularly strategy B, to reduce the impact of virus-bacterial coinfections and improve outcomes in tilapia farming.
Collapse
Affiliation(s)
- Aslah Mohamad
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (J.Y.); (S.P.); (M.K.)
| | - Jidapa Yamkasem
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (J.Y.); (S.P.); (M.K.)
| | - Suwimon Paimeeka
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (J.Y.); (S.P.); (M.K.)
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (J.Y.); (S.P.); (M.K.)
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.L.); (P.S.)
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.L.); (P.S.)
| | - Waldo G. Nuez-Ortin
- ADISSEO France S.A.S., Immeuble Antony Parc 2 10, Place du Général de Gaulle, 92160 Antony, France; (W.G.N.-O.); (M.M.I.S.)
| | - Maria Mercè Isern Subich
- ADISSEO France S.A.S., Immeuble Antony Parc 2 10, Place du Général de Gaulle, 92160 Antony, France; (W.G.N.-O.); (M.M.I.S.)
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (J.Y.); (S.P.); (M.K.)
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
4
|
Wong KY, Megat Mazhar Khair MH, Song AAL, Masarudin MJ, Loh JY, Chong CM, Beardall J, Teo MYM, In LLA. Recombinant lactococcal-based oral vaccine for protection against Streptococcus agalactiae infections in tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109572. [PMID: 38636739 DOI: 10.1016/j.fsi.2024.109572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Streptococcosis outbreaks caused by Streptococcus agalactiae infection in tilapia aquaculture have been consistently reported and associated with high mortality and morbidity leading to significant economic losses. Existing vaccine candidates against Streptococcus spp. are designed for intraperitoneal injections that are not practical and labor-intensive which have prompted farmers to protect aquatic animals with antibiotics, thus encouraging the emergence of multidrug resistant bacteria. In this study, a live recombinant L. lactis vaccine expressing a 1403 bp surface immunogenic protein (SIP) and a 1100 bp truncated SIP (tSIP) gene was developed and evaluated against S. agalactiae infection in tilapia. Both SIP and tSIP sequences were cloned and transformed into L. lactis. The recombinant L.lactis vaccine was orally administered to juvenile tilapia for a month. Detection of SIP-specific serum IgM in vaccinated groups compared to control groups indicated that recombinant proteins expressed from L. lactis could elicit immunogenic reactions in tilapia. Fish immunized with the tSIP vaccine also showed the highest level of protection compared to other test groups, and the mortality rate was significantly reduced compared to both control groups. The relative percentage of survival (RPS) against S. agalactiae for both SIP and tSIP-vaccinated groups was 50 % and 89 %, respectively, at 14 days post-challenge. Significant up-regulation of IgM, IL-1β, IL-10, TNF-α and IFN-γ were observed at day 34 between the vaccinated and control groups. These results indicated that the recombinant lactococcal tSIP vaccine can elicit both cell-mediated and humoral responses and is recommended as a potential oral vaccine against S. agalactiae infection. Future work will include further in vivo challenge assessments of this vaccine candidate fused with adjuvants to boost immunogenicity levels in tilapia.
Collapse
Affiliation(s)
- Kuan Yee Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Megat Hamzah Megat Mazhar Khair
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Adelene Ai Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Selangor, Malaysia; Nanomaterials Synthesis and Characterisation Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Jiun Yan Loh
- Tropical Futures Institute (TFI), James Cook University Singapore, 149 Sims Drive, 387380, Singapore
| | - Chou Min Chong
- Laboratory of Sustainable Aquaculture (AquaLab), International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Huang Y, Gou T, Li W, Han F. Unraveling the immune functions of large yellow croaker Tmem208 in response to Pseudomonas plecoglossicida: Insights from cloning, expression profiling, and transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109584. [PMID: 38670411 DOI: 10.1016/j.fsi.2024.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Pseudomonas plecoglossicida, the causative agent of Visceral White Spot Disease, poses substantial risks to large yellow croaker (Larimichthys crocea) aquaculture. Previous genome-wide association studies (GWAS), directed towards elucidating the resistance mechanisms of large yellow croaker against this affliction, suggested that the transmembrane protein 208 (named Lctmem208) may confer a potential advantage. TMEM proteins, particularly TMEM208 located in the endoplasmic reticulum, plays significant roles in autophagy, ER stress, and dynamics of cancer cell. However, research on TMEM's function in teleost fish immunity remains sparse, highlighting a need for further study. This study embarks on a comprehensive examination of LcTmem208, encompassing cloning, molecular characterization, and its dynamics in immune function in response to Pseudomonas plecoglossicida infection. Our findings reveal that LcTmem208 is highly conserved across teleost species, exhibiting pronounced expression in immune-relevant tissues, which escalates significantly upon pathogenic challenge. Transcriptome analysis subsequent to LcTmem208 overexpression in kidney cells unveiled its pivotal role in modulating immune-responsive processes, notably the p53 signaling pathway and cytokine-mediated interactions. Enhanced phagocytic activity in macrophages overexpressing LcTmem208 underscores its importance in innate immunity. Taken together, this is the first time reported the critical involvement of LcTmem208 in regulating innate immune responses of defensing P. plecoglossicida, thereby offering valuable insights into teleost fish immunity and potential strategies for the selective breeding of disease-resistant strains of large yellow croaker in aquaculture practices.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Tao Gou
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Wanbo Li
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Fisheries College, Jimei University, Xiamen, 361000, PR China.
