1
|
Wei PS, Chou PY, Hsu HY, Chen M, Chen YJ, Tsai TH, Wen BY, Sheu MT, Chuang KH, Lin HL. Nonshrinkable Thermosensitive Hydrogels Combined with Bispecific Anti-PSMA/CD3 T-Cell Engager for Effective Against Tumors in Mice Model. Int J Nanomedicine 2025; 20:3083-3111. [PMID: 40098725 PMCID: PMC11911822 DOI: 10.2147/ijn.s496746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose CD3-based Bispecific T-cell engagers (BiTEs) are effective for solid tumors due to their tumor specificity and tissue penetration, but they face challenges like short half-lives and narrow therapeutic windows. Innovative delivery systems, like thermosensitive hydrogels, show the potential to enhance stability, sustained release, and therapeutic efficacy. Methods We developed PEGylated PLGA (PEG-PLGA) thermosensitive hydrogels with a nonshrinkable property (nsTPPgels) for effective controlled release and loaded them with bispecific anti-prostate surface membrane antigen (PSMA) Fab /anti-CD3 scFv T-cell engager (BiPTE) to form in situ drug deposits with a sustained-release profile after subcutaneous injection. Each group of hydrogels was first tested for differences in properties through rheological and in vitro drug release profiles. Meanwhile, in vivo pharmacokinetics, anti-tumor efficacy studies, and T-cell tracking studies were conducted to analyze the advantages of nsTPPgels included D2gel and DTgels. Results The cytotoxicity of BiPTE against PSMA-overexpressing tumor cells and the drug release functionality of nsTPPgels were validated in vitro. Rheological studies showed that both D2gel and DTgels remained in solution below 27 °C for easy injection and solidified at physiological temperatures to form localized depots for sustained BiPTE release. All nsTPPgels demonstrated a 5-day in vitro sustained release, prolonged elimination half-life, steady plasma BiPTE levels, and extended mean residence time. In an LNCaP-xenograft mouse model, tumor growth inhibition rates for BiPTE/DTgel-2, BiPTE/DTgel-2S, and BiPTE/D2gel were 74.3%, 96.1%, and 113.1%, respectively, compared to 35.6% for intravenous and 46% for subcutaneous BiPTE administration. Furthermore, all nsTPPgels effectively achieved T-cell recruitment to lymph nodes and tumor sites in tracking studies. Conclusion In conclusion, we developed relatively convenient injectable thermosensitive D2gel with a desirable gelation temperature window, which have the potential to be used for antibody drug delivery in several biomedical applications.
Collapse
Affiliation(s)
- Pu-Sheng Wei
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Po-Yu Chou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hao-Yi Hsu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jou Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Tung-Han Tsai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Bang-Yu Wen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Program in Clinical Genomics and Proteomics, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Ph.D Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Liang Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Caltavituro A, Buonaiuto R, Salomone F, Pecoraro G, Martorana F, Lauro VD, Barchiesi G, Puglisi F, Del Mastro L, Montemurro F, Giuliano M, Arpino G, De Laurentiis M. Warming-up the immune cell engagers (ICEs) era in breast cancer: state of the art and future directions. Crit Rev Oncol Hematol 2025; 206:104577. [PMID: 39613237 DOI: 10.1016/j.critrevonc.2024.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has deeply reshaped the therapeutic algorithm of triple-negative breast cancer (TNBC). However, there is considerable scope for better engagement of the immune system in other BC subtypes. ICIs have paved the way for investigations into emerging immunotherapeutic strategies, such as immune cell engagers (ICEs) that work by promoting efficient tumor cell killing through the redirection of immune system against cancer cells. Most ICEs are bispecific antibodies that simultaneously recognize and bind to both cancer and immune cells generating an artificial synapse. Major side effects are cytokine release syndrome, hepatotoxicity, and neurotoxicity related to inappropriate immune system activation. Here, we provide a comprehensive overview of this compounds, the available preclinical and clinical evidence supporting their investigation and development in BC also highlighting the challenges that have prevented their widespread use in oncology. Finally, major strategies are explored to broaden their use in BC.
