1
|
Ickovski JD, Cvetković VJ, Jovanović NM, Mitrović TL, Stojanović GS. Serbian Artemisia species - chemical composition, acute toxicity and larvicidal activity of the essential oils. Nat Prod Res 2025; 39:3212-3223. [PMID: 38538562 DOI: 10.1080/14786419.2024.2334312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 03/17/2024] [Indexed: 05/31/2025]
Abstract
The chemical composition and biological activities of the essential oils obtained from Serbian Artemisia species (A. alba, A. absinthium, A. annua, A. vulgaris, and A. scoparia) were analysed. The essential oil was obtained by merging several samples (same plant species, different localities) and the chemical composition was compared with pre-merging results. In the merged A. scoparia sample four components were not found in any pre-merging sample and one of those is present in the highest percentage (capillin 35.7%). The least toxic essential oil in Artemia salina test was A. annua, followed by A. alba (both showing medium toxicity), while A. absinthium, A. vulgaris, and A. scoparia showed strong toxicity. All tested samples showed activity against Drosophila melanogaster larvae in descending order ΣAS > ΣAN > ΣAV > ΣAB > ΣAA. The essential oil of A. scoparia has exceptional larvicidal activity (in concentrations of 2% and 1% causes complete mortality).
Collapse
Affiliation(s)
- Jovana D Ickovski
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Vladimir J Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Nikola M Jovanović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Tatjana Lj Mitrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Gordana S Stojanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| |
Collapse
|
2
|
Wu H, Niu L, Chen J, Xu H, Kong C, Xiao J. A Comprehensive Metabolomic Analysis of Volatile and Non-Volatile Compounds in Folium Artemisia argyi Tea from Different Harvest Times. Foods 2025; 14:843. [PMID: 40077546 PMCID: PMC11899400 DOI: 10.3390/foods14050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
To develop and utilize Folium Artemisia argyi (FAA) tea resources, UPLC-MS/MS, HS-GC-IMS, and HS-SPME/GC×GC-TOFMS were adopted to analyze its volatile and non-volatile compounds, when harvested from March to June, in combination with its antioxidant activity. Here, 1742 volatile compounds and 8726 non-volatile compounds were identified, with 75 differential volatile metabolites and 36 key flavor compounds screened. Notably, 1-octen-3-one, (E)-2-octenal, (E)-2-undecenal, and heptanal were identified as major contributors to the sweet, fruity, green, and herbal aromas, and the concentration of them was highest in June-harvest FAA tea. Furthermore, metabolomics revealed that there were 154 non-volatile differential metabolites in FAA tea at four harvest times, which were mainly related to amino acid biosynthetic pathways. Samples harvested in June also showed the strongest antioxidant capacity, which was positively correlated with D-xylitol, L-glutamic acid, honokiol, and costunolide. These findings highlight June as the optimal harvest time, providing FAA tea with superior flavor and enhanced antioxidant properties, underscoring its potential as a valuable resource for functional food development.
Collapse
Affiliation(s)
| | | | | | | | - Cailin Kong
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; (H.W.); (L.N.); (J.C.); (H.X.)
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; (H.W.); (L.N.); (J.C.); (H.X.)
| |
Collapse
|
3
|
Malik S, Kumaraguru G, Bruat M, Chefdor F, Depierreux C, Héricourt F, Carpin S, Shanmugam G, Lamblin F. Organic extracts from sustainable hybrid poplar hairy root cultures as potential natural antimicrobial and antibiofilm agents. PROTOPLASMA 2024; 261:1311-1326. [PMID: 39060468 DOI: 10.1007/s00709-024-01971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
In order to meet growing consumer demands in terms of naturalness, the pharmaceutical, food, and cosmetic industries are looking for active molecules of plant origin. In this context, hairy roots are considered a promising biotechnological system for the sustainable production of compounds of interest. Poplars (genus Populus, family Salicaceae) are trees of ecological interest in temperate alluvial forests and are also cultivated for their industrial timber. Poplar trees also produce specialized metabolites with a wide range of bioactive properties. The present study aimed to assess the hybrid poplar hairy root extracts for antimicrobial and antibiofilm activities against four main life-threatening strains of Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Ethyl acetate extracts from two hairy root lines (HP15-3 and HP A4-12) showed significant antibacterial properties as confirmed by disc diffusion assay. Antibiofilm activities were found to be dose dependent with significant biofilm inhibition (75-95%) recorded at 1000 µg.mL-1 in all the bacterial strains tested. Dose-dependent enhancement in the release of exopolysaccharides was observed in response to treatment with extracts, possibly because of stress and bacterial cell death. Fluorescence microscopy confirmed loss of cell viability of treated bacterial cells concomitant with increased production of reactive oxygen species compared to the untreated control. Overall, this study demonstrates for the first time a high potential of poplar hairy root extracts as a natural and safe platform to produce antimicrobial agents in pharmaceutical, food, industrial water management, or cosmetic industries.
Collapse
Affiliation(s)
- Sonia Malik
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Gowtham Kumaraguru
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Margot Bruat
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Françoise Chefdor
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Christiane Depierreux
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - François Héricourt
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Sabine Carpin
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Girija Shanmugam
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Frédéric Lamblin
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France.
| |
Collapse
|
4
|
Taslim F, Ashraf MU, Farooq M, Mahmood A, Sarfraz RM, Ijaz H, Shahid N, Gad HA. Development of pH-responsive Hydrogel from Copolymers of Artemisia vulgaris Seed Mucilage, Mucin, and poly(methacrylate) for Controlled Delivery of Acyclovir Sodium. Macromol Rapid Commun 2024:e2400421. [PMID: 39340476 DOI: 10.1002/marc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Indexed: 09/30/2024]
Abstract
To cope with the constraints of conventional drug delivery systems, site-specific drug delivery systems are the major focus of researchers. The present research developed water-swellable, pH-responsive methacrylic acid-based hydrogel scaffolds of Artemisia vulgaris seed mucilage with mucin and loaded with acyclovir sodium as a model drug. The developed hydrogel discs are evaluated for diverse parameters. Drug loading efficiency in all formulations ranges from 63% to 75%. The hydrogels exhibited pH-dependent swelling, displaying optimum swelling in a phosphate buffer (pH 7.4), and insignificant swelling in an acidic buffer (pH 1.2), in addition, they responded well to electrolyte concentrations. The sol-gel fraction is estimated ranging from 60 to 95%. Dissolution studies unveiled sustained drug release for 24 h in a phosphate buffer of pH 7.4, exhibiting zero-order release kinetics. Moreover, FTIR spectra confirmed the drug-excipient compatibility. SEM photomicrographs revealed a rough and porous surface of hydrogel discs with several pores and channels. The PXRD diffractograms exposed the amorphous nature of the polymeric blends. The findings of acute toxicity studies proved the developed hydrogel network is biocompatible. Therefore, these outcomes connote the newly created network as a smart delivery system, able to dispatch acyclovir sodium into the intestinal segment for a prolonged period.