| |
Collapse
|
6
|
Hai Q, Wang J, Kang W, Cheng S, Li J, Lyu N, Li Y, Luo Z, Liu Z. Metagenomic and metabolomic analysis of changes in intestinal contents of rainbow trout ( Oncorhynchus mykiss) infected with infectious hematopoietic necrosis virus at different culture water temperatures. Front Microbiol 2023; 14:1275649. [PMID: 37908544 PMCID: PMC10614001 DOI: 10.3389/fmicb.2023.1275649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Infectious hematopoietic necrosis (IHN) is a major disease that limits the culture of rainbow trout. In practical production, it has been found that the temperature of the culture water is a crucial factor affecting its mortality. Currently, little is known about how temperature affects the immune response of rainbow trout gut microbiota and metabolites to IHNV. In this study, our main objective is to analyze the changes in gut microorganisms of rainbow trout (juvenile fish with a consistent genetic background) after 14 days of infection with IHNV (5 × 105 pfu/fish) at 12-13°C (C: injected with saline, A: injected with IHNV) and 16-17°C (D: injected with saline, B: injected with IHNV) using metagenomic and metabolomic analyses, and to screen for probiotics that are effective against IHNV. The results showed that infection with IHNV at 12-13°C caused Eukaryote loss. Compared to Group C, Group A showed a significant increase in harmful pathogens, such as Yersiniaceae, and a significant alteration of 4,087 gut metabolites. Compared to group D, group B showed a significant increase in the abundance of Streptococcaceae and Lactococcus lactis, along with significant changes in 4,259 intestinal metabolites. Compared with their respective groups, the levels of two immune-related metabolites, 1-Octadecanoyl-glycero-3-phosphoethanolamine and L-Glutamate, were significantly upregulated in groups A and B. Compared to group B, Group A showed significantly higher pathogenic bacteria including Aeromonas, Pseudomonas, and Yersiniaceae, while group B showed a significant increase in Streptococcaceae and Lactococcus lactis. Additionally, there were 4,018 significantly different metabolites between the two groups. Interestingly, 1-Octadecanoyl-sn-glycero-3-phosphoethanolamine and L-Glutamate were significantly higher in group A than in group B. Some of the different metabolites in C vs. A are correlated with Fomitopsis pinicola, while in D vs. B they were correlated with Lactococcus raffinolactis, and in A vs. B they were correlated with Hypsizygus marmoreus. This study exposed how rainbow trout gut microbiota and metabolites respond to IHNV at different temperatures, and screens beneficial bacteria with potential resistance to IHN, providing new insights and scientific basis for the prevention and treatment of IHN.
