1
|
Tham HY, Chong LC, Krishnan M, Khan AM, Choi SB, Tamura T, Yusoff K, Tan GH, Song AAL. Characterization of the host specificity of the SH3 cell wall binding domain of the staphylococcal phage 88 endolysin. Arch Microbiol 2025; 207:47. [PMID: 39878790 DOI: 10.1007/s00203-025-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD). The EADs degrade the peptidoglycan layer, leading to bacterial lysis, while the CBD binds to the specific host cell wall, and therefore, influences specificity of the endolysin. This study aimed to alter and characterize the host specificity of the CBD by exploring the impact of amino acid modifications within the CBD of a staphylococcal endolysin, Endo88. Endo88 was able to lyse Staphylococcus spp. and Enterococcus faecalis. However, despite attempts to mutate amino acids hypothesized for binding with cell wall components, the host-range was not affected but the lytic activity was severely reduced instead, although no alterations were performed on the EADs (Cysteine, histidine-dependent aminohydrolases/peptidases domain and Amidase domain). Further investigations of the CBD alone (Src homology3 domain, SH3) without the EADs suggested that binding and lytic activity may not be correlated in some cases since Endo88 and its mutants could lyse Staphylococcus epidermidis well but no binding activity was observed in the flow cytometry analysis. Molecular docking was used to gain insights on the observations for the binding and lytic activity which may help future strategies in designing enhanced engineered endolysins.
Collapse
Affiliation(s)
- Hong Yun Tham
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Li Chuin Chong
- Center for Bioinformatics School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture Between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), 30625, Hannover, Germany
| | - Melvina Krishnan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Asif Mohammad Khan
- College of Computing and Information Technology, University of Doha for Science and Technology (UDST), Doha, Qatar
| | - Sy Bing Choi
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Wilayah Persekutuan Kuala Lumpur, Cheras, 56000, Malaysia
| | - Takashi Tamura
- Graduate School of Environmental and Life Sciences, Okayama University, Okayama, 700- 8530, Japan
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang, Selangor, 43000, Malaysia
| | - Geok Hun Tan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|
2
|
Golban M, Charostad J, Kazemian H, Heidari H. Phage-Derived Endolysins Against Resistant Staphylococcus spp.: A Review of Features, Antibacterial Activities, and Recent Applications. Infect Dis Ther 2025; 14:13-57. [PMID: 39549153 PMCID: PMC11782739 DOI: 10.1007/s40121-024-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a significant global public health issue, and the dissemination of antibiotic resistance in Gram-positive bacterial pathogens has significantly increased morbidity, mortality rates, and healthcare costs. Among them, Staphylococcus, especially methicillin-resistant Staphylococcus aureus (MRSA), causes a wide range of diseases due to its diverse pathogenic factors and infection strategies. These bacteria also present significant issues in veterinary medicine and food safety. Effectively managing staphylococci-related problems necessitates a concerted effort to implement preventive measures, rapidly detect the pathogen, and develop new and safe antimicrobial therapies. In recent years, there has been growing interest in using endolysins to combat bacterial infections. These enzymes, which are also referred to as lysins, are a unique class of hydrolytic enzymes synthesized by double-stranded DNA bacteriophages. They possess glycosidase, lytic transglycosylase, amidase, and endopeptidase activities, effectively destroying the peptidoglycan layer and resulting in bacterial lysis. This unique property makes endolysins powerful antimicrobial agents, particularly against Gram-positive organisms with more accessible peptidoglycan layers. Therefore, considering the potential benefits of endolysins compared to conventional antibiotics, we have endeavored to gather and review the characteristics and uses of endolysins derived from staphylococcal bacteriophages, as well as their antibacterial effectiveness against Staphylococcus spp. based on conducted experiments and trials.
Collapse
Affiliation(s)
- Mina Golban
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
3
|
Kajsikova M, Kajsik M, Bocanova L, Papayova K, Drahovska H, Bukovska G. Endolysin EN572-5 as an alternative to treat urinary tract infection caused by Streptococcus agalactiae. Appl Microbiol Biotechnol 2024; 108:79. [PMID: 38189950 PMCID: PMC10774192 DOI: 10.1007/s00253-023-12949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen causing urinary tract infection (UTI). Endolysin EN572-5 was identified in prophage KMB-572-E of the human isolate Streptococcus agalactiae KMB-572. The entire EN572-5 gene was cloned into an expression vector and the corresponding recombinant protein EN572-5 was expressed in Escherichia coli in a soluble form, isolated by affinity chromatography, and characterized. The isolated protein was highly active after 30 min incubation in a temperature range of - 20 °C to 37 °C and in a pH range of 5.5-8.0. The endolysin EN572-5 lytic activity was tested on different Streptococcus spp. and Lactobacillus spp. The enzyme lysed clinical GBS (n = 31/31) and different streptococci (n = 6/8), and also exhibited moderate lytic activity against UPEC (n = 4/4), but no lysis of beneficial vaginal lactobacilli (n = 4) was observed. The ability of EN572-5 to eliminate GBS during UTI was investigated using an in vitro model of UPSA. After the administration of 3 μM EN572-5, a nearly 3-log decrease of urine bacterial burden was detected within 3 h. To date, no studies have been published on the use of endolysins against S. agalactiae during UTI. KEY POINTS: • A lytic protein, EN572-5, from a prophage of a human GBS isolate has been identified. • This protein is easily produced, simple to prepare, and stable after lyophilization. • The bacteriolytic activity of EN572-5 was demonstrated for the first time in human urine.