Collapse
Affiliation(s)
- Fouzia Taslim
- Faculty of Pharmacy, the University of Lahore, Lahore, 54600, Pakistan
| | | | - Muhammad Farooq
- Faculty of Pharmacy, the University of Lahore, Lahore, 54600, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, University of Chakwal, Chakwal, 48800, Pakistan
| | | | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Nariman Shahid
- Faculty of Pharmacy, the University of Lahore, Lahore, 54600, Pakistan
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
| |
Collapse
|
5
|
Mathur A, Meena A, Luqman S. Monoterpenoids: An upcoming class of therapeutic agents for modulating cancer metastasis. Phytother Res 2024; 38:939-969. [PMID: 38102850 DOI: 10.1002/ptr.8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Monoterpenoids, a sub-class of terpenoids, are secondary metabolites frequently extracted from the essential oils of aromatic plants. Their antitumor properties including antiproliferative, apoptotic, antiangiogenic, and antimetastatic effects along with other biological activities have been the subject of extensive study due to their diverse characteristics. In recent years, numerous investigations have been conducted to understand its potential anticancer impacts, specifically focusing on antiproliferative and apoptotic mechanisms. Metastasis, a malignancy hallmark, can exert either protective or destructive influences on tumor cells. Despite this, the potential antimetastatic and antiangiogenic attributes of monoterpenoids need further exploration. This review focuses on specific monoterpenoids, examining their effects on metastasis and relevant signaling pathways. The monoterpenoids exhibit a high level of complexity as natural products that regulate metastatic proteins through various signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, mitogen-activated protein kinase/extracellular signal-regulated kinase/jun N-terminal kinase, nuclear factor kappa B, vascular endothelial growth factor, and epithelial mesenchymal transition process. Additionally, this review delves into the biosynthesis and classification of monoterpenoids, their potential antitumor impacts on cell lines, the plant sources of monoterpenoids, and the current status of limited clinical trials investigating their efficacy against cancer. Moreover, monoterpenoids depict promising potential in preventing cancer metastasis, however, inadequate clinical trials limit their drug usage. State-of-the-art techniques and technologies are being employed to overcome the challenges of utilizing monoterpenoids as an anticancer agent.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Li C, Liu J, Li W, Liu Z, Yang X, Liang B, Huang Z, Qiu X, Li X, Huang K, Zhang X. Biobased Intelligent Food-Packaging Materials with Sustained-Release Antibacterial and Real-Time Monitoring Ability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37966-37975. [PMID: 37503816 DOI: 10.1021/acsami.3c09709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
It has been widely accepted that sustainable polymers derived from renewable resources are able to replace the short-turnover petroleum-based materials and reduce environmental impact in the future. However, their hydrophilic chemical structures rich with oxygen groups could lead to easy growth of bacteria, which greatly limit their applications in packaging materials. Here, we present an intelligent food-packaging material with sustained-release antibacterial and real-time monitoring ability based on totally biobased contents. In detail, sodium alginate with Artemisia argyi emission oil (encapsulated in gelatin-Arabic gum microcapsules) and citric acid-sourced pH-responsive carbon quantum dots (CQDs) are coated on bamboo cellulose papers. The obtained biobased composite material (almost 100% biocarbon content) with antibacterial ability is able to extend the shelf life of fresh shrimps and can be biodegraded. Moreover, owing to the introduction of CQDs, the composite can rapidly (within 1 s) detect slight pH variations (response pH ∼5, 10-9 mol/L of OH-) through an obvious color change (hue value from 305 to 355°). The developed strategy may open up new opportunities in the design of multifunctional biobased composites for intelligent applications.
Collapse
Affiliation(s)
- Changchun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Wanhe Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhenghong Liu
- Guangxi Xinggui Paper Co., Ltd., Laibin 546128, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Bin Liang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhuo Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Kai Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Nurlaelasari A, Wulandari AR, Caro TM, Nugroho HA, Sukaryo S, Cahyadi M, Kurniawan W, Hamid PH. Artemisia vulgaris anthelmintic activities to ova and adult stages of Fasciola gigantica in vitro. Vet World 2023; 16:1141-1153. [PMID: 37576776 PMCID: PMC10420699 DOI: 10.14202/vetworld.2023.1141-1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/28/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Fasciolosis due to Fasciola gigantica is endemic to tropical countries and Fasciola hepatica in temperate climates, highly detrimental to livestock and known as foodborne zoonotic diseases. The strategic control of the disease is mainly the use of chemical anthelmintic. This study aimed to evaluate the anthelmintic properties of Artemisia vulgaris extract on the ova and adult stages of F. gigantica. Materials and Methods Samples were collected from the Ampel Abbatoir, Boyolali District, Central Java, Indonesia. The ova from 20-gallbladders of cattle which were naturally infected with F. gigantica and 270 living F. gigantica worms were used in this study. The ovicidal assay was performed by incubating the ova with A. vulgaris in different concentrations, that is, 5%, 2.5%, and 1.25% for 5, 9, 11, 14, and 16 days. The efficacies were evaluated by quantification of ova degeneration during developmental stages in different time points and egg-hatch assay. The flukicidal effects were observed by mortality assay in 5, 10, 20, 40, 80, 160, 320, and 640 min incubations followed by scanning electron microscopy for surface morphology and histology of the fluke's transversal sections. Results The concentration of 5% A. vulgaris showed the strongest ovicidal activities. The percentage of hatching ova on day 16 at concentrations of 5%, 2.5%, and 1.25% were 3.33%, 6.67%, and 16.67%. These ova hatch assay showed a significant reduction (p < 0.001) compared to untreated control. The flukicidal effect was significant (p < 0.001) at a concentration of 20%, with a mortality rate reaching 66.67% in the 40 min of incubation time. The surface properties of the adult worms, including the spine, tegument, acetabulum, intestine, and vitelline follicles, were disintegrated. Conclusion The results showed that A. vulgaris has the potential ovicidal and flukicidal properties to F. gigantica. The active compounds remained necessary to be elucidated further and its modes of action would be interesting to be predicted by molecular docking modeling.