Collapse
Affiliation(s)
- Aldo Caltavituro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy
| | - Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy; Clinical and Translational Oncology, Scuola Superiore Meridionale, Naples, Italy
| | - Fabio Salomone
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Giovanna Pecoraro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Vincenzo Di Lauro
- Department of Breast & Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale,' Naples, Italy.
| | - Giacomo Barchiesi
- Azienda Ospedaliera Universitaria Policlinico Umberto I, UOC Oncologia, Roma, Italy
| | - Fabio Puglisi
- Department of Medicine, University of Udine, Via Palladio 8, Udine 33100, Italy; Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Via Franco Gallini 2, Aviano, Pordenone 33081, Italy
| | - Lucia Del Mastro
- Department of Medical Oncology, UO Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, Genova 16132, Italy
| | - Filippo Montemurro
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 -KM 3.95, Candiolo, Torino 10060, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini 5, Naples 80131, Italy
| | - Michelino De Laurentiis
- Department of Breast & Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale,' Naples, Italy
| |
Collapse
|
3
|
Qin X, Ning W, Liu H, Liu X, Luo W, Xia N. Stepping forward: T-cell redirecting bispecific antibodies in cancer therapy. Acta Pharm Sin B 2024; 14:2361-2377. [PMID: 38828136 PMCID: PMC11143529 DOI: 10.1016/j.apsb.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens, thereby engaging with CD3 on the T cell receptor. This linkage between tumor cells and T cells actively triggers T cell activation and initiates targeted killing of the identified tumor cells. These antibodies have emerged as one of the most promising avenues within tumor immunotherapy. However, despite success in treating hematological malignancies, significant advancements in solid tumors have yet to be explored. In this review, we aim to address the critical challenges associated with T cell-redirecting bispecific antibodies and explore novel strategies to overcome these obstacles, with the ultimate goal of expanding the application of this therapy to include solid tumors.
Collapse
Affiliation(s)
- Xiaojing Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Han Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Brouwer-Visser J, Fiaschi N, Deering RP, Cygan KJ, Scott D, Jeong S, Boucher L, Gupta NT, Gupta S, Adler C, Topp MS, Bannerji R, Duell J, Advani RH, Flink DM, Chaudhry A, Thurston G, Ambati SR, Jankovic V. Molecular assessment of intratumoral immune cell subsets and potential mechanisms of resistance to odronextamab, a CD20×CD3 bispecific antibody, in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. J Immunother Cancer 2024; 12:e008338. [PMID: 38519055 PMCID: PMC10961523 DOI: 10.1136/jitc-2023-008338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Patients with relapsed/refractory B-cell non-Hodgkin lymphoma (R/R B-NHL) have a significant need for effective treatment options. Odronextamab is an Fc-silenced, human, CD20×CD3 bispecific antibody that targets CD20-expressing cells via T-cell-mediated cytotoxicity independent of T-cell/major histocompatibility complex interaction. Phase I results in patients with R/R B-NHL demonstrated that odronextamab monotherapy could achieve deep and durable responses with a generally manageable safety profile (ELM-1; NCT02290951). As part of a biomarker analysis of the same study, we investigated potential biomarkers and mechanisms of resistance to odronextamab. METHODS Patients with R/R B-NHL enrolled in ELM-1 received one time per week doses of intravenous odronextamab for 4×21 day cycles, then doses every 2 weeks thereafter. Patient tumor biopsies were obtained at baseline, on-treatment, and at progression. Immune cell markers were analyzed by immunohistochemistry, flow cytometry, single-cell RNA sequencing, and whole genome sequencing. RESULTS Baseline tumor biopsies showed that almost all patients had high proportions of B cells that expressed the CD20 target antigen, whereas expression of other B-cell surface antigens (CD19, CD22, CD79b) was more variable. Responses to odronextamab in patients with diffuse large B-cell lymphoma were not related to the relative level of baseline CD20 expression, cell of origin, or high-risk molecular subtype. A potential link was observed between greater tumor programmed cell death-ligand 1 expression and increased likelihood of response to odronextamab. Similarly, a trend was observed between clinical response and increased levels of CD8 T cells and regulatory T cells at baseline. We also identified an on-treatment pharmacodynamic shift in intratumoral immune cell subsets. Finally, loss of CD20 expression through inactivating gene mutations was identified as a potential mechanism of resistance in patients who were treated with odronextamab until progression, as highlighted in two detailed patient cases reported here. CONCLUSIONS This biomarker analysis expands on clinical findings of odronextamab in patients with R/R B-NHL, providing verification of the suitability of CD20 as a therapeutic target, as well as evidence for potential mechanisms of action and resistance.