Collapse
Affiliation(s)
- Maria Kajsikova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Michal Kajsik
- Comenius University Science Park, Ilkovicova 8, 841 04, Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Kristina Papayova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15, Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
4
|
Zhao X, Li L, Zhang Q, Li M, Hu M, Luo Y, Xu X, Chen Y, Liu Y. Characterization of the Clostridium perfringens phage endolysin cpp-lys and its application on lettuce. Int J Food Microbiol 2023; 405:110343. [PMID: 37523902 DOI: 10.1016/j.ijfoodmicro.2023.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Clostridium perfringens is an important foodborne pathogen that can have severe consequences, including mortality and economic losses. In this study, the gene encoding cpp-lys, an endolysin from the C. perfringens phage cpp has been cloned and overexpressed. The encoded protein was characterized, and then its efficacy in controlling C. perfringens on lettuce was evaluated. The endolysin cpp-lys presented lytic activity against seven strains of C. perfringens that produce different types of toxins. It maintained stability across a wide range of temperatures (4 °C - 50 °C), and demonstrated tolerance to varying pH levels (4-9). Storage of endolysin cpp-lys under room-temperature conditions (16 °C-25 °C) and cold-temperature conditions (4 °C, -20 °C, and -80 °C) for 30 days did not affect its lytic activity. However, the lytic activity of cpp-lys decreased by 40 % and 18 % after storage for 30 d at 42 °C and 37 °C, respectively. The endolysin cpp-lys did not display cytotoxic activity against normal eukaryotic cells. The bacterial viability on lettuce was significantly lower in the group treated with endolysin cpp-lys than in the PBS group, and >4-log of C. perfringens J1 were removed within 15 min. Cpp-lys plus Zn2+ inhibited the activity of cpp-lys. The EDTA-treated cpp-lys significantly reduced the number of bacteria by up to 0.6-log CFU compared with the endolysin cpp-lys group. The findings of this study demonstrated that endolysin cpp-lys has potential applications in controlling C. perfringens in the food industry.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Lulu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Mengxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Xiaohui Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China.
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China.
| |
Collapse
|
5
|
Park JM, Ko DS, Kim HS, Kim NH, Kim EK, Roh YH, Kim D, Kim JH, Choi KS, Kwon HJ. Rapid Screening and Comparison of Chimeric Lysins for Antibacterial Activity against Staphylococcus aureus Strains. Antibiotics (Basel) 2023; 12:antibiotics12040667. [PMID: 37107029 PMCID: PMC10135017 DOI: 10.3390/antibiotics12040667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chimeric lysins composed of various combinations of cell wall-lysing (enzymatic) and cell-wall-binding (CWB) domains of endolysins, autolysins, and bacteriocins have been developed as alternatives to or adjuvants of conventional antibiotics. The screening of multiple chimeric lysin candidates for activity via E. coli expression is not cost effective, and we previously reported on a simple cell-free expression system as an alternative. In this study, we sufficiently improved upon this cell-free expression system for use in screening activity via a turbidity reduction test, which is more appropriate than a colony reduction test when applied in multiple screening. Using the improved protocol, we screened and compared the antibacterial activity of chimeric lysin candidates and verified the relatively strong activity associated with the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain of secretory antigen SsaA-like protein (ALS2). ALS2 expressed in E. coli showed two major bands, and the smaller one (subprotein) was shown to be expressed by an innate downstream promoter and start codon (ATG). The introduction of synonymous mutations in the promoter resulted in clearly reduced expression of the subprotein, whereas missense mutations in the start codon abolished antibacterial activity as well as subprotein production. Interestingly, most of the S. aureus strains responsible for bovine mastitis were susceptible to ALS2, but those from human and chicken were less susceptible. Thus, the simple and rapid screening method can be applied to select functional chimeric lysins and define mutations affecting antibacterial activity, and ALS2 may be useful in itself and as a lead molecule to control bovine mastitis.
Collapse
Affiliation(s)
- Jin-Mi Park
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
| | - Dae-Sung Ko
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
| | - Hee-Soo Kim
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
| | - Nam-Hyung Kim
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, Pyeongchang-gun 25354, Republic of Korea
| | - Young-Hye Roh
- Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, Pyeongchang-gun 25354, Republic of Korea
| | - Danil Kim
- Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, Pyeongchang-gun 25354, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kang-Seuk Choi
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (K.-S.C.); (H.-J.K.); Tel.: +82-2-880-1266 (K.-S.C. & H.-J.K.)
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
- Correspondence: (K.-S.C.); (H.-J.K.); Tel.: +82-2-880-1266 (K.-S.C. & H.-J.K.)
| |
Collapse
|
6
|
Biological properties of Staphylococcus virus ΦSA012 for phage therapy. Sci Rep 2022; 12:21297. [PMID: 36494564 PMCID: PMC9734660 DOI: 10.1038/s41598-022-25352-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus virus ΦSA012 has a wide host range and efficient lytic activity. Here, we assessed the biological stability of ΦSA012 against temperature, freeze-thawing, and pH to clinically apply the phage. In addition, inoculation of ΦSA012 through i.p. and i.v. injections into mice revealed that phages were reached the limit of detection in serum and accumulated notably spleens without inflammation at 48 h post-inoculation. Furthermore, inoculation of ΦSA012 through s.c. injections in mice significantly induced IgG, which possesses neutralizing activity against ΦSA012 and other Staphylococcus viruses, ΦSA039 and ΦMR003, but not Pseudomonas viruses ΦS12-3 and ΦR18 or Escherichia viruses T1, T4, and T7 in vitro. Immunoelectron microscopic analysis showed that purified anti-phage IgG recognizes the long-tail fiber of staphylococcus viruses. Although S. aureus inoculation resulted in a 25% survival rate in a mouse i.p. model, ΦSA012 inoculation (i.p.) improved the survival rate to 75%; however, the survival rate of ΦSA012-immunized mice decreased to less than non-immunized mice with phage i.v. injection at a MOI of 100. These results indicated that ΦSA012 possesses promise for use against staphylococcal infections but we should carefully address the appropriate dose and periods of phage administration. Our findings facilitate understandings of staphylococcus viruses for phage therapy.