Collapse
Affiliation(s)
- Andini Nurlaelasari
- Department of Animal Science, Faculty of Agriculture, Sebelas Maret University, Indonesia
| | | | - Tamara Muñoz Caro
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria y Recursos Naturales, Universidad Santo Tomás, Chile
| | | | - Sukaryo Sukaryo
- Department of Animal Science, Faculty of Agriculture, Sebelas Maret University, Indonesia
| | - Muhammad Cahyadi
- Department of Animal Science, Faculty of Agriculture, Sebelas Maret University, Indonesia
| | - Wahyu Kurniawan
- Agency of Livestock and Fishery Services, Boyolali District, Central Java, Indonesia
| | - Penny Humaidah Hamid
- Department of Animal Science, Faculty of Agriculture, Sebelas Maret University, Indonesia
| |
Collapse
|
8
|
How SW, Low DYS, Leo BF, Manickam S, Goh BH, Tang SY. A Critical Review on the Current State of Antimicrobial Glove Technologies: Advances, Challenges, and Future Prospects. J Hosp Infect 2023:S0195-6701(23)00111-1. [PMID: 37044283 DOI: 10.1016/j.jhin.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Following recent viral outbreaks, there has been a significant increase in global demand for gloves. Biomedical research increasingly focuses on antimicrobial gloves to combat microbial transmission and hospital-acquired infections. Most antimicrobial gloves are manufactured using antimicrobial chemicals such as disinfectants, biocides, and sanitizers. The design of antimicrobial gloves incorporates advanced technologies, including colloidal particles and nanomaterials, to enhance antimicrobial effectiveness. A category of antimicrobial gloves also explores and integrates natural antimicrobial benefits from animals, plants, and microorganisms. Many types of antimicrobial agents are available; however, it is crucial that the selected agent exhibits a broad spectrum of activity and is not susceptible to promoting resistance. Additionally, future research should focus on the potential effect of antimicrobial gloves on the skin microbiota and irritation during extended wear. Careful integration of the antimicrobial agent is essential to ensure optimal effectiveness without compromising the mechanical properties of the gloves.
Collapse
Affiliation(s)
- Sher Wei How
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Darren Yi Sern Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Fen Leo
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang Province, China.
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
9
|
Singh NB, Devi ML, Biona T, Sharma N, Das S, Chakravorty J, Mukherjee PK, Rajashekar Y. Phytochemical Composition and Antimicrobial Activity of Essential Oil from the Leaves of Artemisia vulgaris L. Molecules 2023; 28:molecules28052279. [PMID: 36903525 PMCID: PMC10005419 DOI: 10.3390/molecules28052279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Artemisia vulgaris is an enormously useful aromatic plant known for its insecticidal, antifungal, parasiticidal, and medicinal values. The main aim of this study is to investigate phytochemical contents and the potential antimicrobial activities of Artemisia vulgaris essential oil (AVEO) from the fresh leaves of A. vulgaris grown in Manipur. The AVEO isolated by hydro-distillation from A. vulgaris were analyzed by gas chromatography/mass spectrometry and solid-phase microextraction-GC/MS to describe their volatile chemical profile. There were 47 components identified in the AVEO by GC/MS, amounting to 97.66% of the total composition, while 97.35% were identified by SPME-GC/MS. The prominent compounds present in AVEO analyzed by direct injection and SPME methods are found to be eucalyptol (29.91% and 43.70%), sabinene (8.44% and 8.86%), endo-Borneol (8.24% and 4.76%), 2,7-Dimethyl-2,6-octadien-4-ol (6.76% and 4.24%), and 10-epi-γ-Eudesmol (6.50% and 3.09%). The consolidated component in the leaf volatiles comes to the terms of monoterpenes. The AVEO exhibits antimicrobial activities against fungal pathogens such as Sclerotium oryzae (ITCC 4107) and Fusarium oxysporum (MTCC 9913) and bacterial cultures such as Bacillus cereus (ATCC 13061) and Staphylococcus aureus (ATCC 25923). The percent inhibition of AVEO against the S. oryzae and F. oxysporum was found up to 50.3% and 33.13%, respectively. The MIC and MBC of the essential oil tested for B. cereus and S. aureus were found to be (0.3%, 0.63%) and (0.63%, 2.5%), respectively. Finally, the results revealed that the AVEO characterized by the hydro-distillation and SPME extraction yielded the same chemical profile and showed potent antimicrobial activities. Further research into A. vulgaris's antibacterial properties can be performed in order to use it as a source for natural antimicrobial medications.
Collapse
Affiliation(s)
- Nameirakpam Bunindro Singh
- Insect Resources Laboratory, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal 795001, India
- Department of Zoology, Rajiv Gandhi University, Itanagar 781014, India
| | - Moirangthem Lakshmipriyari Devi
- Plant Molecular Genetics and Genomics Laboratory, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal 795001, India
| | - Thokchom Biona
- Insect Resources Laboratory, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal 795001, India
| | - Nanaocha Sharma
- Insect Resources Laboratory, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal 795001, India
| | - Sudripta Das
- Plant Molecular Genetics and Genomics Laboratory, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal 795001, India
| | | | - Pulok Kumar Mukherjee
- Insect Resources Laboratory, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal 795001, India
| | - Yallappa Rajashekar
- Insect Resources Laboratory, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal 795001, India
- Correspondence: ; Tel.: +91-8415902539; Fax: +91-385-2446121
| |
Collapse
|
10
|
Abdel Rahman R, Kamal N, Mediani A, Farag MA. How Do Herbal Cigarettes Compare To Tobacco? A Comprehensive Review of Their Sensory Characters, Phytochemicals, and Functional Properties. ACS OMEGA 2022; 7:45797-45809. [PMID: 36570239 PMCID: PMC9773184 DOI: 10.1021/acsomega.2c04708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Herbal cigarettes, known as tobacco-free or nicotine-free cigarettes, are those recognized as being-tobacco free, being composed of a mixture of various herbs claimed to lessen the smoking habit hazards. However, controversial data regarding its properties occur in the literature with no comprehensive overview or analysis of its effects. Like herbal smokeless tobacco, they are often used to substitute for tobacco products (primarily cigarettes) regarded as a "nonsmoking" aid. This review capitalizes on herbal cigarettes with regard to their quality characteristics, sensory attributes, chemical composition, and health properties to rationalize their choice as a nonsmoking aid. Furthermore, the impacts of heat and/or pyrolysis that occur during smoking on its chemical composition are presented for the first time. Some herbal smokes may produce notable metabolic problems that increase the risk of several chronic metabolic diseases. In general, burning substances from plants can have a variety of negative effects on the body attributed to toxic chemicals such as carbon monoxide, polyaromatics, nicotine, and N-nitrosamines. This review compiles and discusses the phytochemical compositions detected in various herbal cigarettes alongside sensory and quality attributes and health effects.