Collapse
Affiliation(s)
| | - Jianfu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu X, Liu K, Li S, Ren W, Wang W, Shang Y, Zhang F, Huang Y, Pang Y, Gao M. Integrated bioinformatics analysis of dendritic cells hub genes reveal potential early tuberculosis diagnostic markers. BMC Med Genomics 2023; 16:214. [PMID: 37684607 PMCID: PMC10492340 DOI: 10.1186/s12920-023-01646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) are most potent antigen-processing cells and play key roles in host defense against Mycobacterium tuberculosis (MTB) infection. In this study, hub genes in DCs during MTB infection were first investigated using bioinformatics approaches and further validated in Monocyte-derived DCs. METHODS Microarray datasets were obtained from Gene Expression Omnibus (GEO) database. Principal component analysis (PCA) and immune infiltration analysis were performed to select suitable samples for further analysis. Differential analysis and functional enrichment analysis were conducted on DC samples, comparing live MTB-infected and non-infected (NI) groups. The CytoHubba plugin in Cytoscape was used to identify hub genes from the differentially expressed genes (DEGs). The expression of the hub genes was validated using two datasets and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in human monocyte-derived DCs. Enzyme-linked immunosorbent assay (ELISA) was used to validate interferon (IFN) secretion. Transcription factors (TFs) and microRNAs (miRNAs) that interact with the hub genes were predicted using prediction databases. The diagnostic value of the hub genes was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC) values. RESULTS A total of 1835 common DEGs among three comparison groups (18 h, 48 h, 72 h after MTB infection) were identified. Six DEGs (IFIT1, IFIT2, IFIT3, ISG15, MX1, and RSAD2) were determined as hub genes. Functions enrichment analysis revealed that all hub genes all related to IFN response. RT-qPCR showed that the expression levels of six hub genes were significantly increased after DC stimulated by live MTB. According to the results of ELISA, the secretion of IFN-γ, but not IFN-α/β, was upregulated in MTB-stimulated DCs. AUC values of six hub genes ranged from 84 to 94% and AUC values of 5 joint indicators of two hub genes were higher than the two hub genes alone. CONCLUSION The study identified 6 hub genes associated with IFN response pathway. These genes may serve as potential diagnostic biomarkers in tuberculosis (TB). The findings provide insights into the molecular mechanisms involved in the host immune response to MTB infection and highlight the diagnostic potential of these hub genes in TB.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Kewei Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Fuzhen Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China
| | - Yingying Huang
- Jining Medical University, Shandong, 272002, China
- Qingdao Mental Health Center, Shandong, 266034, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China.
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, P. R. China.
| |
Collapse
|
8
|
Kembou-Ringert JE, Steinhagen D, Thompson KD, Daly JM, Adamek M. Immune responses to Tilapia lake virus infection: what we know and what we don't know. Front Immunol 2023; 14:1240094. [PMID: 37622112 PMCID: PMC10445761 DOI: 10.3389/fimmu.2023.1240094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Tilapia lake virus (TiLV) is a novel contagious pathogen associated with a lethal disease affecting and decimating tilapia populations on several continents across the globe. Fish viral diseases, such as Tilapia lake virus disease (TiLVD), represent a serious threat to tilapia aquaculture. Therefore, a better understanding of the innate immune responses involved in establishing an antiviral state can help shed light on TiLV disease pathogenesis. Moreover, understanding the adaptive immune mechanisms involved in mounting protection against TiLV could greatly assist in the development of vaccination strategies aimed at controlling TiLVD. This review summarizes the current state of knowledge on the immune responses following TiLV infection. After describing the main pathological findings associated with TiLVD, both the innate and adaptive immune responses and mechanisms to TiLV infection are discussed, in both disease infection models and in vitro studies. In addition, our work, highlights research questions, knowledge gaps and research areas in the immunology of TiLV infection where further studies are needed to better understand how disease protection against TiLV is established.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
9
|
Turner JK, Sakulpolwat S, Sukdanon S, Lertwanakarn T, Waiyamitra P, Piewbang C, Pierezan F, Techangamsuwan S, Soto E, Surachetpong W. Tilapia lake virus (TiLV) causes severe anaemia and systemic disease in tilapia. JOURNAL OF FISH DISEASES 2023; 46:643-651. [PMID: 36848441 DOI: 10.1111/jfd.13775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 05/07/2023]
Abstract
Tilapia lake virus disease (TiLVD) is an emerging disease in tilapia that is associated with mass mortality affecting global tilapia aquaculture. In this study, red hybrid tilapias (Oreochromis spp.) were experimentally infected by intracoelomic injection with Tilapia lake virus (TiLV) to gain a better understanding of the clinicopathological changes during infection. Pale bodies and gill were observed in infected fish after 7 days of post-challenge (dpc) associated with severe anaemia. Further haematological analysis in TiLV-infected fish revealed decreased levels of haemoglobin and haematocrit at 3 dpc. Common pathological findings included pale and friable liver, pale intestine with catarrhal content, and dark and shrunken spleen in TiLV-infected fish at 7 dpc and 14 dpc. Histologically, reduced numbers of red blood cells and accumulation of melano-macrophage centre in the spleen were found in infected fish at 3 dpc, and severe lesions were more commonly observed at 7 and 14 dpc. Lymphocyte infiltration, syncytial cell formation and multifocal necrotic hepatitis were the prominent pathological findings in the liver of infected fish. The severity of pathological changes was associated with TiLV-infection with higher viral loads and with the expression pattern of pro-inflammatory cytokines and antiviral genes, including interferon regulatory factor 1 (irf1), interleukin (il-8), radical s-adenosyl methionine domain containing 2 (rsad2) and mx. Our study provides a comprehensive analysis of the haematological profile and pathological changes in tilapia during TiLV infection. Overall, lesions present in various organs, together with alteration of host immune response in TiLV-infected fish, indicate the systemic infection of this virus. The knowledge gained from this study improves our understanding of how TiLV causes pathological and haematological changes in tilapia.