Collapse
|
7
|
Balaban CL, Suárez CA, Boncompain CA, Peressutti-Bacci N, Ceccarelli EA, Morbidoni HR. Evaluation of factors influencing expression and extraction of recombinant bacteriophage endolysins in Escherichia coli. Microb Cell Fact 2022; 21:40. [PMID: 35292023 PMCID: PMC8922839 DOI: 10.1186/s12934-022-01766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endolysins are peptidoglycan hydrolases with promising use as environment-friendly antibacterials mainly when used topically. However, in general, endolysin expression is hampered by its low solubility. Thus, a critical point in endolysin industrial production is optimizing their expression, including improvement of solubility and recovery from cell extracts. RESULTS We report the expression of two endolysins encoded in the genome of phages infecting Staphylococcus aureus. Expression was optimized through changes in the concentration of the inducer and growth temperature during the expression. Usually, only 30-40% of the total endolysin was recovered in the soluble fraction. Co-expression of molecular chaperones (DnaK, GroEL) or N-term fusion tags endowed with increased solubility (DsbC, Trx, Sumo) failed to improve that yield substantially. Inclusion of osmolytes (NaCl, CaCl2, mannitol, glycine betaine, glycerol and trehalose) or tensioactives (Triton X-100, Tween 20, Nonidet P-40, CHAPS, N-lauroylsarcosine) in the cell disruption system (in the absence of any molecular chaperone) gave meager improvements excepted by N-lauroylsarcosine which increased recovery to 54% of the total endolysin content. CONCLUSION This is the first attempt to systematically analyze methods for increasing yields of recombinant endolysins. We herein show that neither solubility tags nor molecular chaperones co-expression are effective to that end, while induction temperature, (His)6-tag location and lysis buffer additives (e.g. N-lauroylsarcosine), are sensible strategies to obtain higher levels of soluble S. aureus endolysins.
Collapse
Affiliation(s)
- Cecilia Lucía Balaban
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cristian Alejandro Suárez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina Andrea Boncompain
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Peressutti-Bacci
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eduardo Augusto Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Héctor Ricardo Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
8
|
Chandran C, Tham HY, Abdul Rahim R, Lim SHE, Yusoff K, Song AAL. Lactococcus lactis secreting phage lysins as a potential antimicrobial against multi-drug resistant Staphylococcus aureus. PeerJ 2022; 10:e12648. [PMID: 35251775 PMCID: PMC8896023 DOI: 10.7717/peerj.12648] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA. METHOD Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88. RESULTS Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88. CONCLUSION Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.
Collapse
Affiliation(s)
- Carumathy Chandran
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hong Yun Tham
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Hua Erin Lim
- Health Science Division, Abu Dhabi Women’s College, Abu Dhabi, United Arab Emirates
| | - Khatijah Yusoff
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Characterization of a novel broad-spectrum endolysin PlyD4 encoded by a highly conserved prophage found in Aeromonas hydrophila ST251 strains. Appl Microbiol Biotechnol 2022; 106:699-711. [PMID: 34985567 DOI: 10.1007/s00253-021-11752-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Aeromonas hydrophila is a zoonotic pathogen that exhibits high level resistance to classic antibiotics and is a heavy burden for aquaculture industry. Lytic enzymes encoded by phages or prophages have shown potential for use against pathogenic bacteria. In this study, an intact prophage (named phAhD4) was identified from A. hydrophila D4. phAhD4 is highly conserved in all 10 published A. hydrophila sequence type (ST) 251 strains and is unique to the ST251 strains. The unique endolysin PlyD4, encoded by phAhD4, was obtained by prokaryotic expression. PlyD4 showed bactericidal activity against a broad range of bacterial species in vitro, including A. hydrophila, Aeromonas veronii, Vibrio parahemolyticus, Pseudomonas aeruginosa, and so on. Synergistically with 5 mmol/L ethylene diamine tetraacetic acid (EDTA), the ratio of the optical density at 600 nm (OD600) of PlyD4 treatment versus the OD600 with no PlyD4 treatment for most tested strains decreased from 1 to 0.1-0.8 within 2 h. PlyD4 exhibited optimal activity at 28 °C and maintained high activity over a wide pH range (pH 6-10). Divalent metal ions conferred significant enhancement to PlyD4 lytic activity at low concentrations (0.1 mmol/L). In vivo, a 4.5 μg dose of PlyD4 protected 75.0% (15/20) of zebrafish in a bacteremia model of A. hydrophila D4 infection. These results indicated that PlyD4 was an effective therapeutic agent against multiple aquaculture-related pathogens. To the best of our knowledge, this study is the first to report on an A. hydrophila prophage endolysin that exerts antibacterial activity against a broad range of pathogens. KEY POINTS: • The prophage phAhD4 is highly conserved in 10 published A. hydrophila ST251 strains. • PlyD4 exerts antibacterial activity against multiple aquaculture-related pathogens. • PlyD4 conferred protection against A. hydrophila infection in a zebrafish model.