Collapse
Affiliation(s)
- Rania
T. Abdel Rahman
- Phytochemistry
and National Products Department, Technical Office of Central Administration
of Drug Control, Egyptian Drug Authority
(EDA), Giza 12553, Egypt
| | - Nurkhalida Kamal
- Institute
of Systems Biology (INBIOSIS), Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmed Mediani
- Institute
of Systems Biology (INBIOSIS), Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
11
|
Panda SK, Daemen M, Sahoo G, Luyten W. Essential Oils as Novel Anthelmintic Drug Candidates. Molecules 2022; 27:8327. [PMID: 36500419 PMCID: PMC9735941 DOI: 10.3390/molecules27238327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
Helminths, with an estimated 1.5 billion annual global infections, are one of the major health challenges worldwide. The current strategy of the World Health Organization to prevent helminth infection includes increasing hygienic awareness, providing better sanitation and preventative anthelmintic drug therapy in vulnerable populations. Nowadays, anthelmintic drugs are used heavily in livestock, both in case of infection and as a preventative measure. However, this has led to the development of resistance against several of the most common drugs, such as levamisole, ivermectin and thiabendazole. As many as 70% of the livestock in developed countries now has helminths that are drug resistant, and multiple resistance is common. Because of this, novel anthelmintics are urgently needed to help combat large-scale production losses. Prior to this review, no comprehensive review of the anthelmintic effects of essential oils and their components existed. Multiple review articles have been published on the uses of a single plant and its extracts that only briefly touch upon their anthelmintic activity. This review aims to provide a detailed overview of essential oils and their components as anthelmintic treatment against a wider variety of helminths.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar 751004, Odisha, India
- Department of Zoology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Marijn Daemen
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Ekiert H, Klimek-Szczykutowicz M, Rzepiela A, Klin P, Szopa A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules 2022; 27:6427. [PMID: 36234965 PMCID: PMC9571683 DOI: 10.3390/molecules27196427] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/19/2023] Open
Abstract
Artemisia species play a vital role in traditional and contemporary medicine. Among them, Artemisia abrotanum, Artemisia absinthium, Artemisia annua, Artemisia dracunculus, and Artemisia vulgaris are the most popular. The chemical composition and bioactivity of these species have been extensively studied. Studies on these species have confirmed their traditional applications and documented new pharmacological directions and their valuable and potential applications in cosmetology. Artemisia ssp. primarily contain sesquiterpenoid lactones, coumarins, flavonoids, and phenolic acids. Essential oils obtained from these species are of great biological importance. Extracts from Artemisia ssp. have been scientifically proven to exhibit, among others, hepatoprotective, neuroprotective, antidepressant, cytotoxic, and digestion-stimulating activities. In addition, their application in cosmetic products is currently the subject of several studies. Essential oils or extracts from different parts of Artemisia ssp. have been characterized by antibacterial, antifungal, and antioxidant activities. Products with Artemisia extracts, essential oils, or individual compounds can be used on skin, hair, and nails. Artemisia products are also used as ingredients in skincare cosmetics, such as creams, shampoos, essences, serums, masks, lotions, and tonics. This review focuses especially on elucidating the importance of the most popular/important species of the Artemisia genus in the cosmetic industry.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, The Institute of Medical Sciences, Medical College, Jan Kochanowski University, IX Wieków Kielc 19a, 25-516 Kielce, Poland
| | - Agnieszka Rzepiela
- Museum of Pharmacy, Medical College, Jagiellonian University, Floriańska 25, 31-019 Kraków, Poland
| | - Paweł Klin
- US Army Health Clinic, Urlas Kaserne, Building 8156, 91522 Ansbach, Germany
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
13
|
Sharifi-Rad J, Herrera-Bravo J, Semwal P, Painuli S, Badoni H, Ezzat SM, Farid MM, Merghany RM, Aborehab NM, Salem MA, Sen S, Acharya K, Lapava N, Martorell M, Tynybekov B, Calina D, Cho WC. Artemisia spp.: An Update on Its Chemical Composition, Pharmacological and Toxicological Profiles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5628601. [PMID: 36105486 PMCID: PMC9467740 DOI: 10.1155/2022/5628601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022]
Abstract
Artemisia plants are traditional and ethnopharmacologically used to treat several diseases and in addition in food, spices, and beverages. The genus is widely distributed in all continents except the Antarctica, and traditional medicine has been used as antimalarial, antioxidant, anticancer, antinociceptive, anti-inflammatory, and antiviral agents. This review is aimed at systematizing scientific data on the geographical distribution, chemical composition, and pharmacological and toxicological profiles of the Artemisia genus. Data from the literature on Artemisia plants were taken using electronic databases such as PubMed/MEDLINE, Scopus, and Web of Science. Selected papers for this updated study included data about phytochemicals, preclinical pharmacological experimental studies with molecular mechanisms included, clinical studies, and toxicological and safety data. In addition, ancient texts and books were consulted. The essential oils and phytochemicals of the Artemisia genus have reported important biological activities, among them the artemisinin, a sesquiterpene lactone, with antimalarial activity. Artemisia absinthium L. is one of the most famous Artemisia spp. due to its use in the production of the absinthe drink which is restricted in most countries because of neurotoxicity. The analyzed studies confirmed that Artemisia plants have many traditional and pharmacological applications. However, scientific data are limited to clinical and toxicological research. Therefore, further research is needed on these aspects to understand the full therapeutic potential and molecular pharmacological mechanisms of this medicinal species.
Collapse
Affiliation(s)
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed To Be University, Dehradun, 248002, Uttarakhand, India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Prem Nagar, Dehradun, 248007 Uttarakhand, India
| | - Himani Badoni
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Prem Nagar, Dehradun, 248007, Uttarakhand, India
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mai M. Farid
- Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, P. O. 12622, Giza, Egypt
| | - Rana M. Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth street, Dokki, Giza, Egypt
| | - Nora M. Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, 32511 Menoufia, Egypt
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Natallia Lapava
- Medicine Standardization Department, Vitebsk State Medical University, Belarus
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, And Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico (UDT), 4070386 Concepción, Chile
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
14
|
Najar B, Pistelli L, Marchioni I, Pistelli L. Valorization of a Waste Product of Edible Flowers: Volatile Characterization of Leaves. Molecules 2022; 27:molecules27072172. [PMID: 35408571 PMCID: PMC9000653 DOI: 10.3390/molecules27072172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: The leaves of some plants are reported for their culinary uses, while in edible flowers, they are one of the discarded products in the supply chain. We investigated the volatile profile (VP) and the essential oil (EO) compositions of leaves from 12 Lamiaceae species, of which nine belong to the Mentheae tribe and three to the Ocimeae tribe. (2) Methods: Phytochemical analyses were performed using a GC-MS instrument. (3) Results: More than 53% of the Ocimeae tribe VP was represented by sesquiterpene hydrocarbons (SH), followed by phenylpropanoids, except for O. × citriodorum, where oxygenated monoterpenes (OM) were the second main class. OM prevailed in six species of the Mentheae tribe except for Agastache ‘Arcado Pink’, Salvia discolor, and S. microphylla, where SH dominated. The EO composition of Ocimeae tribe showed a similar behavior to that of VP concerning the predominant classes. O. basilicum ‘Blue Spice’ (Ob-BS) was an exception, since it showed oxygenated sesquiterpenes (OS: 29.6%) as a second principal class. Sesquiterpene compounds were also present in a high amount in two species of the Salviinae subtribe (S. microphylla and S. discolor) and two of the Nepetinae subtribe (Nepeta × faasenii and A. ‘Arcado Pink’). The remaining species of the Mentheae tribe were characterized by OM. (4) Conclusions: Many of the main compounds found were reported for their importance in human health and thus are important as ingredients in several new industrial products.