Collapse
Affiliation(s)
| | | | | | - Kamil J Cygan
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Darius Scott
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Se Jeong
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Lauren Boucher
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Namita T Gupta
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Suraj Gupta
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | | | - Max S Topp
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Rajat Bannerji
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Johannes Duell
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ranjana H Advani
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Dina M Flink
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Aafia Chaudhry
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
5
|
Kimura K, Kuwahara A, Suzuki S, Nakanishi T, Kumagai I, Asano R. Cancer therapeutic trispecific antibodies recruiting both T and natural killer cells to cancer cells. Oncol Rep 2023; 50:212. [PMID: 37859608 PMCID: PMC10620844 DOI: 10.3892/or.2023.8649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
T cells and natural killer (NK) cells are major effector cells recruited by cancer therapeutic bispecific antibodies; however, differences in the populations of these cells in individual tumors limit the general use of these antibodies. In the present study, trispecific antibodies were created, namely T cell and NK cell engagers (TaKEs), that recruit both T cells and NK cells. Notably, three Fc‑fused TaKEs were designed, TaKE1‑Fc, TaKE2‑Fc and TaKE3‑Fc, using variable fragments targeting the epidermal growth factor receptor on tumor cells, CD3 on T cells, and CD16 on NK cells. Among them, TaKE1‑Fc was predicted to form a circular tetrabody‑like configuration and exhibited the highest production and greatest cancer growth inhibitory effects. TaKE1 was prepared from TaKE1‑Fc by digesting the Fc region for further functional evaluation. The resulting TaKE1 exhibited trispecificity via its ability to bind cancer cells, T cells and NK cells, as well as comparable or greater cancer growth inhibitory effects to those of two bispecific antibodies that recruit T cells and NK cells, respectively. A functional trispecific antibody with the potential to exert strong therapeutic effects independent of T cell and NK cell populations was developed.
Collapse
Affiliation(s)
- Kouki Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Atsushi Kuwahara
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Saori Suzuki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Takeshi Nakanishi
- Department of Chemistry and Bioengineering, Division of Science and Engineering for Materials, Chemistry and Biology, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
6
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
7
|
Niu J, Wang W, Ouellet D. Mechanism-based pharmacokinetic and pharmacodynamic modeling for bispecific antibodies: challenges and opportunities. Expert Rev Clin Pharmacol 2023; 16:977-990. [PMID: 37743720 DOI: 10.1080/17512433.2023.2257136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Unlike conventional antibodies, bispecific antibodies (bsAbs) are engineered antibody- or antibody fragment-based molecules that can simultaneously recognize two different epitopes or antigens. Over the past decade, there has been an explosion of bsAbs being developed across therapeutic areas. Development of bsAbs presents unique challenges and mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) modeling has served as a powerful tool to optimize their development and realize their clinical utility. AREAS COVERED In this review, the guiding principles and case examples of how fit-for-purpose, mechanism-based PK/PD models have been applied to answer questions commonly encountered in bsAb development are presented. Such models characterize the key pharmacological elements of bsAbs, and they can be utilized for model-informed drug development. We also include the discussion of challenges, knowledge gaps and future direction for such models. EXPERT OPINION Mechanistic PK/PD modeling is a powerful tool to support the development of bsAbs. These models can be extrapolated to predict treatment outcomes based on mechanisms of action (MoA) and clinical observations to form positive learn-and-confirm cycles during drug development, due to their abilities to differentiate system- and drug-specific parameters. Meanwhile, the models should keep being adapted according to novel drug design and MoA, providing continuous opportunities for model-informed drug development.
