1
|
Guliy OI, Evstigneeva SS. Bacteria- and Phage-Derived Proteins in Phage Infection. FRONT BIOSCI-LANDMRK 2025; 30:24478. [PMID: 40018916 DOI: 10.31083/fbl24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 03/01/2025]
Abstract
Phages have exerted severe evolutionary pressure on prokaryotes over billions of years, resulting in major rearrangements. Without every enzyme involved in the phage-bacterium interaction being examined; bacteriophages cannot be used in practical applications. Numerous studies conducted in the past few years have uncovered a huge variety of bacterial antiphage defense systems; nevertheless, the mechanisms of most of these systems are not fully understood. Understanding the interactions between bacteriophage and bacterial proteins is important for efficient host cell infection. Phage proteins involved in these bacteriophage-host interactions often arise immediately after infection. Here, we review the main groups of phage enzymes involved in the first stage of viral infection and responsible for the degradation of the bacterial membrane. These include polysaccharide depolymerases (endosialidases, endorhamnosidases, alginate lyases, and hyaluronate lyases), and peptidoglycan hydrolases (ectolysins and endolysins). Host target proteins are inhibited, activated, or functionally redirected by the phage protein. These interactions determine the phage infection of bacteria. Proteins of interest are holins, endolysins, and spanins, which are responsible for the release of progeny during the phage lytic cycle. This review describes the main bacterial and phage enzymes involved in phage infection and analyzes the therapeutic potential of bacteriophage-derived proteins.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
2
|
Zhang S, Ye Q, Wang M, Zhu D, Jia R, Chen S, Liu M, Yang Q, Zhao X, Wu Y, Huang J, Ou X, Sun D, Tian B, He Y, Wu Z, Cheng A. Isolation and characterization of a broad-spectrum bacteriophage against multi-drug resistant Escherichia coli from waterfowl field. Poult Sci 2025; 104:104787. [PMID: 39823837 PMCID: PMC11786737 DOI: 10.1016/j.psj.2025.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Escherichia coli (E. coli) is a significant pathogen responsible for intestinal infections and foodborne diseases. The rise of antibiotic resistance poses a significant challenge to global public health. Traditional antibiotic therapy is becoming increasingly ineffective, highlighting the urgent need for innovative control strategies. This study explores the potential of bacteriophages as a sustainable alternative to traditional antibiotics. From 2021 to 2022, a total of 183 non-repetitive duck source fecal samples were collected from Mianyang City, Sichuan Province, and 126 strains of E. coli were isolated. The minimum inhibitory concentration (MIC) test showed that these strains exhibited high resistance to piperacillin (96.8%), tetracycline (88.9%), and chloramphenicol (86.5%). It is concerning that 93.7% of the isolates are classified as multidrug-resistant (MDR), posing a significant threat to existing treatment options. 20 bacteriophages were isolated from fecal and soil samples, among which 5 bacteriophages were selected for further analysis. Bacteriophage YP6 showed excellent lytic effects on MDR strains, especially strain MY104, as well as representative serotypes O1 (E. coli MY51) and O18 (E. coli MY106). The identification of YP6 as a member of the Myoviridae family was conducted using transmission electron microscopy, and it was found to have an optimal infection factor of 0.1. Bacteriophages exhibit significant thermal and pH stability, maintaining survival at temperatures up to 60 °C and pH ranges of 4 to 10. Whole genome sequencing confirmed that YP6 has a double stranded DNA genome of 139,323 base pairs (bp), and no antibiotic resistance or virulence genes were found, indicating a low possibility of horizontal gene transfer. In addition, YP6 effectively inhibits the formation of E. coli biofilm, which is a key factor in chronic infections. The in vivo experiments using Galleria mellonella (G. mellonella) larvae have shown that it has a significant protective effect against MDR E. coli infection. In summary, bacteriophage YP6 is expected to become a therapeutic agent against MDR E. coli infection due to its broad host range, environmental stability, and biofilm inhibition properties. Future research should optimize bacteriophage preparations, evaluate the safety and efficacy of animal models, and establish clinical application plans in the field of food safety.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Qiang Ye
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Yu He
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China.
| |
Collapse
|
3
|
Khan F, Naseem H, Asif M, Alvi I, Rehman SU, Rehman A. Bacteriophages RCF and 1-6bf can control the growth of avian pathogenic Escherichia coli. Poult Sci 2025; 104:104790. [PMID: 39808915 PMCID: PMC11773471 DOI: 10.1016/j.psj.2025.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Escherichia coli (E. coli) is a widely distributed pathogenic bacterium that poses a substantial hazard to poultry, leading to the development of a severe systemic disease known as colibacillosis. Colibacillosis is involved in multimillion-dollar losses to the poultry industry each year worldwide. Avian pathogenic E. coli is also involved in causing meningitis and urinary tract infections in humans. This creates a significant risk to public health. The increasing incidence of multidrug-resistant illnesses and the failure of antibiotics in human and veterinary medicine have led to a pressing demand for alternate approaches. This study investigates the possibility of bacteriophages as an acceptable substitute for antibiotics in managing E. coli infections in poultry. In the current study, two novel phages targeting E. coli (EP1) strain were isolated from sewage water and thoroughly characterized in vitro. Transmission electron microscopy reveals that Rcf and 1-6bf belong to the "Podoviridae" and "Caudovirales". Rcf has an icosahedral capsid of 18 nm with a tail size of 5 nm, while 1-6bf has an elongated head capsid of 93 nm and a short non-contractile tail of 8 nm with tail fibers for attachment. RCF and 1-6bf have genome sizes of 38 kb and 77 kb, with GC content of 50.98 % and 42.1 % respectively. Notably, phage 1-6bf displayed remarkable tolerance to high temperatures, retaining lytic activity at 95°C. Both phages effectively controlled host bacterial growth for up to 12 h post-infection. Rcf and 1-6bf produce clear plaques with a latent period of 10 min and 5 min with a burst size of 85 and 220 PFU/cell respectively.
Collapse
Affiliation(s)
- Farah Khan
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Hafsa Naseem
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asif
- Institute of Industrial Biotechnology, Govt. College University Lahore, Pakistan
| | - Iqbal Alvi
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Shafiq Ur Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
4
|
Straka M, Hubenáková Z, Janošíková L, Bugalová A, Minich A, Wawruch M, Liptáková A, Drahovská H, Slobodníková L. In Vitro Susceptibility of Clinical and Carrier Strains of Staphylococcus aureus to STAFAL ® Phage Preparation. Int J Mol Sci 2024; 25:12885. [PMID: 39684595 DOI: 10.3390/ijms252312885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The treatment of infections caused by Staphylococcus aureus is currently complicated by the increasing number of strains resistant to antimicrobial agents. One promising way to solve this problem is phage therapy. Due to the lack of data on the effectiveness and safety of phage preparations, STAFAL® is the only registered phage preparation for the treatment of infectious diseases in the Slovak Republic and the entire European Union. The aim of this work was to determine the effectiveness of the STAFAL® phage preparation against S. aureus strains of different origins with variable sensitivity to antimicrobial substances and with different genetic backgrounds. For this purpose, 111 carrier strains, 35 clinical isolates from bloodstream infections, and 46 strains from skin and soft tissue infections were analysed. The effectiveness of STAFAL® was determined by the plaque forming method. STAFAL® was effective against 74.0% of the strains tested. Susceptibility to this phage preparation was significantly higher in strains resistant to methicillin (MRSA), erythromycin and clindamycin (p < 0.05). The high efficiency of the STAFAL® preparation was confirmed against spa types t003, t024 and t032, typical of the hospital environment. The in vitro results indicate high therapeutic potential of the STAFAL® antistaphylococcal phage preparation, especially against MRSA strains.