Collapse
|
10
|
Fluctuating Bacteriophage-induced galU Deficiency Region is Involved in Trade-off Effects on the Phage and Fluoroquinolone Sensitivity in Pseudomonas aeruginosa. Virus Res 2021; 306:198596. [PMID: 34648885 DOI: 10.1016/j.virusres.2021.198596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa, which causes chronic infections, has demonstrated rapid acquisition of antimicrobial resistance (AMR). Therefore, bacteriophages have received significant attention as promising antimicrobial agents; however, previous trials have reported the occurrence of phage-resistant variants. P. aeruginosa has lost large chromosomal fragments via evolutionary selection by MutL. Mutants lacking galU and hmgA, located in close proximity, exhibit phage resistance and brown color phenotype since hmgA encodes a homogentisic acid metabolic enzyme and deletion of galU results in a lack of O-antigen polysaccharide and absence of the phage receptor. In the present study, we evaluated this mechanism for controlling phage resistance in P. aeruginosa veterinary isolate Pa12. Phage-resistant Pa12 brown mutants (brmts) with galU and hmgA deletions were isolated. Whole-genome sequencing of the brmts revealed that regions 148-27 kbp upstream and 261-110 kbp downstream of galU were largely deleted from the Pa12 parental chromosome. Furthermore, all of these fluctuating deleted sequences in Pa12 brmts, tentatively designated bacteriophage-induced galU deficiency (BigD) regions, harbor multi-drug efflux system genes (mexXY). Minimum inhibitory concentration (MIC) assays demonstrated that brmts altered sensitivity to antibiotics and exhibited increased levofloxacin sensitivity compared with the Pa12 parent. Orbifloxacin and enrofloxacin also effectively suppressed growth of the Pa12 brmts, suggesting that MexXY, which mediates quinolone efflux and is located in the BigD region, might be associated with restoration of fluoroquinolone sensitivity. Our findings indicate that AMR-related genes in the BigD region could produce trade-off effects between phages and drug sensitivity and thereby contribute to a potential strategy to control and prevent phage-resistant variants in phage therapy.
Collapse
|
11
|
Novel Virulent Bacteriophage ΦSG005, Which Infects Streptococcus gordonii, Forms a Distinct Clade among Streptococcus Viruses. Viruses 2021; 13:v13101964. [PMID: 34696394 PMCID: PMC8537203 DOI: 10.3390/v13101964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages are viruses that specifically infect bacteria and are classified as either virulent phages or temperate phages. Despite virulent phages being promising antimicrobial agents due to their bactericidal effects, the implementation of phage therapy depends on the availability of virulent phages against target bacteria. Notably, virulent phages of Streptococcus gordonii, which resides in the oral cavity and is an opportunistic pathogen that can cause periodontitis and endocarditis have previously never been found. We thus attempted to isolate virulent phages against S. gordonii. In the present study, we report for the first time a virulent bacteriophage against S. gordonii, ΦSG005, discovered from drainage water. ΦSG005 is composed of a short, non-contractile tail and a long head, revealing Podoviridae characteristics via electron microscopic analysis. In turbidity reduction assays, ΦSG005 showed efficient bactericidal effects on S. gordonii. Whole-genome sequencing showed that the virus has a DNA genome of 16,127 bp with 21 coding sequences. We identified no prophage-related elements such as integrase in the ΦSG005 genome, demonstrating that the virus is a virulent phage. Phylogenetic analysis indicated that ΦSG005 forms a distinct clade among the streptococcus viruses and is positioned next to streptococcus virus C1. Molecular characterization revealed the presence of an anti-CRISPR (Acr) IIA5-like protein in the ΦSG005 genome. These findings facilitate our understanding of streptococcus viruses and advance the development of phage therapy against S. gordonii infection.
Collapse
|
12
|
Yu JH, Park DW, Lim JA, Park JH. Characterization of staphylococcal endolysin LysSAP33 possessing untypical domain composition. J Microbiol 2021; 59:840-847. [PMID: 34383247 DOI: 10.1007/s12275-021-1242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/21/2023]
Abstract
Endolysin, a peptidoglycan hydrolase derived from bacteriophage, has been suggested as an alternative antimicrobial agent. Many endolysins on staphylococcal phages have been identified and applied extensively against Staphylococcus spp. Among them, LysK-like endolysin, a well-studied staphylococcal endolysin, accounts for most of the identified endolysins. However, relatively little interest has been paid to LysKunlike endolysin and a few of them has been characterized. An endolysin LysSAP33 encoded on bacteriophage SAP33 shared low homology with LysK-like endolysin in sequence by 41% and domain composition (CHAP-unknown CBD). A green fluorescence assay using a fusion protein for LysSAP33_CBD indicated that the CBD domain (157-251 aa) was bound to the peptidoglycan of S. aureus. The deletion of LysSAP33_CBD at the C-terminal region resulted in a significant decrease in lytic activity and efficacy. Compared to LysK-like endolysin, LysSAP33 retained its lytic activity in a broader range of temperature, pH, and NaCl concentrations. In addition, it showed a higher activity against biofilms than LysK-like endolysin. This study could be a helpful tool to develop our understanding of staphylococcal endolysins not belonging to LysK-like endolysins and a potential biocontrol agent against biofilms.
Collapse
Affiliation(s)
- Jun-Hyeok Yu
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Korea
- School of Microbiology, University College Cork, Cork, T12 K8AF, Ireland
| | - Do-Won Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Korea
| | - Jeong-A Lim
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju, 55365, Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Korea.
| |
Collapse
|
13
|
Jiang Y, Xu D, Wang L, Qu M, Li F, Tan Z, Yao L. Characterization of a broad-spectrum endolysin LysSP1 encoded by a Salmonella bacteriophage. Appl Microbiol Biotechnol 2021; 105:5461-5470. [PMID: 34241646 DOI: 10.1007/s00253-021-11366-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Foodborne pathogens have caused many public health incidents and heavy economic burden. Endolysins have been proven to have efficient bactericidal activity against pathogens with low incidence of resistance. In this study, the recombinant endolysin LysSP1 encoded by Salmonella Typhimurium lytic bacteriophage SLMP1 was obtained by prokaryotic expression, and its characteristics were analyzed. Ethylenediaminetetraacetic acid (EDTA) can be used as the outer membrane permeabilizer to increase the bactericidal activity of LysSP1. Under the synergism of 5 mmol/L EDTA, LysSP1 exhibited a strong bactericidal activity against Salmonella Typhimurium ATCC14028. LysSP1 was stable at 4°C for 7 days and at -20°C for 180 days. LysSP1 remained the optimal activity at 40°C and was efficiently active at alkaline condition (pH 8.0-10.0). Divalent metal ions could not enhance the bactericidal activity of LysSP1 and even caused the significant reduction of bactericidal activity. LysSP1 not only could lyse Salmonella, but also could lyse other Gram-negative strains and Gram-positive strains. These results indicated that LysSP1 is a broad-spectrum endolysin and has potential as an antimicrobial agent against Salmonella and other foodborne pathogens. KEY POINTS: • Recombinant endolysin LysSP1 can be prepared by prokaryotic expression. • LysSP1 has stable nature and strong bactericidal activity on Salmonella Typhimurium with EDTA. • LysSP1 has a broad range of hosts including Gram-negative bacteria and Gram-positive bacteria.