Collapse
Affiliation(s)
- Jessica Kaye Turner
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sasakorn Sakulpolwat
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Suchanuch Sukdanon
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Pitchaporn Waiyamitra
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Felipe Pierezan
- Department of Pathology, Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
10
|
Lertwanakarn T, Khemthong M, Tattiyapong P, Surachetpong W. The Modulation of Immune Responses in Tilapinevirus tilapiae-Infected Fish Cells through MAPK/ERK Signalling. Viruses 2023; 15:v15040900. [PMID: 37112880 PMCID: PMC10144228 DOI: 10.3390/v15040900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Tilapia lake virus (TiLV) is a novel RNA virus that has been causing substantial economic losses across the global tilapia industry. Despite extensive research on potential vaccines and disease control methods, the understanding of this viral infection and the associated host cell responses remains incomplete. In this study, the involvement of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in the early stages of TiLV infection was investigated. The results showed a distinct pattern of ERK phosphorylation (p-ERK) upon TiLV infection in two fish cell lines, E-11 and TiB. Specifically, the p-ERK levels in the TiB cells decreased substantially, while the p-ERK levels in the E-11 cells remained constant. Interestingly, a large number of cytopathic effects were observed in the infected E-11 cells but none in the infected TiB cells. Furthermore, when p-ERK was suppressed using the inhibitor PD0325901, a significant reduction in the TiLV load and decrease in the mx and rsad2 gene expression levels were observed in the TiB cells in days 1–7 following infection. These findings highlight the role of the MAPK/ERK signalling pathway and provide new insights into the cellular mechanisms during TiLV infection that could be useful in developing new strategies to control this virus.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Puntanut Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
11
|
Gorgoglione B, Liu JT, Li J, Vakharia VN. The efficacy of new oral vaccine feeds against Salmonid novirhabdovirus in rainbow trout. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100082. [PMID: 36660300 PMCID: PMC9842750 DOI: 10.1016/j.fsirep.2023.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salmonid novirhabdovirus (IHNV) causes infectious haematopoietic necrosis (IHN) in salmonid species. Despite an injectable plasmid-based DNA vaccine of the glycoprotein (G) gene is effective, there are no oral vaccines for mass vaccination of rainbow trout (Oncorhynchus mykiss) fry. Recombinant baculoviruses were generated, used in cabbage looper (Trichoplusia ni) insect larvae to produce IHNV G and IHNV G-C5a proteins. Western blotting and chemiluminescence assays confirmed the expression of recombinant proteins, which were added to the fish feeding and top-coated with unflavored gelatin binder. Commercial rainbow trout were fed with experimental diets containing either IHNV G or IHNV G-C5a proteins for 2 weeks, and boosted 4 weeks after. Four weeks post-booster, fish were challenged with IHNV by immersion. Survival upon the infection challenge was evaluated. Spleen were sampled at 7 and 14 days post infection (dpi). Non-vaccinated and IHNV G fed trout reached a mortality of 91.7 and 97.6%, and 70.9 and 88.4%, respectively at 8 and 15 dpi. The IHNV G-C5a fed group exhibited a reduced mortality of 51.2% at 8 dpi, reaching 81.7% at 15 dpi, suggesting some level of antiviral protection. The individual viral load was measured by RT-qPCR detection of IHNV N gene, showing no significant difference across experimental groups. The transcription modulation of selected immune response markers was evaluated across experimental groups, including Type I IFN-a, Mx-1, CD4, and IgM. Further study is needed to assess how new oral vaccines may become effective to mitigate IHNV pathogenesis in juvenile trout by modulating the host immune response to protect towards IHNV exposure.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Fish Pathobiology and Immunology Laboratory, Dept. Pathobiology and Diagnostic Investigation (CVM)/ Dept. Fisheries and Wildlife (CANR), Michigan State University, East Lansing, MI, United States,Corresponding authors.