Collapse
Affiliation(s)
- Marek Straka
- Institute of Microbiology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia
| | - Zuzana Hubenáková
- Institute of Biology, Faculty of Medicine, Slovak Medical University, 83101 Bratislava, Slovakia
| | - Lucia Janošíková
- Institute of Microbiology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia
| | - Aneta Bugalová
- Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia
| | - Andrej Minich
- Medirex Group Academy, Novozámocká 1, 94905 Nitra, Slovakia
| | - Martin Wawruch
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia
| | - Adriana Liptáková
- Institute of Microbiology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia
| | - Hana Drahovská
- Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Lívia Slobodníková
- Institute of Microbiology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia
| |
Collapse
|
5
|
Mary AS, Kalangadan N, Prakash J, Sundaresan S, Govindarajan S, Rajaram K. Relative fitness of wild-type and phage-resistant pyomelanogenic P. aeruginosa and effects of combinatorial therapy on resistant formation. Heliyon 2024; 10:e40076. [PMID: 39559211 PMCID: PMC11570307 DOI: 10.1016/j.heliyon.2024.e40076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Bacteriophages, the natural predators of bacteria, are incredibly potent candidates to counteract antimicrobial resistance (AMR). However, the rapid development of phage-resistant mutants challenges the potential of phage therapy. Understanding the mechanisms of bacterial adaptations to phage predation is crucial for phage-based prognostic applications. Phage cocktails and combinatorial therapy, using optimized dosage patterns of antibiotics, can negate the development of phage-resistant mutations and prolong therapeutic efficacy. In this study, we describe the characterization of a novel bacteriophage and the physiology of phage-resistant mutant developed during infection. M12PA is a P. aeruginosa-infecting bacteriophage with Myoviridae morphology. We observed that prolonged exposure of P. aeruginosa to M12PA resulted in the selection of phage-resistant mutants. Among the resistant mutants, pyomelanin-producing mutants, named PA-M, were developed at a frequency of 1 in 16. Compared to the wild-type, we show that PA-M mutant is severely defective in virulence properties, with altered motility, biofilm formation, growth rate, and antibiotic resistance profile. The PA-M mutant exhibited reduced pathogenesis in an allantoic-infected chick embryo model system compared to the wild-type. Finally, we provide evidence that combinatory therapy, combining M12PA with antibiotics or other phages, significantly delayed the emergence of resistant mutants. In conclusion, our study highlights the potential of combinatory phage therapy to delay the development of phage-resistant mutants and enhance the efficacy of phage-based treatments against P. aeruginosa.
Collapse
Affiliation(s)
- Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Nashath Kalangadan
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - John Prakash
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Srivignesh Sundaresan
- Department of Horticulture, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sutharsan Govindarajan
- Department of Biological Sciences, SRM University, AP, Amaravati, 522240, Andhra Pradesh, India
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| |
Collapse
|
6
|
Mohan N, Bosco K, Peter A, Abhitha K, Bhat SG. Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review. Arch Microbiol 2024; 206:443. [PMID: 39443305 DOI: 10.1007/s00203-024-04168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.
Collapse
Affiliation(s)
- Nivedya Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - Kiran Bosco
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Center for Infectious Diseases and Microbiology, Westmead, NSW, Australia
| | - Anmiya Peter
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - K Abhitha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India.
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
7
|
Zhou L, Song W, Liu T, Yan T, He Z, He W, Lv J, Zhang S, Dai X, Yuan L, Shi L. Multi-omics insights into anti-colitis benefits of the synbiotic and postbiotic derived from wheat bran arabinoxylan and Limosilactobacillus reuteri. Int J Biol Macromol 2024; 278:134860. [PMID: 39163956 DOI: 10.1016/j.ijbiomac.2024.134860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Exploring nutritional therapies that manipulate tryptophan metabolism to activate AhR signaling represents a promising approach for mitigating chronic colitis. Arabinoxylan is a bioactive constituent abundant in wheat bran. Here, we comprehensively investigated anti-colitis potentials of wheat bran arabinoxylan (WBAX), its synbiotic and postbiotic derived from WBAX and Limosilactobacillus reuteri WX-94 (i.e., a probiotic strain exhibiting tryptophan metabolic activity). WBAX fueled L. reuteri and promoted microbial conversion of tryptophan to AhR ligands during in vitro fermentation in the culture medium and in the fecal microbiota from type 2 diabetes. The WBAX postbiotic outperformed WBAX and its synbiotic in augmenting efficacy of tryptophan in restoring DSS-disturbed serum immune markers, colonic tight junction proteins and gene profiles involved in amino acid metabolism and FoxO signaling. The WBAX postbiotic remodeled gut microbiota and superiorly enhanced AhR ligands (i.e., indole metabolites and bile acids), alongside with elevation in colonic AhR and IL-22. Associations between genera and metabolites modified by the postbiotic and colitis in human were verified and strong binding capacities between metabolites and colitis-related targets were demonstrated by molecular docking. Our study advances the novel perspective of WBAX in manipulating tryptophan metabolism and anti-colitis potentials of WBAX postbiotic via promoting gut microbiota-dependent AhR signaling.
Collapse
Affiliation(s)
- Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tao Yan
- School of Food Science and Engineering, South China University of Technology, Guangdong 510641, China
| | - Ziyan He
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Weitai He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710062, China
| | - Jiayao Lv
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Shiyi Zhang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoshuang Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xbiome, Scientific Research Building, Room 907, Tsinghua High-Tech Park, Shenzhen, China
| | - Li Yuan
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
8
|
Otava UE, Tervo L, Havela R, Vuotari L, Ylänne M, Asplund A, Patpatia S, Kiljunen S. Phage-Antibiotic Combination Therapy against Recurrent Pseudomonas Septicaemia in a Patient with an Arterial Stent. Antibiotics (Basel) 2024; 13:916. [PMID: 39452183 PMCID: PMC11504013 DOI: 10.3390/antibiotics13100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Intravascular stent infections are often associated with high risks of morbidity and mortality. We report here a case of a patient with an arterial stent and recurrent Pseudomonas septicaemias successfully treated with phage-meropenem combination therapy. Methods: A 75-year-old female with arteriosclerosis and comorbidities went through a femoropopliteal bypass with prosthesis in the right inguinal area. After the bypass, she developed a recurring Pseudomonas aeruginosa infection and also neutropenia during different antibiotics. A rapidly growing pseudoaneurysm in the right inguinal area led to an emergency intra-arterial stent placement during blood stream infection, later suspected to host a P. aeruginosa biofilm. Removing the stent was deemed precarious, and phage therapy was considered as a compassionate treatment option. A three-phage cocktail infecting the P. aeruginosa strain was prepared and administered intravenously together with meropenem for two weeks, after which, a ten-month follow-up was carried out. Results: No adverse reactions occurred during the phage therapy treatment, while infection markers were normalized. In addition, recovery was seen in a PET-CT scan. During the 10-month follow-up, no further P. aeruginosa septicaemias occurred. Conclusions: Phage-meropenem combination therapy was thus found safe and effective in the treatment of recurrent Pseudomonas septicaemia in a patient with an arterial stent.