Collapse
Affiliation(s)
- Jin Niu
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Weirong Wang
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Daniele Ouellet
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| |
Collapse
|
8
|
Yu K, Liu B, Yu H, Sun C, Wang X, Li G, Dong M, Wang Y, Zhang J, Xu N, Liu W. A neutralizing bispecific single-chain antibody against SARS-CoV-2 Omicron variant produced based on CR3022. Front Cell Infect Microbiol 2023; 13:1155293. [PMID: 37207187 PMCID: PMC10189128 DOI: 10.3389/fcimb.2023.1155293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction The constantly mutating SARS-CoV-2 has been infected an increasing number of people, hence the safe and efficacious treatment are urgently needed to combat the COVID-19 pandemic. Currently, neutralizing antibodies (Nabs), targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are potentially effective therapeutics against COVID-19. As a new form of antibody, bispecific single chain antibodies (BscAbs) can be easily expressed in E. coli and exhibits broad-spectrum antiviral activity. Methods In this study, we constructed two BscAbs 16-29, 16-3022 and three single chain variable fragments (scFv) S1-16, S2-29 and S3022 as a comparison to explore their antiviral activity against SARS-CoV-2. The affinity of the five antibodies was characterized by ELISA and SPR and the neutralizing activity of them was analyzed using pseudovirus or authentic virus neutralization assay. Bioinformatics and competitive ELISA methods were used to identify different epitopes on RBD. Results Our results revealed the potent neutralizing activity of two BscAbs 16-29 and 16-3022 against SARS-CoV-2 original strain and Omicron variant infection. In addition, we also found that SARS-CoV RBD-targeted scFv S3022 could play a synergistic role with other SARS-CoV-2 RBD-targeted antibodies to enhance neutralizing activity in the form of a BscAb or in cocktail therapies. Discussion This innovative approach offers a promising avenue for the development of subsequent antibody therapies against SARSCoV-2. Combining the advantages of cocktails and single-molecule strategies, BscAb therapy has the potential to be developed as an effective immunotherapeutic for clinical use to mitigate the ongoing pandemic.
Collapse
Affiliation(s)
- Kaikai Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Bin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haotian Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Xuefeng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Guorui Li
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Na Xu
- Academic Affairs Office, Jilin Medical University, Jilin, Jilin, China
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| |
Collapse
|
9
|
Bispecific Antibody Format and the Organization of Immunological Synapses in T Cell-Redirecting Strategies for Cancer Immunotherapy. Pharmaceutics 2022; 15:pharmaceutics15010132. [PMID: 36678761 PMCID: PMC9863865 DOI: 10.3390/pharmaceutics15010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
T cell-redirecting strategies have emerged as effective cancer immunotherapy approaches. Bispecific antibodies (bsAbs) are designed to specifically recruit T cells to the tumor microenvironment and induce the assembly of the immunological synapse (IS) between T cells and cancer cells or antigen-presenting cells. The way that the quality of the IS might predict the effectiveness of T cell-redirecting strategies, including those mediated by bsAbs or by chimeric antigen receptors (CAR)-T cells, is currently under discussion. Here we review the organization of the canonical IS assembled during natural antigenic stimulation through the T cell receptor (TCR) and to what extent different bsAbs induce T cell activation, canonical IS organization, and effector function. Then, we discuss how the biochemical parameters of different formats of bsAbs affect the effectivity of generating an antigen-induced canonical IS. Finally, the quality of the IS assembled by bsAbs and monoclonal antibodies or CAR-T cells are compared, and strategies to improve bsAb-mediated T cell-redirecting strategies are discussed.