| | - Juan-Ting Liu
- Fish Pathobiology and Immunology Laboratory, Dept. Pathobiology and Diagnostic Investigation (CVM)/ Dept. Fisheries and Wildlife (CANR), Michigan State University, East Lansing, MI, United States
| | - Jie Li
- Institute of Marine and Environmental Technology, Dept. of Marine Biotechnology, University of Maryland Baltimore Country, Baltimore, MD, United States
| | - Vikram N. Vakharia
- Institute of Marine and Environmental Technology, Dept. of Marine Biotechnology, University of Maryland Baltimore Country, Baltimore, MD, United States,Corresponding authors.
| |
Collapse
|
12
|
Yang YF, Yamkasem J, Surachetpong W, Lin YJ, You SH, Lu TH, Chen CY, Wang WM, Liao CM. Assessing the effect of probiotics on tilapia lake virus-infected tilapia: Transmission and immune response. JOURNAL OF FISH DISEASES 2022; 45:1117-1132. [PMID: 35514291 DOI: 10.1111/jfd.13635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Probiotics have been used to alleviate disease transmission in aquaculture. However, there are limited studies on probiotic use in modulating tilapia lake virus (TiLV). We assessed commercially available probiotic supplements used in TiLV-infected tilapia and performed mortality and cohabitation assays. We developed a mechanistic approach to predict dose-response interactions of probiotic effects on mortality and immune gene response. We used a susceptible-infected-mortality disease model to assess key epidemiological parameters such as transmission rate and basic reproduction number (R0 ) based on our viral load dynamic data. We found that the most marked benefits of probiotics are significantly associated with immune system enhancements (~30%) and reductions in disease transmission (~80%) and R0 (~70%) in tilapia populations, resulting in a higher tolerance of farming densities (~400 fold) in aquaculture. These findings provide early insights as to how probiotic use-related factors may influence TiLV transmission and the immune responses in TiLV-infected tilapia. Our study facilitates understanding the mode of action of probiotics in disease containment and predicting better probiotic dosages in diet and supplements to achieve the optimal culturing conditions. Overall, our analysis assures that further study of rationally designed and targeted probiotics, or mechanistic modelling is warranted on the basis of promising early data of this approach.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Jidapa Yamkasem
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Win Surachetpong
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City, Taiwan
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Adamek M, Rebl A, Matras M, Lodder C, Abd El Rahman S, Stachnik M, Rakus K, Bauer J, Falco A, Jung-Schroers V, Piewbang C, Techangamsuwan S, Surachetpong W, Reichert M, Tetens J, Steinhagen D. Immunological insights into the resistance of Nile tilapia strains to an infection with tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:118-133. [PMID: 35367372 DOI: 10.1016/j.fsi.2022.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The emergence of viral diseases affecting fish and causing very high mortality can lead to the disruption of aquaculture production. Recently, this occurred in Nile tilapia aquaculture where a disease caused by a systemic infection with a novel virus named tilapia lake virus (TiLV) caused havoc in cultured populations. With mortality surpassing 90% in young tilapia, the disease caused by TiLV has become a serious challenge for global tilapia aquaculture. In order to partly mitigate the losses, we explored the natural resistance to TiLV-induced disease in three genetic strains of tilapia which were kept at the University of Göttingen, Germany. We used two strains originating from Nilotic regions (Lake Mansala (MAN) and Lake Turkana (ELM)) and one from an unknown location (DRE). We were able to show that the virus is capable of overcoming the natural resistance of tilapia when injected, providing inaccurate mortality results that might complicate finding the resistant strains. Using the cohabitation infection model, we found an ELM strain that did not develop any clinical signs of the infection, which resulted in nearly 100% survival rate. The other two strains (DRE and MAN) showed severe clinical signs and much lower survival rates of 29.3% in the DRE strain and 6.7% in the MAN strain. The disease resistance of tilapia from the ELM strain was correlated with lower viral loads both at the mucosa and internal tissues. Our results suggest that the lower viral load could be caused by a higher magnitude of a mx1-based antiviral response in the initial phase of infection. The lower pro-inflammatory responses also found in the resistant strain might additionally contribute to its protection from developing pathological changes related to the disease. In conclusion, our results suggest the possibility of using TiLV-resistant strains as an ad hoc, cost-effective solution to the TiLV challenge. However, as the fish from the disease-resistant strain still retained significant virus loads in liver and brain and thus could become persistent virus carriers, they should be used within an integrative approach also combining biosecurity, diagnostics and vaccination measures.\.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Christian Lodder