Collapse
Affiliation(s)
- Ulla Elina Otava
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland (L.T.); (R.H.)
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | - Laura Tervo
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland (L.T.); (R.H.)
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | - Riikka Havela
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland (L.T.); (R.H.)
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | - Liisa Vuotari
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
- Department of Clinical Physiology and Nuclear Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Matti Ylänne
- Human Microbiome Research Program, Research Programs Unit and Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland (S.P.)
| | - Annette Asplund
- Human Microbiome Research Program, Research Programs Unit and Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland (S.P.)
| | - Sheetal Patpatia
- Human Microbiome Research Program, Research Programs Unit and Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland (S.P.)
| | - Saija Kiljunen
- Human Microbiome Research Program, Research Programs Unit and Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland (S.P.)
- PrecisionPhage Ltd., 40500 Jyväskylä, Finland
| |
Collapse
|
9
|
Le Pogam A, Medina F, Belkacem A, Raffetin A, Jaafar D, Wodecki P, Corlouer C, Dublanchet A, Caraux-Paz P, Diallo K. Proportion of patients with prosthetic joint infection eligible for adjuvant phage therapy: a French single-centre retrospective study. BMC Infect Dis 2024; 24:923. [PMID: 39237903 PMCID: PMC11378432 DOI: 10.1186/s12879-024-09814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Bone and joint infections represent a major public health issue due to their increasing prevalence, their functional prognosis and their cost to society. Phage therapy has valuable anti-biofilm properties against prosthetic joint infections (PJI). The aim of this study was to establish the proportion of patients eligible for phage therapy and to assess their clinical outcome judged against all patients presenting with PJI. METHOD . Patients admitted for periprosthetic joint infection (PJI) at a French general hospital between 2015 and 2019 were retrospectively included. Eligibility for phage therapy was determined based on French recommendations, with polymicrobial infections serving as exclusion criteria. Patients were categorized into two groups: those eligible and those ineligible for phage therapy. We analyzed their characteristics and outcomes, including severe adverse events, duration of intravenous antibiotic therapy, length of hospitalization, and relapse rates. RESULTS . In this study, 96 patients with PJI were considered in multidisciplinary medical meetings. Of these, 44% patients (42/96) were eligible for additional phage therapy. This group of patients had a longer duration of intravenous therapy (17 days vs. 10 days, p = 0.02), more severe adverse events (11 vs. 3, p = 0.08) and had a longer hospital stay (43 days vs. 18 days, p < 0.01). CONCLUSION . A large number of patients met eligibility criteria for phage therapy and treatment and follow-up is more complex. A larger epidemiological study would more accurately describe the prognosis of eligible patients.
Collapse
Affiliation(s)
- Ambroise Le Pogam
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Fernanda Medina
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Anna Belkacem
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Alice Raffetin
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Danielle Jaafar
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Philippe Wodecki
- Department of Orthopaedic surgery, Intercommunal Hospital Centre of Villeneuve-Saint- Georges, Villeneuve-Saint-Georges, 94190, France
| | - Camille Corlouer
- Department of Bacteriology, Intercommunal Hospital Centre of Villeneuve-Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | | | - Pauline Caraux-Paz
- Department of Infective and Tropical Diseases, Intercommunal Hospital Centre of Villeneuve- Saint-Georges, Villeneuve-Saint-Georges, 94190, France
| | - Kevin Diallo
- Department of Infective and Tropical Diseases and Dermatology, University Hospital of La Reunion, Saint-Pierre, 97448, France.
| |
Collapse
|
10
|
Kristensen CS, Petersen AØ, Kilstrup M, van der Helm E, Takos A. Cell-free synthesis of infective phages from in vitro assembled phage genomes for efficient phage engineering and production of large phage libraries. Synth Biol (Oxf) 2024; 9:ysae012. [PMID: 39296367 PMCID: PMC11409935 DOI: 10.1093/synbio/ysae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Bacteriophages are promising alternatives to traditional antimicrobial treatment of bacterial infections. To further increase the potential of phages, efficient engineering methods are needed. This study investigates an approach to phage engineering based on phage rebooting and compares selected methods of assembly and rebooting of phage genomes. GG assembly of phage genomes and subsequent rebooting by cell-free transcription-translation reactions yielded the most efficient phage engineering and allowed production of a proof-of-concept T7 phage library of 1.8 × 107 phages. We obtained 7.5 × 106 different phages, demonstrating generation of large and diverse libraries suitable for high-throughput screening of mutant phenotypes. Implementing versatile and high-throughput phage engineering methods allows vastly accelerated and improved phage engineering, bringing us closer to applying effective phages to treat infections in the clinic.
Collapse
Affiliation(s)
- Camilla S Kristensen
- SNIPR Biome, Copenhagen 2100, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | - Mogens Kilstrup
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | | |
Collapse
|
11
|
Duarte J, Máximo C, Costa P, Oliveira V, Gomes NCM, Romalde JL, Pereira C, Almeida A. Potential of an Isolated Bacteriophage to Inactivate Klebsiella pneumoniae: Preliminary Studies to Control Urinary Tract Infections. Antibiotics (Basel) 2024; 13:195. [PMID: 38391581 PMCID: PMC10885952 DOI: 10.3390/antibiotics13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Urinary tract infections (UTIs) caused by resistant Klebsiella pneumoniae can lead to severe clinical complications and even death. An alternative treatment option for infected patients is using bacteriophages. In the present study, we isolated phage VB_KPM_KP1LMA (KP1LMA) from sewage water using a K. pneumoniae strain as a host. Whole-genome analysis indicated that the genome was a double-stranded linear 176,096-bp long DNA molecule with 41.8% GC content and did not contain virulence or antibiotic resistance genes. The inactivation potential of phage KP1LMA was assessed in broth at an MOI of 1 and 10, and a maximum inactivation of 4.9 and 5.4 log CFU/mL, respectively, was observed after 9 h. The efficacy at an MOI of 10 was also assessed in urine to evaluate the phage's performance in an acidic environment. A maximum inactivation of 3.8 log CFU/mL was observed after 9 h. The results suggest that phage KP1LMA could potentially control a UTI caused by this strain of K. pneumoniae, indicating that the same procedure can be used to control UTIs caused by other strains if new specific phages are isolated. Although phage KP1LMA has a narrow host range, in the future, efforts can be made to expand its spectrum of activity and also to combine this phage with others, potentially enabling its use against other K. pneumoniae strains involved in UTIs.