Collapse
Affiliation(s)
- Basma Najar
- Dipartimento Scienze Agrarie, Alimentari e Agro-ambientali (DISAAA-a), Università di Pisa, 56124 Pisa, Italy; (L.P.); (I.M.)
- Correspondence:
| | - Laura Pistelli
- Dipartimento Scienze Agrarie, Alimentari e Agro-ambientali (DISAAA-a), Università di Pisa, 56124 Pisa, Italy; (L.P.); (I.M.)
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute (NUTRA-FOOD), Università di Pisa, 56124 Pisa, Italy;
| | - Ilaria Marchioni
- Dipartimento Scienze Agrarie, Alimentari e Agro-ambientali (DISAAA-a), Università di Pisa, 56124 Pisa, Italy; (L.P.); (I.M.)
| | - Luisa Pistelli
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute (NUTRA-FOOD), Università di Pisa, 56124 Pisa, Italy;
- Dipartimento di Farmacia, Università di Pisa, 56126 Pisa, Italy
| |
Collapse
|
15
|
Jepsen T, Jensen B, Jørgensen NOG. Volatiles produced by Streptomyces spp. delay rot in apples caused by Colletotrichum acutatum. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100121. [PMID: 35909604 PMCID: PMC9325864 DOI: 10.1016/j.crmicr.2022.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/24/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by Streptomyces have antifungal properties. Streptomyces VOCs reduced growth of the fungus Colletotrichum acutatum biomass. Apples infected by C. acutatum had reduced rot when incubated with Streptomyces. Biofumigation by Streptomyces VOCs may help inhibit postharvest rot in fruits.
Volatile organic compounds (VOCs) produced by microorganisms may prevent postharvest rot in fruits. Here, it was examined if VOCs from different species of Streptomyces can control infection in apples caused by the fungal pathogen Colletotrichum acutatum. Incubation of C. acutatum-infected apples in semi-closed boxes with actively growing strains of three Streptomyces (S. coelicolor, S. diastatochromogenes and Streptomyces strain 2R) showed that VOCs reduced rot areas of the apples by 45-66% after 8 days and 39-57% after 10 days, relative to infected apples incubated without Streptomyces. No differences in inhibition among the three strains were seen. In contrast, a mutant strain of Streptomyces that lacks major genes involved in biosynthesis of secondary metabolites, did not reduce development of rot in the apples. Furthermore, Streptomyces VOCs reduced radial hyphal growth of C. acutatum on agar. Several of the VOCs produced by three Streptomyces strains have previously shown fungicidal properties. Although the specific VOCs being active in inhibition of C. acutatum remain to be determined, VOCs may have a great potential as biofumigants to minimize postharvest diseases in fruits.
Collapse
|
16
|
JUNG EP, ALVES RC, ROCHA WFDC, MONTEIRO SDS, RIBEIRO LDO, MOREIRA RFA. Chemical profile of the volatile fraction of Bauhinia forficata leaves: an evaluation of commercial and in natura samples. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.34122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Eliane Przytyk JUNG
- Instituto Nacional de Tecnologia, Brasil; Universidade Federal do Estado do Rio de Janeiro, Brasil
| | | | | | | | | | | |
Collapse
|
17
|
Nowak A, Duchnik W, Makuch E, Kucharski Ł, Ossowicz-Rupniewska P, Cybulska K, Sulikowski T, Moritz M, Klimowicz A. Epilobium angustifolium L. Essential Oil-Biological Activity and Enhancement of the Skin Penetration of Drugs-In Vitro Study. Molecules 2021; 26:7188. [PMID: 34885770 PMCID: PMC8658823 DOI: 10.3390/molecules26237188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Epilobium angustifolium L. is a popular medicinal plant found in many regions of the world. This plant contains small amounts of essential oil whose composition and properties have not been extensively investigated. There are few reports in the literature on the antioxidant and antifungal properties of this essential oil and the possibility of applying it as a potential promoter of the skin penetration of drugs. The essential oil was obtained by distillation using a Clavenger type apparatus. The chemical composition was analyzed by the GC-MS method. The major active compounds of E. angustifolium L. essential oil (EOEa) were terpenes, including α-caryophyllene oxide, eucalyptol, β-linalool, camphor, (S)-carvone, and β-caryophyllene. The analyzed essential oil was also characterized by antioxidant activity amounting to 78% RSA (Radical Scavenging Activity). Antifungal activity against the strains Aspergillus niger, A. ochraceus, A. parasiticum, and Penicillium cyclopium was also determined. The largest inhibition zone was observed for strains from the Aspergillus group. The EOEa enhanced the percutaneous penetration of ibuprofen and lidocaine. After a 24 h test, the content of terpene in the skin and the acceptor fluid was examined. It has been shown that the main compounds contained in the essential oil do not penetrate through the skin, but accumulate in it. Additionally, FTIR-ATR analysis showed a disturbance of the stratum corneum (SC) lipids caused by the essential oil application. Due to its rich composition and high biological activity, EOEa may be a potential candidate to be applied, for example, in the pharmaceutical or cosmetic industries. Moreover, due to the reaction of the essential oil components with SC lipids, the EOEa could be an effective permeation enhancer of topically applied hydrophilic and lipophilic drugs.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| | - Wiktoria Duchnik
- Department of Pharmaceutical Chemistry, Pomeranian Medical University, PL-70111 Szczecin, Poland; (W.D.); (M.M.)
| | - Edyta Makuch
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, PL-70322 Szczecin, Poland; (E.M.); (P.O.-R.)
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, PL-70322 Szczecin, Poland; (E.M.); (P.O.-R.)
| | - Krystyna Cybulska
- Department of Microbiology and Environmental Chemistry, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, PL-71434 Szczecin, Poland;
| | - Tadeusz Sulikowski
- Department of General and Transplantation Surgery, Pomeranian Medical University, PL-71252 Szczecin, Poland;
| | - Michał Moritz
- Department of Pharmaceutical Chemistry, Pomeranian Medical University, PL-70111 Szczecin, Poland; (W.D.); (M.M.)