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | - Sahar Abd El Rahman
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Magdalena Stachnik
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Julia Bauer
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202, Elche, Spain
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Michal Reichert
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany; Center for Integrated Breeding Research, Georg-August-University of Göttingen, Göttingen, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
14
|
Lertwanakarn T, Trongwongsa P, Yingsakmongkol S, Khemthong M, Tattiyapong P, Surachetpong W. Antiviral Activity of Ribavirin against Tilapia tilapinevirus in Fish Cells. Pathogens 2021; 10:1616. [PMID: 34959571 PMCID: PMC8705004 DOI: 10.3390/pathogens10121616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The outbreak of the novel Tilapia tilapinevirus or Tilapia lake virus (TiLV) is having a severe economic impact on global tilapia aquaculture. Effective treatments and vaccines for TiLV are lacking. In this study, we demonstrated the antiviral activity of ribavirin against TiLV in E-11 cells. Our findings revealed that at concentrations above 100 μg/mL, ribavirin efficiently attenuates the cytopathic effect of the TiLV infection in fish cells. When administered in a dose-dependent manner, ribavirin significantly improved cell survival compared to the untreated control cells. Further investigation revealed that the cells exposed to ribavirin and TiLV had a lower viral load (p < 0.05) than the untreated cells. However, at concentrations above 1000 μg/mL, ribavirin led to cell toxicity. Taken together, our results demonstrate the efficacy of this antiviral drug against TiLV and could be a useful tool for future research on the pathogenesis and replication mechanism of TiLV as well as other piscine viruses.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Pirada Trongwongsa
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Sangchai Yingsakmongkol
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
- Interdisciplinary Genetic Engineering Program, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
- Interdisciplinary Genetic Engineering Program, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
15
|
He J, Wang Z, Zhao Y, Yang J, Zhang Y, Liu Q, Yang D. Feeding with poly(I:C) induced long-term immune responses against bacterial infection in turbot (Scophthalmus maximus). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100037. [PMID: 36420496 PMCID: PMC9680065 DOI: 10.1016/j.fsirep.2021.100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Poly(I:C) is a kind of chemosynthetic double-stranded RNA (dsRNA) analogue which could act as TLR3 agonist and induce IFN production. It is widely applied in anti-virus treatment and immunoregulation, as well as vaccine adjuvant in farmed animals. However, whether poly(I:C) could activate innate immune response to defense against bacterial infection remains unclear. In this study, we established a feeding trial model with different dose of poly(I:C) in turbot larvae, then challenged with Edwardsiella piscicida after 3–7 weeks resting period. The results show that feeding turbot with poly(I:C) exhibited a stronger inflammatory response and antioxidant stress ability, and significantly elevated the survival rate within the decreased bacterial loads. Importantly, the bacterial infection-induced white feces in hindgut of turbot were significantly alleviated after poly(I:C) feeding, and this administration induced protection could last for about 7 weeks. Taken together, these findings indicate that feeding turbot with poly(I:C) could enhance a long-term intestinal mucosal immunity in response to bacterial infection, suggesting that poly(I:C) might be a promising immunostimulant in aquaculture.
Collapse
|
16
|
The Interaction Between Viruses and Intestinal Microbiota: A Review. Curr Microbiol 2021; 78:3597-3608. [PMID: 34350485 PMCID: PMC8336530 DOI: 10.1007/s00284-021-02623-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
As the main pathogen threatening human and animal health, viruses can affect the immunity and metabolism of bodies. There are innate microbial barriers in the digestive tract of the body to preserve the homeostasis of the animal body, which directly or indirectly influences the host defence against viral infection. Understanding the interaction between viruses and intestinal microbiota or probiotics is helpful to study the pathogenesis of diseases. Here, we review recent studies on the interaction mechanism between intestinal microbiota and viruses. The interaction can be divided into two aspects: inhibition of viral infection by microbiota and promotion of viral infection by microbiota. The treatment of viral infection by probiotics is summarized.