Collapse
Affiliation(s)
- Yanhua Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Dongqin Xu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Lianzhu Wang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Meng Qu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, 266033, People's Republic of China
| | - Lin Yao
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
14
|
Yan J, Yang R, Yu S, Zhao W. The strategy of biopreservation of meat product against MRSA using lytic domain of lysin from Staphylococcus aureus bacteriophage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Walsh L, Johnson CN, Hill C, Ross RP. Efficacy of Phage- and Bacteriocin-Based Therapies in Combatting Nosocomial MRSA Infections. Front Mol Biosci 2021; 8:654038. [PMID: 33996906 PMCID: PMC8116899 DOI: 10.3389/fmolb.2021.654038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a pathogen commonly found in nosocomial environments where infections can easily spread - especially given the reduced immune response of patients and large overlap between personnel in charge of their care. Although antibiotics are available to treat nosocomial infections, the increased occurrence of antibiotic resistance has rendered many treatments ineffective. Such is the case for methicillin resistant S. aureus (MRSA), which has continued to be a threat to public health since its emergence. For this reason, alternative treatment technologies utilizing antimicrobials such as bacteriocins, bacteriophages (phages) and phage endolysins are being developed. These antimicrobials provide an advantage over antibiotics in that many have narrow inhibition spectra, enabling treatments to be selected based on the target (pathogenic) bacterium while allowing for survival of commensal bacteria and thus avoiding collateral damage to the microbiome. Bacterial resistance to these treatments occurs less frequently than with antibiotics, particularly in circumstances where combinatory antimicrobial therapies are used. Phage therapy has been well established in Eastern Europe as an effective treatment against bacterial infections. While there are no Randomized Clinical Trials (RCTs) to our knowledge examining phage treatment of S. aureus infections that have completed all trial phases, numerous clinical trials are underway, and several commercial phage preparations are currently available to treat S. aureus infections. Bacteriocins have primarily been used in the food industry for bio-preservation applications. However, the idea of repurposing bacteriocins for human health is an attractive one considering their efficacy against many bacterial pathogens. There are concerns about the ability of bacteriocins to survive the gastrointestinal tract given their proteinaceous nature, however, this obstacle may be overcome by altering the administration route of the therapy through encapsulation, or by bioengineering protease-resistant variants. Obstacles such as enzymatic digestion are less of an issue for topical/local administration, for example, application to the surface of the skin. Bacteriocins have also shown impressive synergistic effects when used in conjunction with other antimicrobials, including antibiotics, which may allow antibiotic-based therapies to be used more sparingly with less resistance development. This review provides an updated account of known bacteriocins, phages and phage endolysins which have demonstrated an impressive ability to kill S. aureus strains. In particular, examples of antimicrobials with the ability to target MRSA strains and their subsequent use in a clinical setting are outlined.
Collapse
Affiliation(s)
- Lauren Walsh
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Crystal N Johnson
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| |
Collapse
|
16
|
Patil A, Banerji R, Kanojiya P, Koratkar S, Saroj S. Bacteriophages for ESKAPE: role in pathogenicity and measures of control. Expert Rev Anti Infect Ther 2021; 19:845-865. [PMID: 33261536 DOI: 10.1080/14787210.2021.1858800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The quest to combat bacterial infections has dreaded humankind for centuries. Infections involving ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) impose therapeutic challenges due to the emergence of antimicrobial drug resistance. Recently, investigations with bacteriophages have led to the development of novel strategies against ESKAPE infections. Also, bacteriophages have been demonstrated to be instrumental in the dissemination of virulence markers in ESKAPE pathogens. AREAS COVERED The review highlights the potential of bacteriophage in and against the pathogenicity of antibiotic-resistant ESKAPE pathogens. The review also emphasizes the challenges of employing bacteriophage in treating ESKAPE pathogens and the knowledge gap in the bacteriophage mediated antibiotic resistance and pathogenicity in ESKAPE infections. EXPERT OPINION Bacteriophage infection can kill the host bacteria but in survivors can transfer genes that contribute toward the survival of the pathogens in the host and resistance toward multiple antimicrobials. The knowledge on the dual role of bacteriophages in the treatment and pathogenicity will assist in the prediction and development of novel therapeutics targeting antimicrobial-resistant ESKAPE. Therefore, extensive investigations on the efficacy of synthetic bacteriophage, bacteriophage cocktails, and bacteriophage in combination with antibiotics are needed to develop effective therapeutics against ESKAPE infections.
Collapse
Affiliation(s)
- Amrita Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Santosh Koratkar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Sunil Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| |
Collapse
|
17
|
Watkins RR, Bonomo RA. Overview: The Ongoing Threat of Antimicrobial Resistance. Infect Dis Clin North Am 2020; 34:649-658. [PMID: 33011053 DOI: 10.1016/j.idc.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effectiveness of antibiotics continues to erode because of the relentless spread of antimicrobial resistance (AMR). Public and private foundations, professional organizations, and international health agencies recognize the threat posed by AMR and have issued calls for action. One of the main drivers of AMR is overprescription of antibiotics, both in human and in veterinary medicine. The One Health concept is a response from a broad group of stakeholders to counter the global health threat posed by AMR. In this article, we discuss current trends in AMR and suggest strategies to mitigate its ongoing dissemination.