Collapse
Affiliation(s)
- João Duarte
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carolina Máximo
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS, Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
13
|
Romeyer Dherbey J, Bertels F. The untapped potential of phage model systems as therapeutic agents. Virus Evol 2024; 10:veae007. [PMID: 38361821 PMCID: PMC10868562 DOI: 10.1093/ve/veae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
With the emergence of widespread antibiotic resistance, phages are an appealing alternative to antibiotics in the fight against multidrug-resistant bacteria. Over the past few years, many phages have been isolated from various environments to treat bacterial pathogens. While isolating novel phages for treatment has had some success for compassionate use, developing novel phages into a general therapeutic will require considerable time and financial resource investments. These investments may be less significant for well-established phage model systems. The knowledge acquired from decades of research on their structure, life cycle, and evolution ensures safe application and efficient handling. However, one major downside of the established phage model systems is their inability to infect pathogenic bacteria. This problem is not insurmountable; phage host range can be extended through genetic engineering or evolution experiments. In the future, breeding model phages to infect pathogens could provide a new avenue to develop phage therapeutic agents.
Collapse
Affiliation(s)
- Jordan Romeyer Dherbey
- Microbial Population Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, Plön, Schleswig-Holstein 24306, Germany
| | - Frederic Bertels
- Microbial Population Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, Plön, Schleswig-Holstein 24306, Germany
| |
Collapse
|
14
|
Ding Y, Zhao L, Wang G, Shi Y, Guo G, Liu C, Chen Z, Coker OO, She J, Yu J. PacBio sequencing of human fecal samples uncovers the DNA methylation landscape of 22 673 gut phages. Nucleic Acids Res 2023; 51:12140-12149. [PMID: 37904586 PMCID: PMC10711547 DOI: 10.1093/nar/gkad977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Gut phages have an important impact on human health. Methylation plays key roles in DNA recognition, gene expression regulation and replication for phages. However, the DNA methylation landscape of gut phages is largely unknown. Here, with PacBio sequencing (2120×, 4785 Gb), we detected gut phage methylation landscape based on 22 673 gut phage genomes, and presented diverse methylation motifs and methylation differences in genomic elements. Moreover, the methylation rate of phages was associated with taxonomy and host, and N6-methyladenine methylation rate was higher in temperate phages than in virulent phages, suggesting an important role for methylation in phage-host interaction. In particular, 3543 (15.63%) phage genomes contained restriction-modification system, which could aid in evading clearance by the host. This study revealed the DNA methylation landscape of gut phage and its potential roles, which will advance the understanding of gut phage survival and human health.
Collapse
Affiliation(s)
- Yanqiang Ding
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liuyang Zhao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guoping Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Shi
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Guo
- Center for Gut Microbiome Research, Department of Surgery, Med-X Institute, Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Changan Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Olabisi Oluwabukola Coker
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junjun She
- Center for Gut Microbiome Research, Department of Surgery, Med-X Institute, Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Nikolic N, Anagnostidis V, Tiwari A, Chait R, Gielen F. Droplet-based methodology for investigating bacterial population dynamics in response to phage exposure. Front Microbiol 2023; 14:1260196. [PMID: 38075890 PMCID: PMC10703435 DOI: 10.3389/fmicb.2023.1260196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 02/12/2024] Open
Abstract
An alarming rise in antimicrobial resistance worldwide has spurred efforts into the search for alternatives to antibiotic treatments. The use of bacteriophages, bacterial viruses harmless to humans, represents a promising approach with potential to treat bacterial infections (phage therapy). Recent advances in microscopy-based single-cell techniques have allowed researchers to develop new quantitative methodologies for assessing the interactions between bacteria and phages, especially the ability of phages to eradicate bacterial pathogen populations and to modulate growth of both commensal and pathogen populations. Here we combine droplet microfluidics with fluorescence time-lapse microscopy to characterize the growth and lysis dynamics of the bacterium Escherichia coli confined in droplets when challenged with phage. We investigated phages that promote lysis of infected E. coli cells, specifically, a phage species with DNA genome, T7 (Escherichia virus T7) and two phage species with RNA genomes, MS2 (Emesvirus zinderi) and Qβ (Qubevirus durum). Our microfluidic trapping device generated and immobilized picoliter-sized droplets, enabling stable imaging of bacterial growth and lysis in a temperature-controlled setup. Temporal information on bacterial population size was recorded for up to 25 h, allowing us to determine growth rates of bacterial populations and helping us uncover the extent and speed of phage infection. In the long-term, the development of novel microfluidic single-cell and population-level approaches will expedite research towards fundamental understanding of the genetic and molecular basis of rapid phage-induced lysis and eco-evolutionary aspects of bacteria-phage dynamics, and ultimately help identify key factors influencing the success of phage therapy.