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| |
Collapse
|
18
|
Impact of Ethyl Methane Sulphonate Mutagenesis in Artemisia vulgaris L. under NaCl Stress. BIOTECH 2021; 10:biotech10030018. [PMID: 35822772 PMCID: PMC9245466 DOI: 10.3390/biotech10030018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
The present investigation aimed to obtain salt-tolerant Artemisia vulgaris L. to develop a constant form through in vitro mutagenesis with ethyl methane sulphonate (EMS) as the chemical mutagen. NaCl tolerance was evaluated by the ability of the callus to maintain its growth under different concentrations, ranges from (0 mM to 500 mM). However, NaCl salinity concentration at (500 mM) did not show any development of callus, slight shrinking, and brown discoloration taking place over a week. Thus, all the biochemical and antioxidant assays were limited to (0–400 mM) NaCl. On the other hand, selected calluses were treated with 0.5% EMS for 30, 60, and 90 min and further subcultured on basal media fortified with different concentrations of 0–400 mM NaCl separately. Thus, the callus was treated for 60 min and was found to induce the mutation on the callus. The maximum salt-tolerant callus from 400 mM NaCl was regenerated in MS medium fortified with suitable hormones. Biochemical parameters such as chlorophyll, carotenoids, starch, amino acids, and phenol contents decreased under NaCl stress, whereas sugar and proline increased. Peroxidase (POD) and superoxide dismutase (SOD) activities peaked at 200 mM NaCl, whereas catalase (CAT) was maximum at 100 mM NaCl. Enhanced tolerance of 0.5% the EMS-treated callus, attributed to the increased biochemical and antioxidant activity over the control and NaCl stress. As a result, the mutants were more tolerant of salinity than the control plants.
Collapse
|
19
|
Anti-Inflammatory Activity of Artemisia vulgaris Leaves, Originating from Three Different Altitudes of Nepal. ScientificWorldJournal 2021; 2021:6678059. [PMID: 34257625 PMCID: PMC8245213 DOI: 10.1155/2021/6678059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
This study aimed to evaluate and compare the in vivo chronic anti-inflammatory efficacy, from the ethyl acetate and ethanolic extracts of Artemisia vulgaris leaves, grown at three different altitudes in Nepal, by formalin-induced paw edema in Swiss albino mice. Edema was induced on the mice paw by administering 0.2% of formalin injection. Indomethacin was used as a standard drug at the concentration of 5 mg/kg of body weight. Ethyl acetate and ethanolic leaves extract, at the concentration of 200 mg/kg and 400 mg/kg, were used as test drugs. Standard drug and all the extracts were administered 30 min before formalin injection. The paw thickness was measured at 0, 1, 2, 3, 24, 48, and 72 hours after formalin injection, using a Vernier caliper. It was observed that both ethyl acetate and ethanolic extract from all the altitudes exhibited significant inhibition of paw edema (p < 0.05) induced by formalin. Maximum activity was shown by 400 mg/kg of the plant leaf extract taken from the temperate zone, with 54.05% of paw edema inhibition, and it is almost similar to the inhibition of standard drug (56.75%). Moreover, the ethanolic extract was found to be more effective than ethyl acetate extract in all the plant samples. The results suggested that the anti-inflammatory effect of A. vulgaris leaves increases with an increase in altitudes and this plant can be used as a useful source of medicine to treat chronic inflammation.
Collapse
|
20
|
Ali R, Rooman M, Mussarat S, Norin S, Ali S, Adnan M, Khan SN. A Systematic Review on Comparative Analysis, Toxicology, and Pharmacology of Medicinal Plants Against Haemonchus contortus. Front Pharmacol 2021; 12:644027. [PMID: 34040520 PMCID: PMC8141741 DOI: 10.3389/fphar.2021.644027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background:Haemonchus contortus is an important pathogenic nematode parasite and major economic constraint of small ruminants in tropics and subtropics regions. This review is an attempt to systematically address the; (a) efficacy of different plants against H. contortus by in vitro and in vivo proof; (b) toxicology, mechanism of action, and active phyto-compounds involve in anti-haemonchiasis activity; (c) and comparative analysis of plant species evaluated both in vitro and in vivo. Methods: Online databases (Google Scholar, PubMed, Scopus, and ScienceDirect) were searched and published research articles (1980–2020) were gathered and reviewed. Results: A total of 187 plant species were reported belonging to 59 families and 145 genera with Asteraceae and Fabaceae being frequently used. Out of the total plant species, 171 species were found to be evaluated in vitro and only 40 species in vivo. Twenty-four species were commonly evaluated for in vitro and in vivo anti-haemonchiasis activity. Among the reported assays, egg hatching test (EHT) and fecal egg count reduction (FECR) were the most widely used assays in vitro and in vivo, respectively. Moreover, sheep were the frequently used experimental model in vivo. After comparative analysis, Lachesiodendron viridiflorum, Corymbia citriodora, Calotropis procera, and Artemisia herba-alba were found highly effective both in vitro and in vivo. L. viridiflorum inhibited enzymatic activities and metabolic processes of the parasite and was found to be safe without toxic effects. C. citriodora was moderately toxic in vivo, however, the plant extract produced promising nematicidal effects by causing muscular disorganization and changes in the mitochondrial profile. Additionally, C. procera and A. herba-alba despite of their high anti-haemonchiasis activity were found to be highly toxic at the tested concentrations. C. procera caused perforation and tegumental disorganization along with adult worm paralysis. Nineteen compounds were reported, among which anethole and carvone completely inhibited egg hatching in vitro and significantly reduced fecal egg count, decreased male length, and reproductive capacity of female in vivo. Conclusion: This review summarized different medicinal plants owing to nematicidal activities against H. contortus eggs, larvae, and adult worms. Plants like L. viridiflorum, C. citriodora, C. procera, and A. herba-alba, while compounds anethole and carvone having promising nematicidal activities and could be an alternative source for developing novel drugs after further investigation.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Rooman
- Department of Zoology, Hazara University Mansehra, Kohat, Pakistan
| | - Sakina Mussarat
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Sadia Norin
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shandana Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
21
|
Bhandari S, Sharma J, Rizal S, Yi YJ, Manandhar G. Artemisia vulgaris extract causes precocious acrosome reaction and viability loss but low rate of membrane damage in mouse spermatozoa. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:58-68. [PMID: 33987584 PMCID: PMC7882851 DOI: 10.5187/jast.2021.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
Several herbs including Artemisia are known to possess conceptive property. In the present study, mouse spermatozoa were incubated with ethanol extract of Artemisia vulgaris leaves. The effect of extract on acrosome exocytosis was studied by labeling spermatozoa with fluorescein isothiocyanate (FITC) peanut agglutinin and by staining with Coomassie blue. Viability and membrane integrity were studied by Trypan-blue staining and hypo-osmotic swelling test. Artemisia extract at very low concentration caused precocious acrosome reaction and loss of sperm viability. Acrosome reaction increased remarkably from 22.63% to 88.42% with increasing extract concentration from 0 to 2,000 µg/mL. However, the viability loss of spermatozoa was increased from 11.71% in control to 63.73% in samples treated, evaluated by Trypan-blue staining method. Membrane damage caused by the extract, evaluated by hypo-osmotic swelling test was even low, ranging from 2.27% to only 24.23%. These results indicate that Artemisia extract might block fertilization by causing precocious acrosome exocytosis in spermatozoa. A direct contraceptive effect was tested by injecting the plant extract into the vagina of female mice and then allowing them to mate with normal males. The treated female mice delivered significantly fewer litters in comparison to the control.