Collapse
Affiliation(s)
- Richard R Watkins
- Division of Infectious Diseases, Cleveland Clinic Akron General, Akron, OH, USA; Department of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA; Case VA Center for Antimicrobial Resistance and Epidemiology (Case VA-CARES), Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
18
|
Nakamura T, Kitana J, Fujiki J, Takase M, Iyori K, Simoike K, Iwano H. Lytic Activity of Polyvalent Staphylococcal Bacteriophage PhiSA012 and Its Endolysin Lys-PhiSA012 Against Antibiotic-Resistant Staphylococcal Clinical Isolates From Canine Skin Infection Sites. Front Med (Lausanne) 2020; 7:234. [PMID: 32587860 PMCID: PMC7298730 DOI: 10.3389/fmed.2020.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
The spread of antibiotic-resistant bacteria (ARB) in human and veterinary medicine is of global concern. Notably, the emergence of methicillin-resistant Staphylococcus pseudintermedius has become a serious problem. In this context, bacteriophages and their lytic enzymes, endolysins, have received considerable attention as therapeutics for infectious diseases in place of antibiotics. The aim of the present study was to investigate the antibiotic-resistance patterns of staphylococcal species isolated from canine skin at a primary care animal hospital in Tokyo, Japan and evaluate the lytic activity of the staphylococcal bacteriophage phiSA012 and its endolysin Lys-phiSA012 against isolated antibiotic-resistant staphylococcal strains. Forty clinical staphylococcal samples were isolated from infection sites of dogs (20 from skin and 20 from the external ear canal). Susceptibility to antimicrobial agents was determined by a disk diffusion method. The host range of phiSA012 was determined by using a spot test against staphylococcal isolates. Against staphylococcal isolates that showed resistance toward five classes or more of antimicrobials, the lytic activity of phiSA012 and Lys-phiSA012 was evaluated using a turbidity reduction assay. Twenty-three S. pseudintermedius, 16 Staphylococcus schleiferi, and 1 Staphylococcus intermedius were detected from canine skin and ear infections, and results revealed 43.5% methicillin resistance in S. pseudintermedius and 31.3% in S. schleiferi. In addition, the prevalence multidrug resistance (MDR) S. pseudintermedius was 65.2%. PhiSA012 could infect all staphylococcal isolates by spot testing, but showed little lytic activity by turbidity reduction assay against MDR S. pseudintermedius isolates. On the other hand, Lys-phiSA012 showed lytic activity and reduced significantly the number of staphylococcal colony-forming units. These results demonstrated that ARB issues underlying in small animal hospital and proposed substitutes for antibiotics. Lys-phiSA012 has broader lytic activity than phiSA012 against staphylococcal isolates; therefore, Lys-phiSA012 is a more potential candidate therapeutic agent for several staphylococcal infections including that of canine skin.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Junya Kitana
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | | | | | | | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
19
|
Ding Y, Zhang Y, Huang C, Wang J, Wang X. An Endolysin LysSE24 by Bacteriophage LPSE1 Confers Specific Bactericidal Activity against Multidrug-Resistant Salmonella Strains. Microorganisms 2020; 8:E737. [PMID: 32429030 PMCID: PMC7284969 DOI: 10.3390/microorganisms8050737] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Salmonella is responsible for a wide range of infections and is a constant threat to public health, particularly in light of emerging antibiotic resistance. The use of bacteriophages and phage endolysins as specific antibacterial agents is a promising strategy to control this bacterial infection. Endolysins are important proteins during the process of bacteria lysis by bacteriophages. In this study, we identify a novel endolysin, named LysSE24. LysSE24 was predicted to possess N-acetylmuramidases activity, with a molecular mass of ca. 17.4 kDa and pI 9.44. His-tagged LysSE24 was heterologously expressed and purified by Ni-NTA chromatography. LysSE24 exhibited optimal bactericidal activity against Salmonella Enteritidis ATCC 13076 at a concentration of 0.1 μM. Salmonella population (measured by OD600 nm) decreased significantly (p < 0.05) after 10 min of incubation in combination with the outer membrane permeabilizer in vitro. It also showed antibacterial activity against a panel of 23 tested multidrug-resistant Salmonella strains. Bactericidal activity of LysSE24 was evaluated in terms of pH, temperature, and ionic strength. It was very stable with different pH (4.0 to 10.0) at different temperatures (20 to 60 °C). Both K+ and Na+ at concentrations between 0.1 to 100 mM showed no effects on its bactericidal activity, while a high concentration of Ca2+ and Mg2+ showed efficacy. Transmission electron microscopy revealed that exposure to 0.1 μM LysSE24 for up to 5 min caused a remarkable modification of the cell shape of Salmonella Enteritidis ATCC 13076. These results indicate that recombinant LysSE24 represents a promising antimicrobial activity against Salmonella, especially several multidrug-resistant Salmonella strains. Further studies can be developed to improve its bactericidal activity without the need for pretreatment with outer membrane-destabilizing agents by synthetic biology methods.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (C.H.)