Collapse
Affiliation(s)
- Nela Nikolic
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
- Translational Research Exchange @ Exeter, University of Exeter, Exeter, United Kingdom
| | - Vasileios Anagnostidis
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Anuj Tiwari
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Remy Chait
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Fabrice Gielen
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
16
|
Abstract
Phage therapy is the application of bacterial viruses to control and, ideally, to eliminate problematic bacteria from patients. Usually employed are so-called strictly lytic phages, which upon adsorption of a bacterium should give rise to both bacterial death and bacterial lysis. This killing occurs with single-hit kinetics, resulting in relatively simple ways to mathematically model organismal-level, phage-bacterium interactions. Reviewed here are processes of phage therapy as viewed from these simpler mathematical perspectives, starting with phage dosing, continuing through phage adsorption of bacteria, and then considering the potential for phage numbers to be enhanced through in situ phage population growth. Overall, I suggest that a basic working knowledge of the underlying "simple maths" of phage therapy can be helpful toward making dosing decisions and predicting certain outcomes. This especially is during controlled in vitro experimentation but is relevant to thinking about in vivo applications as well.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
17
|
Abedon ST. Automating Predictive Phage Therapy Pharmacology. Antibiotics (Basel) 2023; 12:1423. [PMID: 37760719 PMCID: PMC10525195 DOI: 10.3390/antibiotics12091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses that infect as well as often kill bacteria are called bacteriophages, or phages. Because of their ability to act bactericidally, phages increasingly are being employed clinically as antibacterial agents, an infection-fighting strategy that has been in practice now for over one hundred years. As with antibacterial agents generally, the development as well as practice of this phage therapy can be aided via the application of various quantitative frameworks. Therefore, reviewed here are considerations of phage multiplicity of infection, bacterial likelihood of becoming adsorbed as a function of phage titers, bacterial susceptibility to phages also as a function of phage titers, and the use of Poisson distributions to predict phage impacts on bacteria. Considered in addition is the use of simulations that can take into account both phage and bacterial replication. These various approaches can be automated, i.e., by employing a number of online-available apps provided by the author, the use of which this review emphasizes. In short, the practice of phage therapy can be aided by various mathematical approaches whose implementation can be eased via online automation.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA
| |
Collapse
|
18
|
Gorzynski M, De Ville K, Week T, Jaramillo T, Danelishvili L. Understanding the Phage-Host Interaction Mechanism toward Improving the Efficacy of Current Antibiotics in Mycobacterium abscessus. Biomedicines 2023; 11:biomedicines11051379. [PMID: 37239050 DOI: 10.3390/biomedicines11051379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary infections caused by Mycobacterium abscessus (MAB) have been increasing in incidence in recent years, leading to chronic and many times fatal infections due to MAB's natural resistance to most available antimicrobials. The use of bacteriophages (phages) in clinics is emerging as a novel treatment strategy to save the lives of patients suffering from drug-resistant, chronic, and disseminated infections. The substantial research indicates that phage-antibiotic combination therapy can display synergy and be clinically more effective than phage therapy alone. However, there is limited knowledge in the understanding of the molecular mechanisms in phage-mycobacteria interaction and the synergism of phage-antibiotic combinations. We generated the lytic mycobacteriophage library and studied phage specificity and the host range in MAB clinical isolates and characterized the phage's ability to lyse the pathogen under various environmental and mammalian host stress conditions. Our results indicate that phage lytic efficiency is altered by environmental conditions, especially in conditions of biofilm and intracellular states of MAB. By utilizing the MAB gene knockout mutants of the MAB_0937c/MmpL10 drug efflux pump and MAB_0939/pks polyketide synthase enzyme, we discovered the surface glycolipid diacyltrehalose/polyacyltrehalose (DAT/PAT) as one of the major primary phage receptors in mycobacteria. We also established a set of phages that alter the MmpL10 multidrug efflux pump function in MAB through an evolutionary trade-off mechanism. The combination of these phages with antibiotics significantly decreases the number of viable bacteria when compared to phage or antibiotic-alone treatments. This study deepens our understanding of phage-mycobacteria interaction mechanisms and identifies therapeutic phages that can lower bacterial fitness by impairing an antibiotic efflux function and attenuating the MAB intrinsic resistance mechanism via targeted therapy.
Collapse
Affiliation(s)
- Mylene Gorzynski
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Katalla De Ville
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry & Molecular Biology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Week
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Bioengineering, College of Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Jaramillo
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
19
|
Petrovic Fabijan A, Iredell J, Danis-Wlodarczyk K, Kebriaei R, Abedon ST. Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLoS Biol 2023; 21:e3002119. [PMID: 37220114 PMCID: PMC10204993 DOI: 10.1371/journal.pbio.3002119] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Phage therapy is a medical form of biological control of bacterial infections, one that uses naturally occurring viruses, called bacteriophages or phages, as antibacterial agents. Pioneered over 100 years ago, phage therapy nonetheless is currently experiencing a resurgence in interest, with growing numbers of clinical case studies being published. This renewed enthusiasm is due in large part to phage therapy holding promise for providing safe and effective cures for bacterial infections that traditional antibiotics acting alone have been unable to clear. This Essay introduces basic phage biology, provides an outline of the long history of phage therapy, highlights some advantages of using phages as antibacterial agents, and provides an overview of recent phage therapy clinical successes. Although phage therapy has clear clinical potential, it faces biological, regulatory, and economic challenges to its further implementation and more mainstream acceptance.
Collapse
Affiliation(s)
- Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| | - Katarzyna Danis-Wlodarczyk
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Razieh Kebriaei
- P3 Research Laboratory, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, United States of America
| |
Collapse
|
20
|
Brackenborough K, Ellis H, Flight WG. Respiratory Viruses and Cystic Fibrosis. Semin Respir Crit Care Med 2023; 44:196-208. [PMID: 36535663 DOI: 10.1055/s-0042-1758728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The threat of respiratory virus infection to human health and well-being has been clearly highlighted by the coronavirus disease 2019 (COVID-19) pandemic. For people with cystic fibrosis (CF), the clinical significance of viral infections long predated the emergence of severe acute respiratory syndrome coronavirus 2. This article reviews the epidemiology, diagnosis, and treatment of respiratory virus infection in the context of CF as well as the current understanding of interactions between viruses and other microorganisms in the CF lung. The incidence of respiratory virus infection in CF varies by age with young children typically experiencing more frequent episodes than adolescents and adults. At all ages, respiratory viruses are very common in CF and are associated with pulmonary exacerbations. Respiratory viruses are identified at up to 69% of exacerbations, while viruses are also frequently detected during clinical stability. The full impact of COVID-19 in CF is yet to be established. Early studies found that rates of COVID-19 were lower in CF cohorts than in the general population. The reasons for this are unclear but may be related to the effects of shielding, infection control practices, maintenance CF therapies, or the inflammatory milieu in the CF lung. Observational studies have consistently identified that prior solid organ transplantation is a key risk factor for poor outcomes from COVID-19 in CF. Several key priorities for future research are highlighted. First, the impact of highly effective CFTR modulator therapy on the epidemiology and pathophysiology of viral infections in CF requires investigation. Second, the impact of respiratory viruses on the development and dynamics of the CF lung microbiota is poorly understood and viral infection may have important interactions with bacteria and fungi in the airway. Finally, bacteriophages represent a key focus of future investigation both for their role in transmission of antimicrobial resistance and as a promising treatment modality for multiresistant pathogens.
Collapse
Affiliation(s)
- Kate Brackenborough
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Huw Ellis
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - William G Flight
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom.,Research and Development, GlaxoSmithKline plc, Brentford, United Kingdom
| |
Collapse
|
21
|
Obradović M, Malešević M, Di Luca M, Kekić D, Gajić I, McAuliffe O, Neve H, Stanisavljević N, Vukotić G, Kojić M. Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. Viruses 2023; 15:v15030628. [PMID: 36992337 PMCID: PMC10052179 DOI: 10.3390/v15030628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Klebsiella pneumoniae is a global health threat and bacteriophages are a potential solution in combating pandrug-resistant K. pneumoniae infections. Two lytic phages, LASTA and SJM3, active against several pandrug-resistant, nosocomial strains of K. pneumoniae were isolated and characterized. Their host range is narrow and latent period is particularly long; however, their lysogenic nature was refuted using both bioinformatic and experimental approaches. Genome sequence analysis clustered them with only two other phages into the new genus Lastavirus. Genomes of LASTA and SJM3 differ in only 13 base pairs, mainly located in tail fiber genes. Individual phages, as well as their cocktail, demonstrated significant bacterial reduction capacity in a time-dependent manner, yielding up to 4 log reduction against planktonic, and up to 2.59 log on biofilm-embedded, cells. Bacteria emerging from the contact with the phages developed resistance and achieved numbers comparable to the growth control after 24 h. The resistance to the phage seems to be of a transient nature and varies significantly between the two phages, as resistance to LASTA remained constant while resensitization to SJM3 was more prominent. Albeit with very few differences, SJM3 performed better than LASTA overall; however, more investigation is needed in order to consider them for therapeutic application.