Collapse
|
10
|
Shi N, Zhou Y, Liu Y, Zhang R, Jiang X, Ren C, Gao X, Luo L. PD-1/LAG-3 bispecific antibody potentiates T cell activation and increases antitumor efficacy. Front Immunol 2022; 13:1047610. [PMID: 36518768 PMCID: PMC9742559 DOI: 10.3389/fimmu.2022.1047610] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Several clinical studies demonstrate that there exist other immune checkpoints overexpressed in some PD-1 inhibitor-resistant tumor patients. Among them, Lymphocyte-activation gene 3 (LAG-3) is one of the important immune checkpoint molecules and has been clinically demonstrated to have synergistic anti-tumor effects in combination with PD-1 antibody. In this study, we designed a novel 'knob-in-hole' PD-1/LAG-3 bispecific antibody (BsAb) YG-003D3. In conclusion, the BsAb maintained the similar affinity and thermal stability to the parental antibody, and the BsAb structure can be independent of each other in the process of double-target recognition, and the recognition activity will not be affected. Moreover, the BsAb can not only target PD-1 and LAG-3 on single cell simultaneously, but also bridge the two kinds of cells expressing PD-1 and LAG-3, so as to release the 'brake system of immune checkpoints' and activate immune cells to exert anti-tumor effects more effectively. Especially in the PBMCs activation assay, YG-003D3 induced stronger IFN-γ, IL-6, and TNF-α secretion compared to anti-PD-1 or anti-LAG-3 single drug group or even combined drug group. In the tumor killing experiment of PBMC in vitro, YG-003D3 has a better ability to activate PBMC to kill tumor cells than anti-PD-1 or anti-LAG-3 single drug group or even combined drug group, and the killing rate is as high as 20%. In a humanized PD-1/LAG-3 transgenic mouse subcutaneous tumor-bearing model, YG-003D3 showed good anti-tumor activity, even better than that of the combination group at the same molar concentration. Further studies have shown that YG-003D3 could significantly alter the proportion of immune cells in the tumor microenvironment. In particular, the proportion of CD45+, CD3+ T, CD8+ T cells in tumor tissue and the proportion of CD3+ T, CD8+ T, CD4+ T cells in peripheral blood were significantly increased. These results suggest that YG-003D3 exerts a potent antitumor effect by activating the body 's immune system. In summary, the BsAb YG-003D3 has good anti-tumor activity, which is expected to become a novel drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Ning Shi
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Yangyihua Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Ran Zhang
- Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xingjun Jiang
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Caiping Ren
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Caiping Ren, ; Xiang Gao, ; Longlong Luo,
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,*Correspondence: Caiping Ren, ; Xiang Gao, ; Longlong Luo,
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,*Correspondence: Caiping Ren, ; Xiang Gao, ; Longlong Luo,
| |
Collapse
|
11
|
Liguori L, Polcaro G, Nigro A, Conti V, Sellitto C, Perri F, Ottaiano A, Cascella M, Zeppa P, Caputo A, Pepe S, Sabbatino F. Bispecific Antibodies: A Novel Approach for the Treatment of Solid Tumors. Pharmaceutics 2022; 14:2442. [PMID: 36432631 PMCID: PMC9694302 DOI: 10.3390/pharmaceutics14112442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Advancement in sequencing technologies allows for the identification of molecular pathways involved in tumor progression and treatment resistance. Implementation of novel agents targeting these pathways, defined as targeted therapy, significantly improves the prognosis of cancer patients. Targeted therapy also includes the use of monoclonal antibodies (mAbs). These drugs recognize specific oncogenic proteins expressed in cancer cells. However, as with many other types of targeting agents, mAb-based therapy usually fails in the long-term control of cancer progression due to the development of resistance. In many cases, resistance is caused by the activation of alternative pathways involved in cancer progression and the development of immune evasion mechanisms. To overcome this off-target resistance, bispecific antibodies (bsAbs) were developed to simultaneously target differential oncogenic pathway components, tumor-associated antigens (TAA) and immune regulatory molecules. As a result, in the last few years, several bsAbs have been tested or are being tested in cancer patients. A few of them are currently approved for the treatment of some hematologic malignancies but no bsAbs are approved in solid tumors. In this review, we will provide an overview of the state-of-the-art of bsAbs for the treatment of solid malignancies outlining their classification, design, main technologies utilized for production, mechanisms of action, updated clinical evidence and potential limitations.
Collapse
Affiliation(s)
- Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giovanna Polcaro
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Annunziata Nigro
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Valeria Conti
- Clinical Pharmacology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Sellitto
- Clinical Pharmacology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, INT IRCSS, Foundation “G. Pascale”, 80131 Naples, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Abdominal Oncology, INT IRCCS Foundation “G. Pascale”, 80131 Naples, Italy
| | - Marco Cascella
- Unit of Anesthesiology and Pain Therapy, INT IRCCS Foundation “G. Pascale”, 80131 Naples, Italy
| | - Pio Zeppa
- Pathology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Alessandro Caputo
- Pathology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Stefano Pepe
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
12
|
Kang J, Sun T, Zhang Y. Immunotherapeutic progress and application of bispecific antibody in cancer. Front Immunol 2022; 13:1020003. [PMID: 36341333 PMCID: PMC9630604 DOI: 10.3389/fimmu.2022.1020003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 08/19/2023] Open
Abstract
Bispecific antibodies (bsAbs) are artificial antibodies with two distinct antigen-binding sites that can bind to different antigens or different epitopes on the same antigen. Based on a variety of technology platforms currently developed, bsAbs can exhibit different formats and mechanisms of action. The upgrading of antibody technology has promoted the development of bsAbs, which has been effectively used in the treatment of tumors. So far, 7 bsAbs have been approved for marketing in the world, and more than 200 bsAbs are in clinical and preclinical research stages. Here, we summarize the development process of bsAbs, application in tumor treatment and look forward to the challenges in future development.