| |
Collapse
|
20
|
Kaur J, Singh P, Sharma D, Harjai K, Chhibber S. A potent enzybiotic against methicillin-resistant Staphylococcus aureus. Virus Genes 2020; 56:480-497. [DOI: 10.1007/s11262-020-01762-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
|
21
|
Qian W, Wang W, Zhang J, Liu M, Fu Y, Li X, Wang T, Li Y. Sanguinarine Inhibits Mono- and Dual-Species Biofilm Formation by Candida albicans and Staphylococcus aureus and Induces Mature Hypha Transition of C. albicans. Pharmaceuticals (Basel) 2020; 13:ph13010013. [PMID: 31941090 PMCID: PMC7168937 DOI: 10.3390/ph13010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies have reported that sanguinarine possesses inhibitory activities against several microorganisms, but its effects on mono- and dual-species biofilms of C. albicans and S. aureus have not been fully elucidated. In this study, we aimed to evaluate the efficacy of sanguinarine for mono- and dual-species biofilms and explore its ability to induce the hypha-to-yeast transition of C. albicans. The results showed that the minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC90) of sanguinarine against C. albicans and S. aureus mono-species biofilms was 4, and 2 μg/mL, respectively, while the MIC and MBIC90 of sanguinarine against dual-species biofilms was 8, and 4 μg/mL, respectively. The decrease in the levels of matrix component and tolerance to antibiotics of sanguinarine-treated mono- and dual-species biofilms was revealed by confocal laser scanning microscopy combined with fluorescent dyes, and the gatifloxacin diffusion assay, respectively. Meanwhile, sanguinarine at 128 and 256 μg/mL could efficiently eradicate the preformed 24-h biofilms by mono- and dual-species, respectively. Moreover, sanguinarine at 8 μg/mL could result in the transition of C. albicans from the mature hypha form to the unicellular yeast form. Hence, this study provides useful information for the development of new agents to combat mono- and dual-species biofilm-associated infections, caused by C. albicans and S. aureus.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Wenjing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Jianing Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Miao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Yuting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Xiang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
- Correspondence: (T.W.); (Y.L.); Tel.: +86-29-86168583 (T.W.)
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
- Correspondence: (T.W.); (Y.L.); Tel.: +86-29-86168583 (T.W.)
| |
Collapse
|
22
|
Gondil VS, Harjai K, Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents 2019; 55:105844. [PMID: 31715257 DOI: 10.1016/j.ijantimicag.2019.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/02/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
Endolysins are the lytic products of bacteriophages which play a specific role in the release of phage progeny by degrading the peptidoglycan of the host bacterium. In the light of antibiotic resistance, endolysins are being considered as alternative therapeutic agents because of their exceptional ability to target bacterial cells when applied externally. Endolysins have been studied against a number of drug-resistant pathogens to assess their therapeutic ability. This review focuses on the structure of endolysins in terms of cell binding and catalytic domains, lytic ability, resistance, safety, immunogenicity and future applications. It primarily reviews recent advancements made in evaluation of the therapeutic potential of endolysins, including their origin, host range, applications, and synergy with conventional and non-conventional antimicrobial agents.
Collapse
Affiliation(s)
- Vijay Singh Gondil
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
23
|
Liu A, Wang Y, Cai X, Jiang S, Cai X, Shen L, Liu Y, Han G, Chen S, Wang J, Wu W, Li C, Liu S, Wang X. Characterization of endolysins from bacteriophage LPST10 and evaluation of their potential for controlling Salmonella Typhimurium on lettuce. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Therapeutic Effects of Intravitreously Administered Bacteriophage in a Mouse Model of Endophthalmitis Caused by Vancomycin-Sensitive or -Resistant Enterococcus faecalis. Antimicrob Agents Chemother 2019; 63:AAC.01088-19. [PMID: 31451497 DOI: 10.1128/aac.01088-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023] Open
Abstract
Endophthalmitis due to infection with Enterococcus spp. progresses rapidly and often results in substantial and irreversible vision loss. Given that the frequency of this condition caused by vancomycin-resistant Enterococcus faecalis has been increasing, the development of novel therapeutics is urgently required. We have demonstrated the therapeutic potential of bacteriophage ΦEF24C-P2 in a mouse model of endophthalmitis caused by vancomycin-sensitive (EF24) or vancomycin-resistant (VRE2) strains of E. faecalis Phage ΦEF24C-P2 induced rapid and pronounced bacterial lysis in turbidity reduction assays with EF24, VRE2, and clinical isolates derived from patients with E. faecalis-related postoperative endophthalmitis. Endophthalmitis was induced in mice by injection of EF24 or VRE2 (1 × 104 cells) into the vitreous. The number of viable bacteria in the eye increased to >1 × 107 CFU, and neutrophil infiltration into the eye was detected as an increase in myeloperoxidase activity at 24 h after infection. A clinical score based on loss of visibility of the fundus as well as the number of viable bacteria and the level of myeloperoxidase activity in the eye were all significantly decreased by intravitreous injection of ΦEF24C-P2 6 h after injection of EF24 or VRE2. Whereas histopathologic analysis revealed massive infiltration of inflammatory cells and retinal detachment in vehicle-treated eyes, the number of these cells was greatly reduced and retinal structural integrity was preserved in phage-treated eyes. Our results thus suggest that intravitreous phage therapy is a potential treatment for endophthalmitis caused by vancomycin-sensitive or -resistant strains of E. faecalis.