Collapse
Affiliation(s)
- Mina Obradović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Milka Malešević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Dušan Kekić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ina Gajić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Olivia McAuliffe
- Department of Food Biosciences, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany
| | - Nemanja Stanisavljević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Goran Vukotić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (G.V.); (M.K.)
| | - Milan Kojić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (G.V.); (M.K.)
| |
Collapse
|
22
|
Abedon ST. Ecology and Evolutionary Biology of Hindering Phage Therapy: The Phage Tolerance vs. Phage Resistance of Bacterial Biofilms. Antibiotics (Basel) 2023; 12:245. [PMID: 36830158 PMCID: PMC9952518 DOI: 10.3390/antibiotics12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
As with antibiotics, we can differentiate various acquired mechanisms of bacteria-mediated inhibition of the action of bacterial viruses (phages or bacteriophages) into ones of tolerance vs. resistance. These also, respectively, may be distinguished as physiological insensitivities (or protections) vs. resistance mutations, phenotypic resistance vs. genotypic resistance, temporary vs. more permanent mechanisms, and ecologically vs. also near-term evolutionarily motivated functions. These phenomena can result from multiple distinct molecular mechanisms, many of which for bacterial tolerance of phages are associated with bacterial biofilms (as is also the case for the bacterial tolerance of antibiotics). The resulting inhibitions are relevant from an applied perspective because of their potential to thwart phage-based treatments of bacterial infections, i.e., phage therapies, as well as their potential to interfere more generally with approaches to the phage-based biological control of bacterial biofilms. In other words, given the generally low toxicity of properly chosen therapeutic phages, it is a combination of phage tolerance and phage resistance, as displayed by targeted bacteria, that seems to represent the greatest impediments to phage therapy's success. Here I explore general concepts of bacterial tolerance of vs. bacterial resistance to phages, particularly as they may be considered in association with bacterial biofilms.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA
| |
Collapse
|
23
|
Zeynali kelishomi F, Khanjani S, Fardsanei F, Saghi Sarabi H, Nikkhahi F, Dehghani B. Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: a review. BMC Infect Dis 2022; 22:957. [PMID: 36550444 PMCID: PMC9773572 DOI: 10.1186/s12879-022-07944-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) is a highly infectious disease and worldwide health problem. Based on the WHO TB report, 9 million active TB cases are emerging, leading to 2 million deaths each year. The recent emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains emphasizes the necessity to improve novel therapeutic plans. Among the various developing antibacterial approaches, phage therapy is thought to be a precise hopeful resolution. Mycobacteriophages are viruses that infect bacteria such as Mycobacterium spp., containing the M. tuberculosis complex. Phages and phage-derived proteins can act as promising antimicrobial agents. Also, phage cocktails can broaden the spectrum of lysis activity against bacteria. Recent researches have also shown the effective combination of antibiotics and phages to defeat the infective bacteria. There are limitations and concerns about phage therapy. For example, human immune response to phage therapy, transferring antibiotic resistance genes, emerging resistance to phages, and safety issues. So, in the present study, we introduced mycobacteriophages, their use as therapeutic agents, and their advantages and limitations as therapeutic applications.
Collapse
Affiliation(s)
- Fatemeh Zeynali kelishomi
- grid.412606.70000 0004 0405 433XMedical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Susan Khanjani
- grid.412606.70000 0004 0405 433XMedical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Fardsanei
- grid.412606.70000 0004 0405 433XMedical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hediyeh Saghi Sarabi
- grid.412606.70000 0004 0405 433XMedical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farhad Nikkhahi
- grid.412606.70000 0004 0405 433XMedical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behzad Dehghani
- grid.412571.40000 0000 8819 4698Department of Bacteriology-Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Tzani-Tzanopoulou P, Rozumbetov R, Taka S, Doudoulakakis A, Lebessi E, Chanishvili N, Kakabadze E, Bakuradze N, Grdzelishvili N, Goderdzishvili M, Legaki E, Andreakos E, Papadaki M, Megremis S, Xepapadaki P, Kaltsas G, Akdis CA, Papadopoulos NG. Development of an in vitro homeostasis model between airway epithelial cells, bacteria and bacteriophages: a time-lapsed observation of cell viability and inflammatory response. J Gen Virol 2022; 103. [PMID: 36748697 DOI: 10.1099/jgv.0.001819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacteriophages represent the most extensive group of viruses within the human virome and have a significant impact on general health and well-being by regulating bacterial population dynamics. Staphylococcus aureus, found in the anterior nostrils, throat and skin, is an opportunistic pathobiont that can cause a wide range of diseases, from chronic inflammation to severe and acute infections. In this study, we developed a human cell-based homeostasis model between a clinically isolated strain of S. aureus 141 and active phages for this strain (PYOSa141) isolated from the commercial Pyophage cocktail (PYO). The cocktail is produced by Eliava BioPreparations Ltd. (Tbilisi, Georgia) and is used as an add-on therapy for bacterial infections, mainly in Georgia. The triptych interaction model was evaluated by time-dependent analysis of cell death and inflammatory response of the nasal and bronchial epithelial cells. Inflammatory mediators (IL-8, CCL5/RANTES, IL-6 and IL-1β) in the culture supernatants were measured by enzyme-linked immunosorbent assay and cell viability was determined by crystal violet staining. By measuring trans-epithelial electrical resistance, we assessed the epithelial integrity of nasal cells that had differentiated under air-liquid interface conditions. PYOSa141 was found to have a prophylactic effect on airway epithelial cells exposed to S. aureus 141 by effectively down-regulating bacterial-induced inflammation, cell death and epithelial barrier disruption in a time-dependent manner. Overall, the proposed model represents an advance in the way multi-component biological systems can be simulated in vitro.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Ramazan Rozumbetov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Evangelia Lebessi
- Department of Microbiology, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia
| | - Elene Kakabadze
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia
| | - Nata Bakuradze
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia
| | - Nino Grdzelishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia.,Ilia State University, Tbilisi, Georgia
| | | | - Evangelia Legaki
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Papadaki
- Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
In vitro and in vivo therapeutical efficiency of the staphylococcus phages and the effect of phage infectivity in well-mixed and spatial environment. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Stacey HJ, De Soir S, Jones JD. The Safety and Efficacy of Phage Therapy: A Systematic Review of Clinical and Safety Trials. Antibiotics (Basel) 2022; 11:1340. [PMID: 36289998 PMCID: PMC9598614 DOI: 10.3390/antibiotics11101340] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Trials of phage therapy have not consistently reported efficacy. This contrasts with promising efficacy rates from a sizeable and compelling body of observational literature. This systematic review explores the reasons why many phage trials have not demonstrated efficacy. Four electronic databases were systematically searched for safety and/or efficacy trials of phage therapy. Sixteen trials of phage therapy were included, in which 378 patients received phage. These were divided into historical (pre-2000; N = 3; n = 76) and modern (post-2000; N = 13; n = 302) trials. All 13 modern trials concluded that phage therapy was safe. Six of the 13 modern trials were exclusively safety trials. Seven modern trials investigated both safety and efficacy; efficacy was observed in two. Two of three historical trials did not comment on safety, while adverse effects in the third likely reflected the use of phage preparations contaminated with bacterial debris. None of the historical trials contained evidence of efficacy. The evidence from trials is that phage therapy is safe. For efficacy to be observed a therapeutic amount of the right phage(s) must be delivered to the right place to treat infections containing enough susceptible bacterial cells. Trials that have not demonstrated efficacy have not fulfilled one or more elements of this principle.