Collapse
Affiliation(s)
- Sabina Bhandari
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Jayaswori Sharma
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sarbesh Rizal
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Young-Joo Yi
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922, Korea
| | - Gaurishankar Manandhar
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
22
|
Gaspar de Toledo L, dos Santos Ramos MA, Bento da Silva P, Rodero CF, de Sá Gomes V, Noronha da Silva A, Pavan FR, da Silva IC, Bombarda Oda F, Flumignan DL, Gonzaga dos Santos A, Chorilli M, Gottardo de Almeida MT, Bauab TM. Improved in vitro and in vivo Anti- Candida albicans Activity of Cymbopogon nardus Essential Oil by Its Incorporation into a Microemulsion System. Int J Nanomedicine 2020; 15:10481-10497. [PMID: 33402821 PMCID: PMC7778679 DOI: 10.2147/ijn.s275258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Vulvovaginal candidiasis (VVC) is an opportunistic fungal infection that adversely affects a woman's health, due to unpleasant symptoms, therapeutic challenges, and the emergence of resistant strains. The association of natural products and nanotechnology is important to improve the antifungal potential of medicinal plants. We aimed to evaluate the in vitro and in vivo anti-Candida albicans activity of unloaded (EO) and loaded (ME+EO) essential oil of Cymbopogon nardus in the microemulsion (ME). METHODS The chemical analysis of the EO was performed by gas chromatography-mass spectrometry. The ME and ME+EO were characterized by scattering, zeta potential, polarized light microscopy, rheological assays, mucoadhesiveness and transmission electronic microscopy. The in vitro antifungal activity of the EO and ME+EO were evaluated by microdilution technique. The toxicity of EO and ME+EO was analyzed on human cell line HaCat and using alternative model assay with Artemia salina. The experimental in vivo VVC was performed in female mice (C57BL/6). RESULTS The main compounds of the EO were found to be citronellal, geranial, geraniol, citronellol, and neral. The formulations exhibited suitable size, homogeneity, negative charge, isotropic behavior, highly organized structure, and pseudoplastic behavior, for vaginal application. TEM photomicrographs showed possible EO droplets inside the spherical structures. The EO, when loaded into the ME, exhibited an improvement in its antifungal action against C. albicans. The EO was not toxic against brine shrimp nauplii. An in vivo VVC assay showed that the use of the ME significantly improved the action of the EO, since only the ME+EO promoted the eradication of the fungal vaginal infection on the third day of treatment. CONCLUSION The EO and ME+EO are promising alternatives for the control of fungal infections caused by C. albicans, once the use of nanotechnology significantly improved the antifungal action of the EO, especially in an in vivo model of VVC.
Collapse
Affiliation(s)
- Luciani Gaspar de Toledo
- School of Pharmaceutical Sciences, Department of Biological Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Patrícia Bento da Silva
- Department of Genetics and Morphology, University of Brasília (UnB), Institute of Biological Sciences, Brasília, Distrito Federal, Brazil
| | - Camila Fernanda Rodero
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University (UNESP), São Paulo, Brazil
| | - Veridiana de Sá Gomes
- School of Pharmaceutical Sciences, Department of Biological Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Anderson Noronha da Silva
- School of Pharmaceutical Sciences, Department of Biological Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, Department of Biological Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Isabel Cristiane da Silva
- School of Pharmaceutical Sciences, Department of Biological Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Fernando Bombarda Oda
- School of Pharmaceutical Sciences, Department of Natural Active Principles and Toxicology, São Paulo State University (UNESP), São Paulo, Brazil
| | - Danilo Luis Flumignan
- São Paulo Federal Institute of Education, Science and Technology (IFSP), São Paulo, Brazil
| | - André Gonzaga dos Santos
- School of Pharmaceutical Sciences, Department of Natural Active Principles and Toxicology, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, Department of Biological Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
23
|
Habash SS, Könen PP, Loeschcke A, Wüst M, Jaeger KE, Drepper T, Grundler FMW, Schleker ASS. The Plant Sesquiterpene Nootkatone Efficiently Reduces Heterodera schachtii Parasitism by Activating Plant Defense. Int J Mol Sci 2020; 21:ijms21249627. [PMID: 33348829 PMCID: PMC7765886 DOI: 10.3390/ijms21249627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Plant parasitic nematodes, including the beet cyst nematode Heterodera schachtii, constitute a devastating problem for crops worldwide. The limited availability of sustainable management options illustrates the need for new eco-friendly control means. Plant metabolites represent an invaluable source of active compounds for the discovery of such novel antagonistic agents. Here, we evaluated the impact of eight plant terpenoids on the H. schachtii parasitism of Arabidopsis thaliana. None of the metabolites affected the plant development (5 or 10 ppm). Nootkatone decreased the number of adult nematodes on A. thaliana to 50%, with the female nematodes being smaller compared to the control. In contrast, three other terpenoids increased the parasitism and/or female size. We discovered that nootkatone considerably decreased the number of nematodes that penetrated A. thaliana roots, but neither affected the nematode viability or attraction to plant roots, nor triggered the production of plant reactive oxygen species or changed the plant's sesquiterpene profile. However, we demonstrated that nootkatone led to a significant upregulation of defense-related genes involved in salicylic and jasmonic acid pathways. Our results indicate that nootkatone is a promising candidate to be developed into a novel plant protection agent acting as a stimulator of plant immunity against parasitic nematodes.
Collapse
Affiliation(s)
- Samer S. Habash
- Molecular Phytomedicine, Faculty of Agriculture, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany;
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.L.); k.- (K.-E.J.); (T.D.)