Collapse
Affiliation(s)
- Jingyue Kang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tonglin Sun
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Minghan Q, Shan W, Xinrui C, Huaqing W. Update on diffuse large B-cell lymphoma: highlights from the 2022 ASCO Annual Meeting. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0403. [PMID: 36069539 PMCID: PMC9425190 DOI: 10.20892/j.issn.2095-3941.2022.0403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qiu Minghan
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300191, China.,The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Wu Shan
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300191, China.,The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Chen Xinrui
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300191, China.,The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Wang Huaqing
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300191, China.,The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| |
Collapse
|
14
|
Ordóñez-Reyes C, Garcia-Robledo JE, Chamorro DF, Mosquera A, Sussmann L, Ruiz-Patiño A, Arrieta O, Zatarain-Barrón L, Rojas L, Russo A, de Miguel-Perez D, Rolfo C, Cardona AF. Bispecific Antibodies in Cancer Immunotherapy: A Novel Response to an Old Question. Pharmaceutics 2022; 14:pharmaceutics14061243. [PMID: 35745815 PMCID: PMC9229626 DOI: 10.3390/pharmaceutics14061243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/14/2023] Open
Abstract
Immunotherapy has redefined the treatment of cancer patients and it is constantly generating new advances and approaches. Among the multiple options of immunotherapy, bispecific antibodies (bsAbs) represent a novel thoughtful approach. These drugs integrate the action of the immune system in a strategy to redirect the activation of innate and adaptive immunity toward specific antigens and specific tumor locations. Here we discussed some basic aspects of the design and function of bsAbs, their main challenges and the state-of-the-art of these molecules in the treatment of hematological and solid malignancies and future perspectives.
Collapse
Affiliation(s)
- Camila Ordóñez-Reyes
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Juan Esteban Garcia-Robledo
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Diego F. Chamorro
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Andrés Mosquera
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
| | - Liliana Sussmann
- Department of Neurology, Fundación Universitaria de Ciencias de la Salud, Bogotá 111221, Colombia;
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), Mexico City 14080, Mexico; (O.A.); (L.Z.-B.)
| | - Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), Mexico City 14080, Mexico; (O.A.); (L.Z.-B.)
| | - Leonardo Rojas
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
| | | | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.d.M.-P.); (C.R.)
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.d.M.-P.); (C.R.)
| | - Andrés F. Cardona
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
- Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá 110131, Colombia
- Correspondence: ; Tel.: +57-(1)-6190052; Fax: +57-(1)-6190053
| |
Collapse
|
15
|
Shin HG, Yang HR, Yoon A, Lee S. Bispecific Antibody-Based Immune-Cell Engagers and Their Emerging Therapeutic Targets in Cancer Immunotherapy. Int J Mol Sci 2022; 23:5686. [PMID: 35628495 PMCID: PMC9146966 DOI: 10.3390/ijms23105686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide after cardiovascular diseases. Harnessing the power of immune cells is a promising strategy to improve the antitumor effect of cancer immunotherapy. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers. Since the first approval of blinatumomab by the United States Food and Drug Administration (US FDA), various bsAb-based ICEs have been developed for the effective treatment of patients with cancer. Simultaneously, several potential therapeutic targets of bsAb-based ICEs have been identified in various cancers. Therefore, this review focused on not only highlighting the action mechanism, design and structure, and status of bsAb-based ICEs in clinical development and their approval by the US FDA for human malignancy treatment, but also on summarizing the currently known and emerging therapeutic targets in cancer. This review provides insights into practical considerations for developing next-generation ICEs.
Collapse
Affiliation(s)
- Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Aerin Yoon
- R&D Division, GC Biopharma, Yongin 16924, Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Korea
| |
Collapse
|