Collapse
|
25
|
The PlyB Endolysin of Bacteriophage vB_BanS_Bcp1 Exhibits Broad-Spectrum Bactericidal Activity against Bacillus cereus Sensu Lato Isolates. Appl Environ Microbiol 2019; 85:AEM.00003-19. [PMID: 30850428 DOI: 10.1128/aem.00003-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Lytic bacteriophages (or phages) drive bacterial mortality by elaborating exquisite abilities to bind, breach, and destroy bacterial cell membranes and subjugate critical bacterial cell functions. These antimicrobial activities make phages ideal candidates to serve as, or provide sources of, biological control measures for bacterial pathogens. In this study, we isolated the Myoviridae phage vB_BanS_Bcp1 (here referred to as Bcp1) from landfill soil, using a Bacillus anthracis host. The antimicrobial activities of both Bcp1 and its encoded endolysin, PlyB, were examined across different B. cereus sensu lato group species, including B. cereus sensu stricto, Bacillus thuringiensis, and Bacillus anthracis, with pathogenic potential in humans and multiple different uses in biotechnological applications. The Bcp1 phage infected only a subset (11 to 66%) of each B. cereus sensu lato species group tested. In contrast, functional analysis of purified PlyB revealed a potent bacteriolytic activity against all B. cereus sensu lato isolates tested (n = 79). PlyB was, furthermore, active across broad temperature, pH, and salt ranges, refractory to the development of resistance, bactericidal as a single agent, and synergistic with a second endolysin, PlyG. To confirm the potential for PlyB as an antimicrobial agent, we demonstrated the efficacy of a single intravenous treatment with PlyB alone or combination with PlyG in a murine model of lethal B. anthracis infection. Overall, our findings show exciting potential for the Bcp1 bacteriophage and the PlyB endolysin as potential new additions to the antimicrobial armamentarium.IMPORTANCE Organisms of the Bacillus cereus sensu lato lineage are ubiquitous in the environment and are responsible for toxin-mediated infections ranging from severe food poisoning (B. cereus sensu stricto) to anthrax (Bacillus anthracis). The increasing incidence of many of these infections, combined with the specter of antibiotic resistance, has created a need for novel antimicrobials with potent activity, including bacteriophages (or phages) and phage-encoded products (i.e., endolysins). In this study, we describe a broadly infective phage, Bcp1, and its encoded endolysin, PlyB, which exhibited a rapidly bacteriolytic effect against all B. cereus sensu lato isolates tested with no evidence of evolving resistance. Importantly, PlyB was highly efficacious in a mouse model of lethal bacteremia with B. anthracis Both the Bcp1 phage and the PlyB endolysin represent novel mechanisms of action compared to antibiotics, with potential applications to address the evolving problem of antimicrobial resistance.
Collapse
|
26
|
Azam AH, Tanji Y. Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy. Appl Microbiol Biotechnol 2019; 103:4279-4289. [PMID: 30997551 DOI: 10.1007/s00253-019-09810-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/07/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
Bacteriophage has become an attractive alternative for the treatment of antibiotic-resistant Staphylococcus aureus. For the success of phage therapy, phage host range is an important criterion when considering a candidate phage. Most reviews of S. aureus (SA) phages have focused on their impact on host evolution, especially their contribution to the spread of virulence genes and pathogenesis factors. The potential therapeutic use of SA phages, especially detailed characterizations of host recognition mechanisms, has not been extensively reviewed so far. In this report, we provide updates on the study of SA phages, focusing on host recognition mechanisms with the recent discovery of phage receptor-binding proteins (RBPs) and the possible applications of SA phages in phage therapy.
Collapse
Affiliation(s)
- Aa Haeruman Azam
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
27
|
Liu Y, Mi Z, Mi L, Huang Y, Li P, Liu H, Yuan X, Niu W, Jiang N, Bai C, Gao Z. Identification and characterization of capsule depolymerase Dpo48 from Acinetobacter baumannii phage IME200. PeerJ 2019; 7:e6173. [PMID: 30656071 PMCID: PMC6336015 DOI: 10.7717/peerj.6173] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background The emergence of multidrug- or extensively drug-resistant Acinetobacter baumannii has made it difficult to treat and control infections caused by this bacterium. It is urgently necessary to search for alternatives to conventional antibiotics for control of severe A. baumannii infections. In recent years, bacteriophages and their derivatives, such as depolymerases, showed great potential as antibacterial or antivirulence agents against bacterial infections. Nonetheless, unlike broad-spectrum bactericidal antibiotics, phage-encoded depolymerase targets only a limited number of bacterial strains. Therefore, identification of novel depolymerases and evaluation of their ability to control A. baumannii infections is important. Methods A bacteriophage was isolated from hospital sewage using an extensively drug-resistant A. baumannii strain as the host bacterium, and the phage’s plaque morphology and genomic composition were studied. A polysaccharide depolymerase (Dpo48) was expressed and identified, and the effects of pH and temperature on its activity were determined. Besides, a serum killing assay was conducted, and amino acid sequences homologous to those of putative polysaccharide depolymerases were compared. Results Phage IME200 yielded clear plaques surrounded by enlarged halos, with polysaccharide depolymerase activity against the host bacterium. A tail fiber protein with a Pectate_lyase_3 domain was identified as Dpo48 and characterized . Dpo48 was found to degrade the capsule polysaccharide of the bacterial surface, as revealed by Alcian blue staining. Dpo48 manifested stable activity over a broad range of pH (5.0–9.0) and temperatures (20–70 °C). Results from in vitro serum killing assays indicated that 50% serum was sufficient to cause a five log reduction of overnight enzyme-treated bacteria, with serum complement playing an important role in these killing assays. Moreover, Dpo48 had a spectrum of activity exactly the same as its parental phage IME200, which was active against 10 out of 41 A. baumannii strains. Amino acid sequence alignment showed that the putative tail fiber proteins had a relatively short, highly conserved domain in their N-terminal sequences, but their amino acid sequences containing pectate lyase domains, found in the C-terminal regions, were highly diverse. Conclusions Phage-encoded capsule depolymerases may become promising antivirulence agents for preventing and controlling A. baumannii infections.
Collapse
Affiliation(s)
- Yannan Liu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China.,Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liyuan Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Puyuan Li
- Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Huiying Liu
- Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Xin Yuan
- Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Wenkai Niu
- Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Ning Jiang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Changqing Bai
- Department of Respiratory and Critical Care Medicine, 307th Hospital of PLA, Beijing, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|