- Correspondence: (S.S.H.); (A.S.S.S.)
| | - Philipp P. Könen
- Chair of Food Chemistry, Institute of Nutritional and Food Sciences, Faculty of Agriculture, University of Bonn, Endenicher Allee 19C, 53115 Bonn, Germany; (P.P.K.); (M.W.)
| | - Anita Loeschcke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.L.); k.- (K.-E.J.); (T.D.)
- Institute of Molecular Enzyme Technology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich GmbH, 52426 Jülich, Germany
| | - Matthias Wüst
- Chair of Food Chemistry, Institute of Nutritional and Food Sciences, Faculty of Agriculture, University of Bonn, Endenicher Allee 19C, 53115 Bonn, Germany; (P.P.K.); (M.W.)
| | - Karl-Erich Jaeger
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.L.); k.- (K.-E.J.); (T.D.)
- Institute of Molecular Enzyme Technology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich GmbH, 52426 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thomas Drepper
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.L.); k.- (K.-E.J.); (T.D.)
- Institute of Molecular Enzyme Technology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich GmbH, 52426 Jülich, Germany
| | - Florian M. W. Grundler
- Molecular Phytomedicine, Faculty of Agriculture, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany;
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.L.); k.- (K.-E.J.); (T.D.)
| | - A. Sylvia S. Schleker
- Molecular Phytomedicine, Faculty of Agriculture, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany;
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany; (A.L.); k.- (K.-E.J.); (T.D.)
- Correspondence: (S.S.H.); (A.S.S.S.)
| |
Collapse
|
24
|
Judžentienė A, Būdienė J. Mugwort (Artemisia vulgaris L.) essential oils rich in germacrene D, and their toxic activity. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1857854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Asta Judžentienė
- State Research Institute Center for Physical Sciences and Technology, Department of Organic Chemistry, Vilnius, Lithuania
| | - Jurga Būdienė
- State Research Institute Center for Physical Sciences and Technology, Department of Organic Chemistry, Vilnius, Lithuania
| |
Collapse
|
25
|
Significance of Artemisia Vulgaris L. (Common Mugwort) in the History of Medicine and Its Possible Contemporary Applications Substantiated by Phytochemical and Pharmacological Studies. Molecules 2020; 25:molecules25194415. [PMID: 32992959 PMCID: PMC7583039 DOI: 10.3390/molecules25194415] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Artemisia vulgaris L. (common mugwort) is a species with great importance in the history of medicine and was called the “mother of herbs” in the Middle Ages. It is a common herbaceous plant that exhibits high morphological and phytochemical variability depending on the location where it occurs. This species is well known almost all over the world. Its herb—Artemisiae vulgaris herba—is used as a raw material due to the presence of essential oil, flavonoids, and sesquiterpenoids lactones and their associated biological activities. The European Pharmacopoeia has listed this species as a potential homeopathic raw material. Moreover, this species has been used in traditional Chinese, Hindu, and European medicine to regulate the functioning of the gastrointestinal system and treat various gynecological diseases. The general aim of this review was to analyze the progress of phytochemical and pharmacological as well as professional scientific studies focusing on A. vulgaris. Thus far, numerous authors have confirmed the beneficial properties of A. vulgaris herb extracts, including their antioxidant, hepatoprotective, antispasmolytic, antinociceptive, estrogenic, cytotoxic, antibacterial, and antifungal effects. In addition, several works have reviewed the use of this species in the production of cosmetics and its role as a valuable spice in the food industry. Furthermore, biotechnological micropropagation of A. vulgaris has been analyzed.
Collapse
|
26
|
Castronovo LM, Calonico C, Ascrizzi R, Del Duca S, Delfino V, Chioccioli S, Vassallo A, Strozza I, De Leo M, Biffi S, Bacci G, Bogani P, Maggini V, Mengoni A, Pistelli L, Lo Nostro A, Firenzuoli F, Fani R. The Cultivable Bacterial Microbiota Associated to the Medicinal Plant Origanum vulgare L.: From Antibiotic Resistance to Growth-Inhibitory Properties. Front Microbiol 2020; 11:862. [PMID: 32457726 PMCID: PMC7226918 DOI: 10.3389/fmicb.2020.00862] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
The insurgence of antibiotic resistance and emergence of multidrug-resistant (MDR) pathogens prioritize research to discover new antimicrobials. In this context, medicinal plants produce bioactive compounds of pharmacological interest: some extracts have antimicrobial properties that can contrast different pathogens. For such a purpose, Origanum vulgare L. (Lamiaceae family) is a medicinal aromatic plant, whose essential oil (EO) is recognized for its antiseptic, antimicrobial and antiviral activities. The cultivable bacteria from different compartments (i.e., flower, leaf, stem and soil) were isolated in order to: (i) characterize the bacterial microbiota associated to the plant, determining the forces responsible for the structuring of its composition (by evaluation of cross inhibition); (ii) investigate if bacterial endophytes demonstrate antimicrobial activities against human pathogens. A pool of plants belonging to O. vulgare species was collected and the specimen chemotype was defined by hydrodistillation of its essential oil. The isolation of plant associated bacteria was performed from the four compartments. Microbiota was further characterized through a culture-independent approach and next-generation sequencing analysis, as well. Isolates were molecularly typed by Random Amplified Polymorphic DNA (RAPD) profiling and taxonomically assigned by 16S rRNA gene sequencing. Antibiotic resistance profiles of isolates and pairwise cross-inhibition of isolates on agar plates (i.e., antagonistic interactions) were also assessed. High level of diversity of bacterial isolates was detected at both genus and strain level in all different compartments. Most strains were tolerant against common antibiotics; moreover, they produced antagonistic patterns of interactions mainly with strains from different compartments with respect to that of original isolation. Strains that exhibited high inhibitory properties were further tested against human pathogens, revealing a strong capacity to inhibit the growth of strains resistant to several antibiotics. In conclusion, this study regarded the characterization of O. vulgare L. chemotype and of the bacterial communities associated to this medicinal plant, also allowing the evaluation of antibiotic resistance and antagonistic interactions. This study provided the bases for further analyses on the possible involvement of endophytic bacteria in the production of antimicrobial molecules that could have an important role in clinical and therapeutic applications.
Collapse
Affiliation(s)
| | - Carmela Calonico
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Sara Del Duca
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Vania Delfino
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Sofia Chioccioli
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Alberto Vassallo
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Iolanda Strozza
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | | | | | - Giovanni Bacci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Patrizia Bogani
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Valentina Maggini
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.,Research and Innovation Center in Phytotherapy and Integrated Medicine - CERFIT Careggi University Hospital, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | | | | | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine - CERFIT Careggi University Hospital, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|