Collapse
|
17
|
Prevalence, detection of virulence genes and antimicrobial susceptibility of pathogen Vibrio species isolated from different types of seafood samples at "La Nueva Viga" market in Mexico City. Antonie van Leeuwenhoek 2021; 114:1417-1429. [PMID: 34255280 DOI: 10.1007/s10482-021-01591-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Some Vibrio species are important human pathogens owing to they cause infectious diseases such as gastroenteritis, wound infections, septicemia or even death. Many of these illnesses are associated with consumption of contaminated seafood. In the present study, we evaluated the presence of pathogenic Vibrio species, their virulence and antimicrobial susceptibility from 285 different kind of seafood samples from "La Nueva Viga" market in Mexico City. The PCR assay was used for amplification the vppC (collagenase), vmh (hemolysin), tlh (thermolabile hemolysin), and vvhA (hemolytic cytolysin) genes that are specific to Vibrio alginolyticus (detected in 27%), Vibrio mimicus (23.2%), Vibrio parahaemolyticus (28.8%) and Vibrio vulnificus (21.1%), respectively. Several genes encoding virulence factors were amplified. These included V. alginolyticus: pvuA (17.9%), pvsA (50%), wza and lafA (100%); V. mimicus: iut A (60%), toxR (100%); V. parahaemolyticus: pvuA (58.7%), pvsA (26.1%), wza (2.2%), and lafA (100%); and V. vulnificus: wcrA (77.5%), gmhD (57.5%), lafA (100%) and motA (30%). The antibiotic susceptibility of the Vibrio species isolates revealed that most of them were resistant to ampicillin, cephalothin and carbenicillin but susceptible to pefloxacin and trimethoprim-sulfamethoxazole. Our results indicated a high prevalence of pathogenic Vibrio species in seafood, a high presence of virulence genes and that Vibrio species continuously exposed to antibiotics, therefore, consumption of these kind of seafood carries a potential risk for foodborne illness.
Collapse
|
18
|
Roy SRK, Yamkasem J, Tattiyapong P, Surachetpong W. Weight-dependent susceptibility of tilapia to tilapia lake virus infection. PeerJ 2021; 9:e11738. [PMID: 34277154 PMCID: PMC8269736 DOI: 10.7717/peerj.11738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of tilapia lake virus (TiLV) has had a severely negative impact on global tilapia aquaculture. TiLV infection has been reported at different life stages of tilapia, with more emphasis on fry and fingerlings; however, the virulence and pathology of TiLV at different tilapia size remains unexplored. In this study, tilapias from a single spawning were raised to 5 g, 25 g, and 65 g, and subsequently challenged by the intraperitoneal injection and cohabitation of a virulent strain of TiLV. The cumulative mortality, viral load, and histopathology of the fish were determined until 22 days post-infection (dpi). The cumulative mortality of the 5 g, 25 g, and 65 g fish was 85% (±1.67), 55% (±2.89), and 51.67% (±7.49), respectively. At 14 dpi, the mean TiLV load in the liver of the 5 g fish was significantly higher than in the 25 g and 65 g fish. All the weight groups showed severe pathological changes in the liver, spleen, and intestine after TiLV infection, but no particular difference was otherwise noted during the study with the exception of higher pathological scores in the liver of the small fish at 14 dpi. Overall, this study indicated that small fish are more susceptible to TiLV infection than large fish. Although multiple factors, including environmental factors, farm management practices, strains of virus could contribute to different susceptibility of fish to viral infection, the present study provides the evidence to support that fish weight affects the mortality and clinical outcome during TiLV infection. More intensive measures such as strict biosecurity and disease surveillance during the susceptible weight should therefore be emphasized to reduce the impact of this virus.
Collapse
Affiliation(s)
- Sri Rajiv Kumar Roy
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Kasetsart University, Bangkok, Thailand
| | - Jidapa Yamkasem
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Kasetsart University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Kasetsart University, Bangkok, Thailand
| |
Collapse
|