Collapse
Affiliation(s)
- Helen J. Stacey
- Public Health, Kings Cross Hospital, Clepington Road, Dundee DD3 8EA, UK
| | - Steven De Soir
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Rue Bruyn, 1120 Brussels, Belgium
- Cellular & Molecular Pharmacology, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Joshua D. Jones
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Clinical Microbiology, NHS Tayside, Dundee DD2 1SG, UK
| |
Collapse
|
27
|
Doub JB, Urish K, Chan B. Bacteriophage therapy for periprosthetic joint infections: Current limitations and research needed to advance this therapeutic. J Orthop Res 2022; 41:1097-1104. [PMID: 36031587 DOI: 10.1002/jor.25432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
Bacteriophage therapy is a promising treatment for periprosthetic joint infections (PJIs), particularly given these agents have innate abilities to degrade the biofilm matrix and lyse bacteria within. However, many aspects of this therapy are poorly understood causing treatments to lack uniform effectiveness and reproducibility, which is in part a consequence of several inherent limitations to using bacteriophages to treat PJI. Herein, these limitations are discussed as are additional translational research that needs to be conducted to advance this therapeutic. These include determining if bacteria causing PJIs are polyclonal, consequences of bacteriophage attachment receptor phenotypic variations and ramifications of bacteriophage activity when bacteria interact with in vivo macromolecules. Only with the realization of the current limitations and subsequent knowledge gained from translational research will the potential of bacteriophages to reduce the morbidity and mortality in PJI be fully elucidated.
Collapse
Affiliation(s)
- James B Doub
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ken Urish
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Benjamin Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.,Yale Center for Phage Biology & Therapy, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Glonti T, Pirnay JP. In Vitro Techniques and Measurements of Phage Characteristics That Are Important for Phage Therapy Success. Viruses 2022; 14:1490. [PMID: 35891470 PMCID: PMC9323186 DOI: 10.3390/v14071490] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Validated methods for phage selection, host range expansion, and lytic activity determination are indispensable for maximizing phage therapy outcomes. In this review, we describe some relevant methods, highlighting their advantages and disadvantages, and categorize them as preliminary or confirmatory methods where appropriate. Experimental conditions, such as the composition and consistency of culture media, have an impact on bacterial growth and, consequently, phage propagation and the selection of phage-resistant mutants. The phages require different experimental conditions to be tested to fully reveal their characteristics and phage therapy potential in view of their future use in therapy. Phage lytic activity or virulence should be considered as a result of the phage, its host, and intracellular/environmental factors, including the ability of a phage to recognize receptors on the bacterial cell surface. In vitro quantitative and qualitative measurements of phage characteristics, further validated by in vivo experiments, could be incorporated into one system or mathematical model/formula, which could predict a potential successful outcome of clinical applications.
Collapse
Affiliation(s)
- Tea Glonti
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, B-1120 Brussels, Belgium;
| | | |
Collapse
|
29
|
Huang Y, Wang W, Zhang Z, Gu Y, Huang A, Wang J, Hao H. Phage Products for Fighting Antimicrobial Resistance. Microorganisms 2022; 10:microorganisms10071324. [PMID: 35889048 PMCID: PMC9324367 DOI: 10.3390/microorganisms10071324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global public health issue and antibiotic agents have lagged behind the rise in bacterial resistance. We are searching for a new method to combat AMR and phages are viruses that can effectively fight bacterial infections, which have renewed interest as antibiotic alternatives with their specificity. Large phage products have been produced in recent years to fight AMR. Using the “one health” approach, this review summarizes the phage products used in plant, food, animal, and human health. In addition, the advantages and disadvantages and future perspectives for the development of phage therapy as an antibiotic alternative to combat AMR are also discussed in this review.
Collapse
Affiliation(s)
- Yuanling Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhui Wang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihao Zhang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Anxiong Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhao Wang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence:
| |
Collapse
|
30
|
Abedon ST. Pathways to Phage Therapy Enlightenment, or Why I Have Become a Scientific Curmudgeon. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:95-97. [PMID: 36157282 PMCID: PMC9436250 DOI: 10.1089/phage.2022.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade I, with collaborators, have authored a number of publications outlining what in the first of these I described as "Phage therapy best practices"-phage therapy being the use of bacterial viruses (bacteriophages) to treat bacterial infections, such as clinically. More generally, this is phage-mediated biocontrol of bacteria, including of bacteria that can contaminate foods. For the sake of increasing accessibility, here I gather some of these suggestions, along with some frustrations, into a single place, while first providing by way of explanation where they, and I, come from scientifically. Although in my opinion phage therapy and phage-mediated biocontrol are both sound approaches toward combating unwanted bacteria, I feel at the same time that the practice of especially phage therapy research could be improved. I supply also, as supplemental material, a list of ∼100 English language 2000-and-later publications providing primary descriptions of phage application to humans.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
31
|
Abedon ST. Further Considerations on How to Improve Phage Therapy Experimentation, Practice, and Reporting: Pharmacodynamics Perspectives. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:98-111. [PMID: 36148139 PMCID: PMC9436263 DOI: 10.1089/phage.2022.0019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phage therapy uses bacterial viruses (bacteriophages) to infect and kill targeted pathogens. Approximately one decade ago, I started publishing on how possibly to improve upon phage therapy experimentation, practice, and reporting. Here, I gather and expand upon some of those suggestions. The issues emphasized are (1) that using ratios of antibacterial agents to bacteria is not how dosing is accomplished in the real world, (2) that it can be helpful to not ignore Poisson distributions as a means of either anticipating or characterizing phage therapy success, and (3) how to calculate a concept of 'inundative phage densities.' Together, these are issues of phage therapy pharmacodynamics, meaning they are ways of thinking about the potential for phage therapy treatments to be efficacious mostly independent of the details of delivery of phages to targeted bacteria. Much emphasis is placed on working with Poisson distributions to better align phage therapy with other antimicrobial treatments.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
32
|
Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, Cater K, Knežević P, Winogradow C, Amaro K, Jończyk-Matysiak E, Weber-Dąbrowska B, Rękas J, Górski A. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J Biomed Sci 2022; 29:23. [PMID: 35354477 PMCID: PMC8969238 DOI: 10.1186/s12929-022-00806-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/24/2022] [Indexed: 01/04/2023] Open
Abstract
Bacteriophages (phages) may be used as an alternative to antibiotic therapy for combating infections caused by multidrug-resistant bacteria. In the last decades, there have been studies concerning the use of phages and antibiotics separately or in combination both in animal models as well as in humans. The phenomenon of phage–antibiotic synergy, in which antibiotics may induce the production of phages by bacterial hosts has been observed. The potential mechanisms of phage and antibiotic synergy was presented in this paper. Studies of a biofilm model showed that a combination of phages with antibiotics may increase removal of bacteria and sequential treatment, consisting of phage administration followed by an antibiotic, was most effective in eliminating biofilms. In vivo studies predominantly show the phenomenon of phage and antibiotic synergy. A few studies also describe antagonism or indifference between phages and antibiotics. Recent papers regarding the application of phages and antibiotics in patients with severe bacterial infections show the effectiveness of simultaneous treatment with both antimicrobials on the clinical outcome.
Collapse
Affiliation(s)
- Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Phage Therapy Unit, Medical Center of the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006, Warsaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148, Wrocław, Poland
| | - Kathryn Cater
- Rush University Medical Center, 1620 W. Harrison St., Chicago, IL, 60612, USA
| | - Petar Knežević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Republic of Serbia
| | - Cyprian Winogradow
- Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | | | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Phage Therapy Unit, Medical Center of the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Justyna Rękas
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Phage Therapy Unit, Medical Center of the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Infant Jesus Hospital, Medical University of Warsaw, 02-005, Warsaw, Poland
| |
Collapse
|
33
|
Wintachai P, Voravuthikunchai SP. Characterization of Novel Lytic Myoviridae Phage Infecting Multidrug-Resistant Acinetobacter baumannii and Synergistic Antimicrobial Efficacy between Phage and Sacha Inchi Oil. Pharmaceuticals (Basel) 2022; 15:291. [PMID: 35337089 PMCID: PMC8949666 DOI: 10.3390/ph15030291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant (MDR) strains of Acinetobacter baumannii have become a major cause of hospital-acquired infections, resulting in an increase in morbidity and mortality worldwide. Many alternative treatments, including phage therapy, are attractive approaches for overcoming problems posed by antibiotic resistance. A newly isolated phage, vWUPSU-specific MDR A. baumannii, showed a narrow host range against MDR A. baumannii. This research was conducted to isolate, characterize, and apply the phage with sacha inchi oil as an alternative antimicrobial agent. Genome analysis suggested that phage vWUPSU is a novel phage belonging to the family Myoviridae, order Caudoviridae. This phage prevented biofilm formation and eradicated preformed biofilms in a dose-dependent manner. In addition, a synergistic antimicrobial effect of the interaction between phage vWUPSU and sacha inchi oil on planktonic cells was observed. The combination of phage and sacha inchi oil significantly inhibited and removed biofilms, compared with the effects of either single treatment. The results of this work indicate that phage vWUPSU could potentially be applied to control MDR A. baumannii. The antibacterial and antibiofilm activities of the combination of phage vWUPSU and sacha inchi oil have attracted significant interests in the development of antibacterial phage products as beneficial treatment options.
Collapse
Affiliation(s)
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| |
Collapse
|
34
|
Würstle S, Stender J, Hammerl JA, Vogele K, Rothe K, Willy C, Bugert JJ. Practical Assessment of an Interdisciplinary Bacteriophage Delivery Pipeline for Personalized Therapy of Gram-Negative Bacterial Infections. Pharmaceuticals (Basel) 2022; 15:186. [PMID: 35215298 PMCID: PMC8879309 DOI: 10.3390/ph15020186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022] Open
Abstract
Despite numerous advances in personalized phage therapy, smooth logistics are challenging, particularly for multidrug-resistant Gram-negative bacterial infections requiring high numbers of specific lytic phages. We conducted this study to pave the way for efficient logistics for critically ill patients by (1) closely examining and improving a current pipeline under realistic conditions, (2) offering guidelines for each step, leading to safe and high-quality phage supplies, and (3) providing a tool to evaluate the pipeline's efficiency. Due to varying stipulations for quality and safety in different countries, we focused the pipeline on all steps up to a required phage product by a cell-free extract system. The first of three study runs included patients with respiratory bacterial infections from four intensive care units, and it revealed a cumulative time of up to 23 days. Ultimately, adjustment of specific set points of the vulnerable components of the pipeline, phage isolation, and titration increased the pipeline's efficiency by 15% and decreased the maximum required time to 13 days. We present a site-independent practical approach to establish and optimize pipelines for personalized phage delivery, the co-organization of pipeline components between different institutions, non-binding guidelines for every step, and an efficiency check for phage laboratories.
Collapse
Affiliation(s)
- Silvia Würstle
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jana Stender
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
| | - Jens André Hammerl
- Unit Epidemiology, Zoonoses and Antimicrobial Resistances, Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| | - Kilian Vogele
- Physics of Synthetic Biological Systems-E14, Physics-Department and ZNN, Technical University Munich, 85748 Munich, Germany;
| | - Kathrin Rothe
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Christian Willy
- Trauma & Orthopaedic Surgery, Septic & Reconstructive Surgery, Research and Treatment Centre Septic Defect Wounds, Bundeswehr (Military) Academic Hospital Berlin, 10115 Berlin, Germany;
| | | |
Collapse
|
35
|
Doub JB. Risk of Bacteriophage Therapeutics to Transfer Genetic Material and Contain Contaminants Beyond Endotoxins with Clinically Relevant Mitigation Strategies. Infect Drug Resist 2022; 14:5629-5637. [PMID: 34992389 PMCID: PMC8711558 DOI: 10.2147/idr.s341265] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophage therapy is a promising adjuvant therapeutic in the treatment of multidrug-resistant infections and chronic biofilm infections. However, there is limited knowledge about how to best utilize these agents in vivo, leading to a wide range of treatment protocols. Moreover, while bacteriophages are similar to antibiotics in their antimicrobial effects, these are active viruses and are very different from conventional antibiotics. One main difference that clinicians should be cognizant about is the potential ability of these therapeutics to horizontally transfer genetic material, and the clinical ramifications of such events. In addition, while bacteriophage therapeutics are readily tested for sterility and endotoxins, clinicians should also be aware of other contaminants, such as exotoxins, pathogenicity islands and prophages, that can contaminate bacteriophage therapeutics, and their clinical ramifications. While the perception may be that these are only theoretical issues, regulatory agencies are starting to recommend their evaluation when using bacteriophage therapy and subsequently these topics are discussed herein, as are ways to test for and mitigate the adverse effects of these issues.
Collapse
Affiliation(s)
- James B Doub
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|